Skip to main content
Log in

Field Angular Momentum

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We examine the possible role played by field angular momentum in two systems of vastly different sizes: (i) the nucleon and (ii) highly magnetic white dwarf stars. For the nucleon we study the restrictions on the nucleon's structure that arise from the requirement that the total field angular (spin, orbital and field angular momentum) should satisfy the standard angular momentum commutation relationship. For the magnetic white dwarfs we argue that the magnetic field may alter the statistics of some fraction of the white dwarf's electrons from fermionic to bosonic. This would effect the stars structure, giving it a smaller than expected radius, and a lower than expected temperature. In some extreme cases one could imagine that this effect could lead to the collapse of the white dwarf into a neutron star despite being below the Chandreshekar limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Saha, “On the origin of mass in neutrons and proton's, ” Ind. J. Phys. 10, 145-151 (1936). M. N. Saha, “Note on Dirac's theory of magnetic poles, ” Phys. Rev. 75, 1968 (1949). H. A. Wilson, “Note on Dirac's theory of magnetic poles, ” Phys. Rev. 75, 309 (1949).

    Google Scholar 

  2. J. Ashman et al., “A measurement of the spin asymmetry and determination of the structure function G(1) in deep inelastic muon-proton scattering, ” Phys. Lett. B 206, 364-370 1988); J. Ashman et al. “An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons, ” Nuclear Phys. B d328, 1-35 (1989).

    Google Scholar 

  3. X. Ji, “Gauge invariant decomposition of nucleon spin and its spin-off, ” Phys. Rev. Lett. 78, 610-613 (1997); X. Ji“Deeply virtual compton scattering, ” Phys. Rev. D 55, 7114-7125 (1997).

    Google Scholar 

  4. P. Hoodbhoy, X. Ji, and Wei Lu, “Implications of color gauge symmetry for nucleon spin structure, ” Phys. Rev. D 59, 074010(1999).

    Google Scholar 

  5. D. Singleton and V. Dzhunushaliev, “Orbital and field angular momentum in the nucleon, ” Found. Phys. 30, 1093-1105 (2000).

    Google Scholar 

  6. D. Singleton, “Glueball spin, ” Modern Phys. Lett. A 16, 41-51 (2001).

    Google Scholar 

  7. F. Mandl and G. Shaw, Quantum Field Theory, rev. edn. (Wiley, New York, 1984), p. 86.

    Google Scholar 

  8. D. Singleton, “Electromagnetic angular momentum and quantum mechanics, ” Amer. J. Phys. 66, 697-701 (1998).

    Google Scholar 

  9. D. Singleton, “Electromagnetic contribution to the nucleon spin, ” Phys. Lett. B 427, 155-160 (1998).

    Google Scholar 

  10. A. DeRujula, H. Georgi, and S. L. Glashow, “Hadron masses in a gauge theory, ” Phys. Rev. D 12, 147-162, (1975).

    Google Scholar 

  11. M. Kirchbach, M. Moshinsky, and Yu. F. Smirnov, “Baryons in O(4) and vibron model, ” Phys. Rev. D 64, 114005(2001).

    Google Scholar 

  12. D. Ahluwalia and M. Kirchbach, “(1/2, 1/2) representation space: An ab initio construct, ” Modern Phys. Lett. A 16, 1377(2001).

    Google Scholar 

  13. S. Chandrasekhar, “The density of white dwarf stars, ” Phil. Mag. 11, 592-596 (1931); S. Chandrasekhar“The maximum mass of ideal white dwarfs, ” Ap. J. 74, 81-82 (1932).

    Google Scholar 

  14. L. D. Landau, “On the theory of stars, ” Phys. Z. Sowjetunion 1, 285-291 (1932).

    Google Scholar 

  15. S. Coleman, “The quantum sine-Gordon equations of the massive Thirring model, ” Phys. Rev. D 11, 2088-2097 (1975).

    Google Scholar 

  16. S. Mandelstam, “Soliton operators for the quantized sine-gordon equation, ” Phys. Rev. D 11, 3026-3030 (1975).

    Google Scholar 

  17. A. Luther, “Bosonized fermions in three dimensions, ” Phys. Rept 49, 261-266 (1979).

    Google Scholar 

  18. R. Jackiw and C. Rebbi, “Spin from isospin in a gauge theory, ” Phys. Rev. Lett. 36, 1116-1119 (1976).

    Google Scholar 

  19. P. Hasenfrantz and G. 't Hooft, “Fermion–Boson puzzle in a gauge theory, ” Phys. Rev. Lett. 36, 1119-1122 (1976).

    Google Scholar 

  20. R. E. Prange and S. M. Girvin, The Quantum Hall Effect, 2nd ed. (Springer, New York, 1990).

    Google Scholar 

  21. J. K. Jain, “Composite-fermion approach for the fractional quantum Hall effect, ” Phys. Rev. Lett. 63, 199-202 (1989).

    Google Scholar 

  22. D. Singleton and J. Dryzek, “Electromagnetic field angular momentum in condensed matter systems, ” Phys. Rev. B 62, 13070-13075 (2000).

    Google Scholar 

  23. S. M. Girvin and A. H. MacDonald, “Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect, ” Phys. Rev. Lett. 58, 1252-1255 (1988).

    Google Scholar 

  24. D. H. Lee and C. L. Kane, “Boson-vortex-Skyrmion duality, spin-singlet fractional quantum Hall effect, and spin-1/2 anyon superconductivity, ” Phys. Rev. Lett. 64, 1313-1317 (1990).

    Google Scholar 

  25. A. Wolszczan and D. A. Frail, “A planetary system around the millisecond pulsar PSR 1257+12, ” Nature 355, 145-147 (1992).

    Google Scholar 

  26. F. Wilczek, “Magnetic, flux, angular momentum, and statistics, ” Phys. Rev. Lett. 48, 1144-1146 (1982).

    Google Scholar 

  27. A. Goldhaber, “Connection of spin and statistics for charge-monopole composites, ” Phys. Rev. Lett. 36, 1122-1125 (1976).

    Google Scholar 

  28. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 251.

    Google Scholar 

  29. J. Dryzek, A. Kato, G. Muñoz, and D. Singleton, “Electrons as quasi-bosons in magnetic white dwarfs, ” Internat. J. Modern Phys. D 11, 417-425 (2002).

    Google Scholar 

  30. H. J. Lipkin, W. I. Weisberger, and M. Peskin, “Magnetic charge quantization and angular momentum, ” Ann. Phys. 53, 203-214 (1969).

    Google Scholar 

  31. I. S. Suh and G. J. Mathews, “Mass-radius relation for white dwarfs, ” Ap. J. 530, 949-954 (2000).

    Google Scholar 

  32. N. Nag and S. Chakrabarty, “ Can a very low-luminosity and cold white dwarf be a self-gravitating bose condensed system?, ” astro-ph/0008477.

  33. J. A. Pons et al., “Nearby isolated neutron star RX J185635-3754, ” Ap. J. 564, 981-1006 (2002); J. J. Drake et al., “Is RX J1856.5–3754 a quark star?, ” Ap. J. 572, 996-1001 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, A., Muñoz, G., Singleton, D. et al. Field Angular Momentum. Foundations of Physics 33, 769–780 (2003). https://doi.org/10.1023/A:1025649007365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025649007365

Navigation