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Understanding science of the new millennium 

 

Science has become an increasingly complex phenomenon. In one way or 

another it affects lives of each of us – not only of those who devote their 

careers to science, but even of those who attack science. 

 The task of understanding science used to be a challenge for 

philosophers; in extensive periods of the 20th century one could even have the 

impression of this being their primary task. But science has changed more 

rapidly than philosophy, and those philosophers who still try to develop a 

systematic account of how it works, or should work, are few and it appears 

that – either for principled reasons or not – the task of giving a systematic 

account has been commonly abandoned. Thus, when we come to discuss the 

contemporary conceptions of science in Section 3, it turns out that most of 

these stem from the first half of the 20th century. 

 To a large extent the dynamics of science of the late 20th century has 

been stimulated by ideas and technologies afforded by computer science, itself 

a characteristic 20th century phenomenon. Indeed, the automation of science 

goes well beyond handling of the data and can be more and more 

systematically traced in the process of theory formation. Given the vast 

amount of data and possible explanations thereof, searching for the true 
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hypothesis appears no longer an exclusively human task. The automation of 

science bears all the marks of scientific revolution, though a quiet one.1 

 A perspicuous illustration of this revolutionary change is the research 

on the effects of low-level exposure to lead on children’s cognitive abilities as 

measured by IQ tests. This is one of those epidemiological problems with 

huge number of possible factors and weak effects which prove particularly 

difficult to handle with traditional methods. On several computer-assisted 

analyses of the data H. Needleman discovered a robust weak negative effect 

of low-level lead exposure on IQ. The upshot of this discovery was the 

elimination of lead from gasoline in many countries. But Needleman’s result 

was put into doubt by S. Klepper and M. Kamler who questioned the accuracy 

of the measure of lead concentration in children and IQ tests as a 

manifestation of their cognitive ability. Given the measurement error they 

proved that the effect could be zero or even positive. The TETRAD program, 

described in Subsection 2.1 below, not only confirmed the direction of 

Needleman’s result’s, but even helped to demonstrate that the malign effect of 

lead exposure has been twice as large.2 

Any serious attempt to give an account of the cognitive aspect of 

science – as contrasted with e.g. its social or cultural aspects – cannot ignore 

the automation revolution. In the conception presented in this paper the results 

of computer science are taken seriously and integrated with many of the ideas 

concerning what constitutes scientific inquiry that have been proposed at least 

                                                 
1 For numerous illustrations from physics, astronomy, genetics, medicine, epidemiology and 
Earth sciences, see (Glymour 2004). 
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since the early Middle Ages. The central idea is that of reliable inquiry. 

Science makes explicit and elaborates on the methods of acquiring beliefs in 

our daily life. The central question a scientific method applied to inquiry 

needs to face is if it is reliable in getting to the truth. On the reliabilist criteria 

presented here, if a method is logically warranted to get to the right answer – 

given data and background knowledge available – and to stick to it afterwards, 

then it is reliable. This is a normative theory, but the standard of reliability is 

adjusted to the domain of the inquiry at hand. 

This paper presents the central tenets of the reliabilist conception of 

science and briefly outlines the main results underlying it. Roughly, the aim of 

science is interesting truth about the world around us (scientific realism) and 

reliabilist epistemology affords us precise answers as to how far science can 

succeed in this task – given the methods, goals and background assumptions 

available. The philosophical task to deliver an adequate understanding of 

science is taken to be continuous with scientific research itself (naturalism), a 

major part of which is concerned with delivering causal explanations 

(causality) and can only be carried out with limited resources (computability). 

Many of the ideas integrated into the reliabilist conception of science and 

precisely articulated therewith have appeared earlier in both philosophy and 

science (history of ideas).  

I conclude the exposition of the ideas integrated into the reliabilist 

conception of science with discussions of sample case studies where the 

reliabilist conception of science has been applied to actual scientific research. 

                                                                                                                               
2 A detailed account of this research is in (Scheines 1999; Glymour 2004).  



 

 4 

For obvious reasons none of the grand conceptions of science from the 

distant past is adequate.3 Towards the end of this paper I give some substance 

to the claim that among the few contemporary conceptions of science 

reliabilist epistemology is the the most comprehensive account. For only it 

systematically elaborates the ideas of reliability and computability 

accompanying science from its inception. None of the past or contemporary 

alternatives to a thoroughly revised understanding of science offered by the 

reliabilist approach can embrace the recent outburst of new sciences such as 

computer science, Bayesian statistics and cognitive science. 

An outline of open problems and directions for future research 

concludes the paper. 

 

1. Reliabilist epistemology 

 

Knowledge is true belief acquired by application of a reliable procedure. This 

applies to both our common sense knowledge of the surrounding world and 

scientific knowledge thereof.4 I know that I see a white university shuttle 

approaching me for this belief has been acquired by a mechanism of visual 

perception which in normal circumstances projects that what I see in fact is 

what it looks like to me and is reliable in getting me to the truth. Similarly, we 

                                                 
3 Cf. (Kamiński 1992; Bronk 2001, 147-51). 
4 The principal difference being that of the methods applied in acquiring beliefs. It is 
commonly recognized that initially epistemological reliabilism was formulated by F. P. 
Ramsey in (Ramsey 1931). For references to alternative formulations, including R. Nozick’s 
and A. I. Goldman’s see (Kawalec 2003, f. 11 on page 102). 
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know that smoking causes lung cancer for this has been arrived at by a method 

of inquiry which established that this dependence is not explained away by 

considering other phenomena and is reliable. 

How is scientific knowledge related to truth? When is a method of 

acquiring beliefs reliable? In articulating the reliabilist conception of science I 

answer these questions, and then proceed to discuss how various forms of 

scientific inquiry are related to each other, what kind of explanation prevails 

in science, what are the essential limitations to science and how it all can be 

traced back into history of science and philosophy. 

 

1.1 Scientific realism 

 

Science aims at truth. This apparently straightforward claim is interpreted by 

philosophers of science in two fundamentally divergent ways. According to 

scientific realists, theories and models tell us what the world is like. The 

inherent advance in science is to transcend the boundaries of the observable 

macro world, and tell the true story about the micro and mega worlds which 

we sometimes cannot observe. The laws of nature or causal dependencies 

delivered to us by science hold between phenomena regardless of which of 

them we humans could observe. According to scientific realists our belief in 

the scientific story about the world follows: we have the same epistemic 

attitude regardless of which parts of the story cover the realm of the 

observable. 
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 Scientific anti-realists on the other hand attribute primary importance 

to the observational-nonobservational distinction. On this view science has to 

give a true account of what is observable and this we need to believe as true. 

What science is committed to tell us about the nonobservable world is only 

instrumental in purpose, and this part of the scientific story about the world 

we should merely accept, but not believe. 

 The main argument of the anti-realist viewpoint is from 

underdetermination of theory by empirical evidence. In a nutshell the 

argument runs as follows. Suppose you have a given body of empirical 

evidence, e.g. data from (longitudinal) observational studies of smokers. What 

the data suggest is that the death rate from lung cancer among smokers 

compared to non-smokers is almost 9 to 1.5 Moreover, the rate linearly 

increases with the number of cigarettes smoked a day. One explanation of the 

evidence is that smoking causes lung cancer. Admittedly, at this point there 

are more explanations available. For instance, it could be that the tendency to 

smoke and to contract lung cancer are causally independent even though they 

are statistically associated, because they both are an effect of a genetic factor.6 

Anti-realists should now emphasize that these alternative explanations are 

both empirically adequate (i.e. they equally well fit the data), so how we 

choose between them turns on some other virtues and has nothing to do with 

                                                 
5 See (Doll and Hill, 1950; 1952; 1954; 1956; Doll 2002). 
6 This hypothesis was introduced and vehemently defended by one of the classics of statistics 
R. A. Fisher (1959). A study on twins with discordant smoking habits gave the ultimate 
response; cf. (Kaprio and Koskenvuo 1989). The rationale for Fisher’s approach is offered by 
R. Doll (2002). 
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their truth or falsity. What counts is their simplicity, informativeness or some 

other pragmatic7 value. 

 One strategy that realists can use in response is the following.8 Science 

reaches the truth by accomplishing the best explanation of the data. We have 

to articulate the criteria of what constitutes a good explanation in science, and 

only then ask if what constitutes the best explanation of evidence is confined 

to the observable. As it turns out the observable-nonobservable dichotomy is 

inessential in accounting for the best explanation. However the conclusion 

may be drawn, it may well be that in some cases the best explanation of the 

evidence is provided in terms of observational entities alone. On this account 

anti-realism turns out either to impose historically inadequate restrictions on 

what counts as an explanation in science or to arbitrarily constrain their 

application to what is observable alone. 

 Now I proceed to give some substance to the claim that explanation 

does not turn on the observable-nonobservable distinction. A hypothesis or a 

theory explains given phenomenon if it demonstrates it to be a manifestation 

of another phenomenon or regularity already established. If there are two 

hypotheses explaining a given phenomenon, than scientists prefer one which 

explains more established regularities in terms of other established 

regularities. For instance, Copernican theory is preferable to Ptolemaic, 

because it is only the former which explains the relations between numbers of 

                                                 
7 Pragmatic means in this context a property that is relative to human perspective and 
independent of semantic, i.e. world-related property, like truth. 
8 Cf. (Glymour 1985, 99-117). 
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orbits and revolutions in longitude and solar years.9 Further, if two hypotheses 

explain the same regularities, than scientists prefer one which explains them 

not in terms of other regularities, but by means of necessary truth.10 

 For an explanation to demonstrate one regularity as a manifestation of 

another requires imposing theoretical structure on the phenomena. And 

whether this structure turns out to be observable or not does not influence the 

merit of the explanation considered. Belief in the truth of a hypothesis does 

depend on how well it explains the evidence, but can only be arbitrarily forced 

to depend on the observable-nonobservable distinction. 

 Scientific search for the best explanation is often confined to search 

for causal structure among the phenomena considered. As Clark Glymour et 

al. (1987, 6) succinctly words it: 

The most common form of explanation in the sciences is to account for 

why things happen as they do by appealing to the causal relations 

among events [...]. 

 Scientific realism in this case manifests itself in the search for the true 

causal structure underlying observed phenomena. This tenet of the reliabilist 

conception of science is discussed in Subsection 1.4 below. 

 

1.2 The logic of reliable inquiry 

 

                                                 
9 (Glymour 1985, 110-11). 
10 An example of such explanation is the explanation of the motion of Mercury by the general 
relativistic conservation laws (Glymour 1985, 111-12). 
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Admittedly, there is a plethora of methods available for consideration in 

arriving at the explanation of the evidence. To choose between these methods 

scientists need to invoke epistemic norms which would themselves not depend 

on the subject matter under investigation. Such norms are provided by the 

logic of reliable inquiry. The essential idea is that a reliable method projecting 

explanations of the evidence is such that after having changed its mind a finite 

number of times it gets the true answer and sticks to it afterwards.11 In other 

words, the reliable method is logically guaranteed to converge to the truth in 

the limit. By weakening the sense of convergence (e.g. slower or allowing for 

more changes of mind) we can obtain reliable solutions to more problems and 

obtain a corresponding hierarchy of problems facing empirical inquiry.12 

 The application of the norms of reliable inquiry turns on quite general 

constraints that there be a problem, (countable) alternatives to solve it, and 

data. These norms afford us domain dependent criteria that equally well apply 

in natural as well as social sciences, both experimental and nonexperimental. 

  The most elaborate exposition of the logic of reliability is in (Kelly 

1996). I bring out here some of the results in a less formal fashion. The basic 

notion is that of evidence item, i.e. the smallest integral piece of data delivered 

to us by experience and recorded in a language, e.g. as a number or by means 

of predicates of first-order logic, for instance C(ai) denoting “An individual 

observed contracted cholera”. The set of evidence items sets up the space of 

possible observations which are relevant for a given study, e.g. E = {CW, 

                                                 
11 (Putnam 1965; Kelly 1996; Glymour 1996). 
12 (Kelly 1996, 4; Harrell and Glymour 2002, 260-62). 



 

 10 

WC ,WC W,C } where CW(ai) denotes that “An individual was observed who 

contracted cholera and drank contaminated water” and negation being 

represented as a bar over a letter.  

 It is useful to introduce the notion of a sequence of observed evidence 

items, e.g. three individuals observed contracted cholera and drunk 

contaminated water (CW, CW, CW). A finite sequence of length n is denoted 

by e = (e1, e2, …, en), and an infinite one – called data stream – as ε = (e1, e2, 

…, en, …). The first n initial items in ε are denoted by ε|n, e.g. for ε = (CW, 

CW, …, CW, …) where all evidence items are CW, ε|2 = (CW, CW). 

 Utilizing these definitions I can proceed to characterize scientific 

notions such as hypothesis. As pointed out in the preceding section an 

hypothesis aims at an (typically, causal) explanation by generalizing the 

available evidence. Accordingly a hypothesis admits some possible data 

streams, but rules out others. Its content then could be represented as a set of 

admissible data streams. Some hypotheses, like “Everyone who drinks 

contaminated water contracts cholera”, uniquely determine possible data 

streams, e.g. {ε = (CW, CW, …, CW, …)}. 

 Background knowledge which is available preceding the study limits 

the set of logically possible data streams. For instance, researchers 

investigating the causes of the outbreaks of cholera in the 19th century London 

ruled out all data streams that would have had only CW and no WC up to time 

t and then, conversely only WC and no CW. In other words, irrespectively of 

the propounded hypothesis the researchers conceded that contaminated water 
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was an important factor in contracting cholera – the question rather was 

whether it was the only one,  or a minor one.13 Analogously as in the case of 

hypotheses, background knowledge can be represented in the above 

introduced framework as a set of possible data streams, i.e. those which are 

admissible given the available background knowledge. 

 As there are many hypotheses compatible with background knowledge 

we need to face a discovery problem (H, K) – where H is a set of hypotheses 

covering data streams compatible with the background knowledge K – of 

selecting the true hypothesis.  

 One of the upshots of the idea of scientific realism discussed in 

Subsection 1.1 is that science ought to be objective and whether the research 

is carried out by one person or another is immaterial insofar as they both use 

the same scientific method in the proceeding. Thus in characterizing reliability 

I refer to a method δ whose primarily objective is to project a true hypothesis 

explaining the observed phenomena. The hypothesis that a method δ projects 

on the basis of finite evidence sequence e I denote as δ(e) = H. I assume that 

there are countably many alternative hypotheses and each method can 

consistently output at most one hypothesis in response to a given evidence 

sequence. John Snow, one of those searching for the causes of cholera in the 

19th century London, used a method δ(ε|n) = “All CW” for all n, which for any 

                                                 
13 In the then used categories the distinction was between an “active agent” and a 
“predisposing cause”. In his introductory text to J. Snow’s On cholera W. Frost pointed out 
that the common agreement was that contaminated water is a predisposing cause, but it was 
the question of its being the active agent that was at issue (1936, xi). 
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evidence sequence projected the hypothesis “All CW”, i.e. “All individuals 

contracting cholera drink contaminated water”.14  

 In defining reliability the central notion is that of convergence to a true 

answer. A method δ converges to a hypothesis H on a data stream ε by time n 

if and only if for any time n´ later than n δ(ε|n´) = H. If there is a time n such 

that method δ converges to a hypothesis H on a data stream ε by time n then 

we can say that δ converges to a hypothesis H without further qualification. 

 In a discovery problem (H, K) a method δ succeeds on a data stream ε 

in K iff δ converges to the true hypothesis on ε. The discovery problem (H, K) 

is solved by a method δ iff δ succeeds on all data streams in K. A method 

solving a discovery problem is called reliable. If δ is a reliable method for a 

problem (H, K), then δ converges to a true hypothesis on every data stream ε 

compatible with the background knowledge K.  

 If at time n a method δ(ε|n) outputs a false hypothesis then we say that 

it commits an error at n. A reliable method commits at most a finite number of 

errors, although with a more restrictive criteria it may be required to commit 

none. Minimizing errors is one important criterion in choosing among 

alternative reliable methods. 

 A method δ can change its mind. If at a time n + 1 a method outputs a 

different conjecture then at n δ(ε|n) ≠ δ(ε|n + 1). The number of changes of 

                                                 
14 To give justice to Snow one would need perhaps to bring in more distinctions. The method 
projecting that all who drink contaminated water contract cholera was used by Snow not for 
causal discovery, but causal assessment. He arrived at this hypothesis by examining 
pathogenesis of cholera and excluded the main alternatives being that cholera is contracted 
from the air or from inorganic poison; cf. (Snow 1936). Taking into account the onset of the 
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mind on the way to project the true hypothesis is also an important 

characterization of method and can be sought to be minimal. 

  

1.3 Naturalism 

 

Naturalism as understood here is the claim that all sciences without exception 

are subject to the norms of reliable inquiry. More specifically, if the afforded 

explanation is causal, then there are reliable algorithms for recovering the 

causal structure as the next subsection makes clear. The naturalist claim 

propounded on the grounds of the reliabilist understanding of science does not 

entail however that there is a universal method to carry out all studies come 

what may. In discussing the notion of reliability I have already noted a variety 

of ways to set up the criteria of success and I further bring this out in 

Subsection 3.2 below. The next subsection makes clear the difference in 

algorithms to handle causal queries differently depending on what kind of 

assumptions the researcher is ready to commit herself to. 

 Philosophy has no exemption from the naturalist claim. Therefore, 

when the challenge is to develop understanding of science, this task has to be 

accomplished by reliable methods. Elaborating the norms of reliability on the 

grounds of logic and descriptive set theory is the most perspicuous example of 

how to meet this demand. And so is the application of the logic of reliability 

to the study of algorithms recovering causal structure. 

                                                                                                                               
disease, its symptoms and organs affected he projected the nature of the agent causing the 
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 Such a program for philosophy of science matches what has been 

demanded of it by the 20th century arch anti-naturalist Max Weber, who stands 

on the top of the German anti-naturalist 19th century tradition.15  

Weber as well as other anti-naturalists characteristically emphasized 

that the subject matter in the social sciences and humanities requires a 

different set of methods than those of natural sciences. However, the 

application of the norms of reliable inquiry is not blind-folded, and neither is 

the application of algorithms searching for causal structure. Both are sensitive 

to subject-matter concerns and specific understanding thereof. And precisely 

as envisaged – and to some extent pioneered – by Weber16 the reliabilist (or 

“means-ends”) framework for causal explanation is in the first place 

elaborated for general case and can then be applied to account for individual 

phenomena or agents17 based on the characteristic data related specifically to 

them and thus without imposing unrealistic constraints.18 

 

1.4 Causality 

 

                                                                                                                               
disease as one of the then unobservable parasitic organisms. 
15 His standpoint invalidates or embraces the points addressed earlier by W. Dilthey, W. 
Windelband and H. Rickert. 
16 (Eliaeson 2003, 25-30; 50). 
17 How to conduct such an application within the reliabilist framework for causal inference is 
discussed in some more detail by Pearl (2000, 309-329).  
18 One of Weber’s concerns is that scientist should not impose apriori rationality constraints 
upon the studies agents or phenomena. The reliabilist framework presented here avoids this 
difficulty in the same way that do so culturally constrained Weber’s ideal-types. For reliabilist 
norms apply to the assumptions conceded by the scientist in question and the data collected by 
her. 
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As already noted in Subsection 1.1 above many of the best explanations of the 

data are causal. Causal explanations and models come in a variety however. 

Rather than going through a list of all words standing for “cause” it seems 

more convenient to describe causal inferences and causal models in science by 

what is characteristic of them. Whenever a given model is intended to afford 

not merely a prediction of the phenomena to be observed, but also how they 

will respond to intervention, i.e. the model itself is supposed not to be changed 

by the intervention, then one can admit that the model is constructed as causal 

and so is the corresponding inference of the effects of the intervention. 

Suppose for instance that the propounded model of the relation between 

smoking and lung cancer holds that there is a genetic factor which is their 

common cause and which makes these two independent. Even though this 

model could be used to predict changes in the rate of smoking and the number 

of people contracting lung cancer, it could be wrong. Why? Because if we 

were to increase the number of cigarettes smoked for a given group of people, 

we would observe a corresponding change in a purportedly independent 

number of people contracting the disease which is not consistent this model.19 

In contrast, a model that has a causal link between the two phenomena, allows 

to predict correctly the effect of the intervention. 

 In general, contemporary researchers working on the problem how to 

model causality and causal inference, seem to commonly accept as canonical a 

                                                 
19 Intervention is not possible in this case on ethical grounds, but the corresponding data have 
been presented by the now classic studies on animals (Wynder and Croninger 1953; 1955) 
and human smoking discordant twins (Kaprio and Koskenvuo 1989). 
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graphical representation in form of directed acyclic20 graphs. Such a graph is 

interpreted as causal if it satisfies so-called the Markov Assumption.21 

Informally, what the assumption amounts to is that for a set of variables V 

(with C, E and R being mutually exclusive subsets of V) describing given 

population N it holds that all causal influence variables in R could have on 

variables in E is without remainder mediated by variables in C – the direct 

causes of E. Thus, when we elaborate causal dependencies among variables in 

V we need to spell out (and statistically test for) direct causal dependencies 

and from these – given the graph – indirect causal dependencies will logically 

follow. By the Markov Assumption a causal graph precisely determines 

probabilistic independencies among the variables in V which could then be 

statistically tested against the data. 

 The reliabilist norms of scientific research, outlined in Subsection 1.2 

above, allow to construct methods of reliable discovery of causal models from 

data given the background assumptions. This accomplishment of Clark 

Glymour, Peter Spirtes and Richard Scheines and their collaborators cannot be 

overestimated. The reliable methods of causal discovery turn on an 

assumption which turns out to be a converse of Markov Assumption and is 

called the Faithfulness Assumption.22 

                                                 
20 Informally, an acyclic graph is a graph in which all links between nodes are directed (have 
pointed arrows at one end) and it is not possible to reach the same node one starts with by 
following the direction of the arrows. 
21 There is a number of ways how to spell out precisely the Markov Assumption (e.g. 
pairwise, local, global and factorization) both for directed and undirected graphs; see 
(Lauritzen 2001, 71-73; Spirtes, Scheines, Glymour, Richardson and Meek 2004, 455-56). 
22 This assumption is known also as stability (Pearl 2000), parsimony (Box and Jenkins 1976) 
or non-collapsibility of parameters (Lauritzen 2001). 
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 In a nutshell, the Faithfulness Assumption states that statistically 

significant probabilistic independencies among variables in V measured in the 

data represent causal dependencies and are not merely coincidental. By this 

assumption the independencies do not turn on the exact numbers measured, 

but express a deeper – sometimes called “stable” or “structural” – relation 

which would not disappear had the variables measured happen to take on 

different values.23  

 There is a variety of algorithms that utilize the Faithfulness 

Assumption in recovering causal structure from data corresponding to 

differences in both background assumptions appropriate for a given domain 

and statistical techniques (frequentist and Bayesian).24 The Fast Causal 

Inference (FCI in short) algorithm, for instance, does not presuppose that the 

variables V in a model at hand are causally sufficient. For any pair of 

variables A and B the FCI algorithm will detect if the data allow that there is a 

latent common cause, i.e. a variable not included in V that would make A and 

B independent.25 

 Some of the applications of reliable methods of causal discovery I 

highlight in Section 2 below. 

 Causal models with latent variables are prevalent in the social 

sciences. In response to computational problems in searching over directed 

acyclic graphs with latent variables a search over mixed ancestral graphs has 

                                                 
23 As with the Markov Assumption, Faithfulness can be spelled out differently for different 
purposes; see (Spirtes, Scheines, Glymour, Richardson and Meek 2004, 457-59). 
24 The web site http://www.phil.cmu.edu/projects/tetrad/ links to the software and sample 
applications. 
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been proposed.26 The latter graphs contain only observed variables and the 

search never introduces latent variables. At the same time it represents the 

same conditional independence relations among variables as the directed 

acyclic graph. The problem with searching over mixed ancestral graphs is that 

the graph found in search may represent a collection of causal graphs which 

predict different effects of interventions. 

 Causal models discussed in econometrics are typically constructed 

with the assumption of no latent variables. This, however, seems to be a 

natural extension of these models, but one which is susceptible to numerous 

problems. One of them is that in the case of systems with feedback, which is 

represented as a cycle in a causal graph, there is no straightforward extension 

of the Markov Assumption discussed in Subsection 1.4. The basic question 

here is how to uniquely determine a data generating process for a given 

directed cyclic model or an interesting class of such processes. It follows that 

there is no general theory of how to calculate the effects of interventions in the 

case of such graphs whose variables can take only a finite set of values. 

 Another challenge for the reliabilist approach to causal inference in 

nonexperimental research is brought out in (Robins et al. 2003). It is proved 

that in this context, when there may be unobserved or unrecorded common 

causes of recorded variables, there is no method of causal search that would 

be guaranteed to reliably approximate the correct (asymptotic) result on the 

basis of a finite sample size. Because of the unknown time order and the 

                                                                                                                               
25 (Spirtes, Glymour and Scheines 2000, 138-47; Kłopotek and Wierzchoń 2002). 
26 Cf. (Spirtes, Glymour and Scheines 2000, section 12.5.7). 
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possibility of unobserved confounding the search for causal structure may be 

seriously misguided in observational studies. One suggested solution is to 

perform sensitivity analysis which demonstrates how the estimates of the 

causal structure would change with the amount of unobserved confounding. 

Another proposal is to continue to work with search methods which satisfy 

some weaker criteria, e.g. Bayesian consistency. 

 

1.5 Computability 

 

Science is a limited enterprise insofar as humans developing it have limited 

cognitive powers. If these powers or capacities are assumed to be 

computational, then what the limitations of scientific inquiry essentially 

amount to are limitations of computation.27  

The study of reliable methods of inquiry provides a natural framework 

to study how this limitation affects scientific inquiry, yielding results which 

sometimes turn out to be quite surprising and almost always surpassing 

methodological rules of thumb. For instance, the results presented in (Kelly 

1996) show that there are problems which cannot be solved by scientific 

methods which output only hypotheses consistent with the data observed so 

far and background assumptions (vs verificationism) or change hypotheses 

                                                 
27 Since in this paper our focus is on understanding science, I refer the reader to the extensive 
discussion on the subject and in particular to the argument defending the computational theory 
of mind as presented in (Glymour 1992). 
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only when they face contradiction with data (vs falsificationism). In Section 3 

below I spell out the rationale for these discrepancies somewhat more fully. 

 

1.6 History of ideas 

 

The aim of this subsection is twofold. Surely, I point out the entrenchment of 

the basic ideas underlying reliabilist understanding of science. By the same 

token, however, I demonstrate that this conception of science takes seriously 

the conviction – propounded forcefully since the 1960’s – that the historical 

development of science constitutes the background against which to measure 

the adequacy of any account of science. 

 In the history of reliabilism preceding recent developments starting 

with H. Reichenbach’s and H. Putnam’s works K. Kelly highlights two key 

moments, i.e. emergence of Plato’s reliabilist conception of knowledge and 

Peirce’s dispensing with the requirement of certainty: 

Plato seems to assume that inquiry must be logically guaranteed to terminate 

with certainty that its answer is correct. Similar requirements were common 

among ancient skeptics such as Sextus Empiricus. This very strict version of 

logical reliabilism is still evident in the work of Descartes, Hume, and Kant, 

over two thousand years later. Subsequently, it was proposed by C. S. Peirce 

that inquiry might converge to the truth without providing a clear sign that is 

has done so. (Kelly 1996, 3)  Ancient Greeks brought out two fundamentally 

different ways how to conduct scientific inquiry, each of which can be 
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epitomized by a distinguished inquirer: Euclid and Socrates. The former 

envisioned science as proceeding top-down by spelling out the most obvious 

and fundamental assumptions as axioms and then deducing the remaining 

knowledge from them. The latter conceived of science as a bottom-up 

enterprise where one collects positive and negative examples and on this basis 

spells out the underlying intuitive idea in a more and more general form which 

would include all positive and no negative examples. 

 Which of these approaches is to be chosen in developing a conception 

of science in large measure turns on the assumed notion of knowledge. Plato 

combined Socratic strategy with recollection: at some point examination of a 

finite amount of evidence prompts the inquirer to recognize a conclusion 

which she already knew. The account of recollection as the warrant of truth of 

the conclusion at hand seems, however, susceptible to cogent skeptical 

objections. No finite evidence warrants a general conclusion (for instance 

even after enormously large amount of cases observed where smoking causes 

lung cancer it is remains logically possible that there are cases where it does 

not) and it is impossible to scrutinize all possible cases. 

 If what one seeks is however the logical warranty of arriving at truth, 

one needs to turn to the top-down strategy instead. Given the background 

assumptions which constrain the number of possibilities to be considered, one 

can investigate whether there is a reliable method for solving the problem at 

hand in the manner described in Subsection 1.2 above. This has been clearly 

conceived by many philosophers and scientists alike, but most perspicuously 
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so – and perhaps for the first time – in the 13th century by Ramon Lull. This 

Franciscan monk’s idea was 

that Moslems (and others) may fail to convert to Christianity because 

of a cognitive defect. They simply were unable to appreciate the vast 

array of the combinations of God’s or Christ’s virtues. Lull believed 

that infidels could be converted if they could be brought to see the 

combinations of God’s attributes. Further, he thought that a 

representation of those combinations could be effectively presented by 

means of appropriate machines, and that was the key to his new 

method. Lull designed and built series of machines meant to be used to 

present the combinations of God’s virtues. (Glymour 1992, 70) 

 An important step towards elaboration of the reliabilist understanding 

of science was accomplished by Leibniz in the 17th century. He was convinced 

that it is possible to extract the complete alphabet of primitive notions and 

thereupon mechanically develop the rest of human knowledge.28 What was 

important, however, was the idea that it is possible to study deductive 

inference by means of algebraic methods applied to abstract symbols 

representing propositions. 

 It is George Boole, however, who turned Leibniz’s idea into a theory 

of inference or “algebra of thought”. He claimed that each discourse 

determines a domain which is structured in a way that can be represented as 

operations on more simple sets of objects. Boole introduced variables to 

                                                 
28 Having assigned symbols to primitive and complex notions, one can apply algebraic 
methods to seek for identities among those symbols (Glymour 1992, 86). 
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represent those simple sets, 1 to represent the whole domain and 0 its 

complement and a couple of elementary operations on the sets corresponding 

to algebraic operations on numbers, i.e. addition, multiplication and 

complement (corresponding to the negative sign “–“ ). The most important 

result was a set of ten axioms which constitute the “laws of thought” true in 

every domain and by the same token in every discourse.29 What matters for 

the elaboration of the reliabilist conception of science is that there is a 

mechanical procedure (algorithm) to decide whether a given set of Boolean 

sentences (premises) entails another (conclusion). 

 Gottlob Frege, although unaware of Boole’s accomplishments, turned 

logic into its modern form. Frege’s guiding idea that all mathematics can be 

reduced to logic failed. Nonetheless, his program allowed the extention of the 

domain of application of logic to cover – for the first time since its inception 

by Aristotle – mathematical reasoning. In particular, Frege afforded a 

characterization of the notion of proof adequate for mathematical proofs. That 

characterizations led to the discovery that in Frege’s logic there are true 

formulas which cannot be mechanically proved from the axioms. 

 These and some others (most notably probabilistic) historical 

accomplishments have been integrated into the first contemporary attempt to 

elaborate a reliabilist conception of science, which is due to H. Reichenbach.30 

He conceived of science as aiming at a reliable discovery of relative 

frequencies: we first observe how many times a given type of event occurs 

                                                 
29 A thorough exposition is in (Glymour 1992, 95-114). 
30 (Reichenbach 1949). 
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among other events and then project this ratio as the limit in the long run 

(straight rule). If there is a limit of relative frequencies, then the straight rule – 

as Reichenbach claimed – will lead us to the truth. The straight rule, on this 

account, is then the reliable method of science. 

 Reichenbach’s student H. Putnam generalized the frequency analysis 

of reliability in the 1960’s.31 Roughly, the setup is the following. Suppose that 

we investigate the truth of a given hypothesis (e.g. “Smoking cigarettes causes 

lung cancer”) and after each new piece of evidence we output a claim whether 

the hypothesis is true or not. To decide it on the available (finite) evidence we 

employ a rule, call it “R” . Putnam’s proposal can then be summarized as a 

criterion for reliability of R as follows (Glymour 1992, 262): 

In every logically possible world W […] and for every possible order 

of presentation to the investigator of the individual facts in W, there 

exists some finite number of facts after which R outputs only T [for 

true] if the hypothesis is true and outputs only F [for false] if the 

hypothesis is false. 

What is characteristic of a reliable rule or method is that it makes at 

most a finite number of errors, gets the right answer and does not change its 

mind afterwards. However, it is not required that the rule or method signals 

when the right answer has been reached.32 

                                                 
31 Cf. (Putnam 1956; 1963; 1965). Simultaneously, the idea of reliability was being developed 
by M. Gold (1965; 1967), R. Solomonoff (1964a; 1964b) and others (Blum and Blum 1975; 
Angluin 1980) in the context of language learning. The question there was: how to account 
for the fact that a child effectively learns a language in a relatively short amount of time. 
32 A comprehensive exposition of the results going beyond Putnam’s is in (Kelly 1996) and 
(Jain et al. 1999). 
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2. Applications 

 

It is well beyond the limits of the present paper to provide even an outline of 

applications of the reliabilist conception of science. The illustrations to follow 

should rather be conceived of as points of reference for further studies. The 

program TETRAD is itself a tool that already generated voluminous literature 

and applications. The examples which do not explicitly cite algorithms in 

TETRAD could well be reformulated to do so. 

2.1 TETRAD 

 

The ideas presented in Section 1 are integrated in a computer program called 

TETRAD. It embodies both the Markov and Faithfulness Assumptions which 

jointly allow for search of the true causal structure represented as a directed 

acyclic graph. The input to algorithms in the program consists of data (cell 

counts or correlation matrix) and background knowledge which rules out 

some of the logically possible graphs. If there is a unique causal graph that 

can be reliably identified on the basis of data and background knowledge, 
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TETRAD finds it and estimates it.33 Otherwise, the program outputs a class of 

graphs that cannot be distinguished on the basis of the available data. 

 Here I will outline only one application.34 P. Blau and O. Duncan 

(1967) in a now classic study examined the American occupational structure. 

On the basis of a sample of more than 20 000 they concluded that individual’s 

occupation is directly determined by one’s education, first job and father’s 

occupation, and only indirectly by father’s education. TETRAD discovered 

the same dependencies on the basis of the data and the background 

assumptions concerning the time order of variables. It supplemented the 

original model of Blau and Duncan with causal dependence between father’s 

education and one’s first job. Hence, the obtained graph is almost complete 

(i.e. except for one edge every variable is linked to all other variables). 

The theory underlying the program leads to an intriguing explanation 

of this model. When the model is complete, one may well suspect that the 

correlations in the data between variables do not result from genuine causal 

dependencies between them. Rather, they result from a faulty procedure in 

collecting the data. Blau and Duncan implicitly assumed that the causal 

dependencies for all the variables in the model are the same for all individuals 

considered. The result produced by TETRAD indicates that this is not the case 

and the sample data do in fact come from different and mixed subpopulations 

with different causal factors determining various individual’s occupations.  

                                                 
33 In (Spirtes, Scheines, Glymour, Richardson and Meek 2004) the estimation of causal 
models is introduced analogously to the estimation of statistical models. 
34 For numerous other applications of the program the Reader is referred to (Cooper and 
Glymour 1999; Spirtes, Glymour and Scheines 2000). 
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2.2 Social psychology 

 

The reliabilist criteria for causal discovery and prediction clearly mark causal 

dependencies from statistical ones. The distinction, apparent as it seems, is 

often confused in modeling techniques used by both students and researchers. 

The confusion inherent in many standard research methods is sometimes 

remedied by the wit of their users. And thus only occasionally comes out 

straightforwardly. A perspicuous example is the infamous book by C. Murray 

and R. Herrnstein The Bell Curve (1996). The conclusion of the book,  which 

was unacceptable to public opinion in North America, was that the social 

stratification of the American society reflects differences in individual 

cognitive abilities and thus – given the almost equal educational opportunities 

– is at the bottom biologically grounded. The ethnic differences purportedly 

follow with Afro-Americans being the most inferior part of the society.35 

 In arriving at the unwelcome conclusion Murray and Herrnstein use 

the techniques for data analysis which are standard throughout the social 

sciences: multiple regression, logistic regression and factor analysis. For 

instance, the same techniques have been used in the study by Blau and 

Duncan referred to in the previous subsection.  

 J. Gould in dismissing this result focused on there being one feature – 

general intelligence or cognitive ability – which is purportedly measured by 
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IQ tests. However, even if IQ does measure a bundle of hereditary features,36 

the weight of the argument in The Bell Curve is on the claim that the feature 

or features that IQ tests measure, causes directly many of the social outcomes 

indicated by wealth, occupation, martial status, illegitimate children, parenting 

style, dependence on welfare, crime and political involvement. And this 

Murray and Herrnstein established by multiple regression. 

 To establish whether behavior X of an individual is influenced by her 

cognitive capacity by multiple regression the following must hold (Glymour 

2001, 198): 

cognitive ability does not (directly) influence X if and only if cognitive 

ability and X are independent conditional on the set of all the other 

regressors. 

 For this to hold the researcher would have to know – independently of 

the data analysis – that no regressor has a common cause with the outcome 

variable and that the latter is not a cause of any of the former. For regression 

evaluates influence of a regressor on X conditional on all other regressors and 

not on any subset thereof.  

 In particular, when the Markov Assumption is applied to the model 

proposed by Murray and Herrnstein37 it turns out that without imposing causal 

assumptions preceding the data analysis it is not possible to rule out the 

possibility that cognitive ability and X are causally independent conditional on 

                                                                                                                               
35 Cf. (Herrnstein and Murray 1996, 269). 
36 For a detailed criticism of how Herrnstein and Murray misuse factor analysis in establishing 
IQ as a purported measure of single factor, i.e. cognitive capacity, see (Glymour 2001, 177-
89). 
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a common cause. The common cause could well turn out to be an 

environmental factor, thus undermining the substance of The Bell Curve. 

 

2.3 Cognitive and developmental psychology 

 

Recent experimental studies of the learning mechanisms in children have been 

largely informed by the reliabilist conception of causal discovery. The paper 

by A. Gopnik and Glymour et al. (2001) has triggered a series of research 

papers which provide ample evidence to the fact that children use specialized 

cognitive systems in order to recover an accurate “causal map of the world”.38 

The mathematical model of these systems is as outlined in Subsection 1.4 

above and as applied in TETRAD algorithms. 

 In a series of experiments with young children Gopnik and her 

collaborators39 obtained results which cannot be accounted for by the non-

causal models of learning, especially the Rescorla-Wagner associative model 

and the trial-and-error model. Many of these experiments use a specially 

devised machine, called the blicket detector,40 which lights up and plays 

sounds when blocks are place upon it. Preschoool children – as young as three 

years of age – recognized causal patterns from the data (e.g. common effects 

and common causes) and made correct predictions on how to activate the 

                                                                                                                               
37 See (Glymour 2001, 200) for details. 
38 For a detailed discussion of causal maps see (Gopnik et al. 2004). 
39 Cf. (Gopnik and Sobel 2000; Gopnik et al. 2001; Gopnik et al. 2004; Lagnado and Sloman 
2004; Mochon and Sloman 2004; Schultz and Gopnik 2004; Sobel et al. 2004; Sloman and 
Lagnado 2005). 
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machine. These predictions included also effects of unobserved interventions, 

which were not imitations of the previously observed actions. Also, in the case 

of experiments with the puppet machine they correctly posited an unobserved 

common cause (Gopnik et al. 2004, 28-29). Similar results have been 

observed for children’s causal inference in different domains, e.g. 

psychological, biological and physical (Schultz and Gopnik 2004). 

 Some experiments reveal a difference between three and four year old 

children. But as Sobel et al. (2004) emphasizes this is not due to different 

causal mechanisms being employed at different ages. The differences rather 

stem from the fact that the application of causal maps requires certain 

information-processing capacities, like keeping track of different hypothesis 

or using prior knowledge to limit the space of possible causal explanations. 

The enhancement of these capacities with age enables children to be more 

successful in accurate causal inference and intervention. 

 

2.4 Econometrics 

 

A spectacular, although somewhat restricted, application of the reliabilist 

ideas to scientific research as discussed in Section 1 and Subsection 2.1 above, 

is in (Swanson and Granger 1997) – the latter co-author being the Nobel Prize 

winner in economics. The major restriction in this work is trading the 

Faithfulness Assumption for some pieces of background knowledge, which 

                                                                                                                               
40 Cf. (Gopnik and Sobel 2000). 
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allow to restore causal dependencies among variables considered, especially 

the assumption of chain ordering of variables in the model. In the 

ramifications of the present paper I only give intuitive idea of this application 

and invite the Reader to study the literature.41 

 C. Sims in the 1980’s raised influential criticism of the standard 

structural modeling techniques as developed by the Cowles Commission in 

the 1940’s, especially by T. Haavelmo (1944). The idea underlying structural 

models was that as the factors affecting a given variable they list on the right 

hand side of the equation the substantive variables plus a structural error term 

summarizing the influence of all the factors omitted in the model. The 

structural character of the model represented the fact that the equations would 

not change with an intervention on one of the variables. The point of Sims 

criticism was that to make such models identifiable from the data, economists 

employed highly dubious prior “knowledge”. In particular, the structural 

errors in these models could be directly measured. The alternative auto-

regression (VAR in short) models Sims proposed, contain all the substantive 

variables42 and prediction errors, i.e. the measured deviance of the predictions 

of the models and subsequently observed data. The VAR models, and the 

prediction errors in particular – although identifiable – do not bear the 

warranty of invariance to intervention, i.e. in general these are not causal. 

                                                 
41 (Swanson and Granger 1997; Hoover 2001; Demiralp 2000; Bessler and Lee 2002; Moneta 
2003; Demiralp and Hoover 2004; Hoover 2005; Phillips 2005). 
42 What Sims proposed amounts to regressing a given variable on all the substantive variables 
in the past and the only limitation on how far we need to reach in the past is how the 
statistically given variance of estimators would go up. 



 

 32 

The standard technique to convert the VAR model to a structural 

model is the Cholesky decomposition.43 The problem, however, addressed by 

Sims, returns in a disguise. For typically there is more than one Cholesky 

decomposition for a given VAR model and in consequence, multiple 

possibilities how to spell out the true causal (structural model). What Swanson 

and Granger propose in the cited paper essentially amounts to assuming that 

there is a chain structure among the variables and this background assumption 

allows to infer testable constraints on partial correlations observed in the data. 

Given the assumption the recovery of the causal model from a VAR model is 

driven by the evidence. 

The work by the research team at the CMU affords several natural 

ways to generalize the result by Swanson and Granger, as they themselves 

note (Swanson and Granger 1997, 357). One point to note is that the standard 

TETRAD algorithms can be applied to recover the causal model from the data 

without arbitrary assumptions on their causal ordering.44 Further, the 

reliabilist approach allows one to search for structural models with latent 

variables, i.e. allows one to discuss the case omitted in the econometric 

literature when the variables in the model have an unobserved common cause. 

                                                 
43 For details see (Enders 1989, 307-10). 
44 This strategy has been recently applied to VAR models by numerous authors, cf. (Demiralp 
2000; Bessler and Lee 2002; Moneta 2003; Demiralp and Hoover 2004; Hoover 2005; 
Phillips 2005). 
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2.5 Chaos 

 

Although in the present paper the focus is on the social sciences, the reliabilist 

conception of science – as spelled out in Section 1 – applies to natural 

sciences as well.45 A detailed illustration I resume here is co-authored by M. 

Harrell and Glymour (2002), where the principles of reliable discovery are 

applied to the theory of chaos. 

Admittedly, there is more than one definition of chaos, but it is 

generally assumed that a characteristic of chaos should include “sensitive 

dependence on initial conditions” (SDIC in short). And SDIC is usually 

defined by means of the Lyapunov exponent46 of the chaotic system: the 

greater the exponent, the greater is SDIC (zero or negative indicate no 

dependence on initial conditions). 

 In accordance with the reliabilist criteria that the Lyapunov exponent 

is positive can only be learned from time series data if there is some point in 

data collection after which the Lyapunov exponent is projected always as 

positive. That this can indeed be learned from the data if the exponent is 

positive is proved in (Harrell and Glymour 2002). If the Lyapunov exponent is 

                                                 
45 Another detailed example I would recommend for the interested reader is O. Schulte’s 
application of reliabilist criteria to particle physics (Schulte 2000). 
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not positive, it can also be learned, although in some weaker sense of 

converging to the right answer. 

 

3. Alternatives to reliabilist epistemology 

 

Although the reliabilist ideas are – and always have been – ubiquitous in 

science, few contemporary philosophers of science recognize this fact. There 

are numerous ways to account for this failure. One cogent reason is the 

historical development of the discipline after Kant. Following Aristotle, 

philosophers preceding Kant adopted what I characterized in Section 1 as 

naturalism, i.e. continuity between philosophy and science. For Kant, 

however, philosophy was not to investigate the phenomena of the world 

around us, but rather to justify the ultimately objective phenomenon, i.e. 

science itself. “How science is possible?” became then the question of prime 

importance and replaced the preceding interest in the world itself. Through the 

influential school of neo-Kantians in Marburg, this view had been adopted by 

the Vienna circle47 which set it up as the standard for the philosophy of 

science of the 20th century. The subsequent search for “the logical 

reconstruction” of science or its “logic” epitomize it well. 

                                                                                                                               
46 The Lyapunov exponent is given by: ∑
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and n is the number of data points. 
47 Cf. (Jeffrey 1973; Richardson 1998). 
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 In the remainder of this section I shortly outline how the advantages of 

the reliabilist conception of science with regard to its contemporary 

alternatives. 

 

3.1. Bayesianism 

 

Bayesianism as the conception of science brings to the fore its dynamics.48 On 

this view the strength of scientists’ belief in the truth of a hypothesis is 

represented as a degree of probability of this hypothesis. If two scientists 

differ with regard to their prior belief in the hypothesis, but they adopt the 

same – Bayesian49 – mechanism for updating their believes each time new 

empirical evidence is obtained, then – it is proved that – they both converge to 

the true hypothesis. 

 For the mechanism to work one needs to assume that maximum 

strength of belief is given exclusively to logical truths (probability 1) and 

minimal (probability 0) to logical contradictions; all other propositions are 

believed without being certainly false or true. 

                                                 
48 (Jeffrey 1973; Horwich 1982; Howson and Urbach 1993). For a discussion of Bayesianism 
as contrasted with reliabilism see (Earman 1992). 
49 The central idea is expressed by the Bayes theorem: P(H|E) = P(H)· 

P(E|H)
P(E)  , where H and E 

stand for hypothesis and evidence, P(H|E) is the strength of belief in H updated after new 
evidence E has been acquired, P(H) is the strength of belief prior to acquiring the evidence, 
P(E|H) is the strength of belief in E given H is true, and P(E) is the strength of belief in E 
irrespective of whether what is true is H or some other alternative hypothesis. Bayesians 
characteristically extend the scope of the Bayes theorem of the standard theory of probability 
to apply not only to statistical inference, but to all nondeductive inference in science. The 
standard Dutch book argument to support it is not conclusive (Glymour 1980, 71-73; Maher 
1997). 
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 The Bayesian conception of science, however, does not do justice to 

the history of science where “explicitly, probability is a distinctly minor note” 

in how the arguments were presented (Glymour 1980, 66). Moreover, it faces 

- sometimes insurmountable – difficulties in explicating the notions relevant 

to science, e.g. simplicity as a criterion for preference of one theory to 

another.50  

 Another problem is identified by C. Glymour (1980, 86-92) as the 

problem of old evidence.51 It is a common expectation in science that the new 

theory not only correctly predicts the upcoming evidence, but is also 

consistent with the known evidence, collected in order to evaluate the 

preceding theories. This case apparently distorts the dynamics of the Bayesian 

account of scientific inference for – as the Bayesian mechanism has it – the 

strength of the updated belief cannot differ from the initial one.52 

 It turns out that computational limitations of scientists as cognitive 

agents bear importantly on the viability of Bayesianism. One instance is the 

class of inductive problems that are solvable by Bayesian learners, but not 

solvable if we impose upon them the computational limitation.53 Another 

instance is the class of inductive problems solvable by a non-Bayesian 

computable learner, but not solvable by a consistent computable Bayesian 

learner.54 

                                                 
50 Cf. (Forster 1995). 
51 See also (Leamer 1978). For an extensive discussion see (Earman 1983). 
52 From the fact that the evidence is known it follows that its probability is 1, and so is its 
likelihood on H. Hence, from the Bayes theorem we obtain that P(H|E) = P(H)· 1. 
53 (Osherson, Stob and Weinstein 1988). 
54 (Juhl 1994). 
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 Finally, for the Bayesian solution to be computable one needs to 

compromise with the skeptical challenge. As some of the logically possible 

alternative hypotheses are assigned probability 0 some of the possible worlds 

are eliminated at the outset. Sure, there can no longer be a logical warranty 

that the actual world we are in is not one of those excluded. This is perhaps 

the most perspicuous difference with the reliabilist conception of science 

which affords us the criteria of logical warranty that a reliable method arrives 

at the truth irrespective of the skeptical worry. 

 

3.2. Falsificationism 

 

Aware of the skeptical scenario, K. Popper propounded an alternative 

understanding of the dynamics of science.55 Scientists are encouraged to come 

up with bold conjectures, which are then subject to empirical tests. If they fail, 

they are conclusively falsified – they logically contradict the evidence. If they 

stand the test, they are entertained only tentatively, in view of a possible 

falsification by some further empirical test. 

 In reliablist terms what Popper requires a criterion of success 

somewhat weaker than those required by the skeptic. For on this account 

scientific method is required to project a given hypothesis until there is a point 

in the data stream such that the data contradicts it. Popper requires scientific 

                                                 
55 (Popper 1935; 1963). 
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method to be reliable only in the following sense: any hypothesis it has to be 

refutable with certainty, i.e. after the method outputs 0, it stops. 

 Falsificationism leaves out what appears to be at least equally 

important part of scientific enterprise: reliable learning of truth, i.e. the 

success in verification of a hypothesis. The opposite of Popper’s criterion of 

success is verification of (existential) hypothesis with certainty when a 

method outputs 1 and stops. 

 Moreover, as suggested cogently by Reichenbach and elaborated by 

Putnam, yet weaker criteria of success are possible too. In general, what can 

be relaxed is the requirement that apart from hitting upon the truth scientific 

method also signals that it has reached it. In this sense one can speak of 

convergence to the truth in the limit for both verification and refutation. 

 It follows, as demonstrated in (Kelly 1996, 95), that sticking to 

Popper’s criterion sometimes would even compromise reliability, for instance, 

in the case when the hypothesis in question has a logical warranty of 

verification in the limit. 

 

 

3.3 Constructive Empiricism 
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Constructive empiricism56 is a programmatically epistemological version of 

anti-realism discussed in Subsection 1.1. It sets empirical adequacy as the aim 

of science and claims further that the truth of what goes beyond the 

observable is immaterial. It is thus supposed to undermine any existential 

claim on the part of science that would not be credited by an unaided 

observation. 

In Subsection 1.1 I noted what may be recognized as the fundamental 

difficulty of constructive empiricism. It appears to introduce an arbitrary 

epistemic divide between what is observable and nonobservable, trading thus 

for what is crucial in scientific enterprise, namely providing the best available 

explanation of the data. For scientific realist whether the best explanation 

would draw upon observable or nonobservable entities is of secondary 

importance as compared with getting the best explanation of the data. 

 In the reliabilist framework, especially in the classification of 

reliabilist success criteria,57 there is more to be said about constructive 

empiricism. As other empiricisms, it seems to be fixed at one level of such 

criteria for all kinds of scientific inquiries but it somewhat relaxes Popper’s 

requirement that the hypothesis in question be decidable (refutable) with 

certainty. As Kelly points out, the best way to think of constructive empiricist 

is that only those hypotheses are worthy of belief which are at least decidable 

(refutable or verifiable) in the limit.58 For empiricist is concerned only with 

                                                 
56 (van Fraassen 1980; 1989; 2002). 
57 (Kelly 1996, 115-117). 
58 If we take into account the computational limitations of scientists then this criterion of 
success has to be weakened further (Kelly 1996, ch. 7). 
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empirical adequacy, i.e. correctness of a given hypothesis with regard to the 

data stream alone rather than – as realist – with regard to the underlying 

reality.59  

 

3.4. Relativism  

 

Some philosophers or sociologists of science would have it that scientific 

research is not about getting to the truth, but about reaching a common 

consensus on what is acceptable for proponents of alternative theories.60 The 

purported rationale for this view is that each alternative theory sets up its own 

conceptual apparatus and truth is relative to it. If a scientist were to switch to 

some other theory, she would no longer refer to the same set of truths. 

Therefore, when scientists reach a consensus it cannot be based on a common 

truth as there is none and what is decisive is an exercise of political power, 

personal influence etc. 

 Although relativism is turned down on scientific realist standpoint, 

nonetheless reliabilist conception of science still applies.61 Of course, truth 

cannot be the basis for the consensus among scientists of different 

persuasions, but within a given conceptual scheme the questions of reliably 

getting to truth – the truth relative to a given conceptual scheme – still arise. 

                                                 
59 The though skeptical problem for realist, that empiricist dispensis with, is that the 
underlying reality may be different and still the data streams obtained the same. 
60 Cf. (Barnes, Bloor and Henry 1996; Kukla 2000).  
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One important question concerns scientific revolutions: can we find a 

conceptual scheme in which the truth value of a given hypothesis62 is reliably 

decidable? Another question is: can we reach a point for a given hypothesis 

after which changes of conceptual schemes do not affect correctness of 

conjectures of its truth value? 

To achieve success on any of the above or similar questions the 

inquirer, as proved by (Kelly and Glymour 1992) has to follow a strategy 

balancing between changes of one’s conceptual scheme and following the 

scheme in collecting further data. Still, “for each conception of convergence 

there is a universal learner that will solve any problem solvable by any 

learner” (Glymour 1996, 284). 

 

4. Open questions and future research 

 

 Let me close this outline of the reliabilist conception of science and its 

implications for scientific research with the following remark. Within 

relatively short time63 the reliabilist conception of science stimulated a vast 

amount of results on causal inference and modeling which set out a 

methodology for the social sciences that is fundamentally uniform with the 

methodology of the natural sciences and which has already proved fruitful in 

                                                                                                                               
61 In other words, on the reliabilist conception of science some of the problems posed by T. 
Kuhn (1977; 1996; 2000) turn out to be perfectly legitimate, especially the two mentioned 
below in the main text. 
62 On how to construe it with translatability see (Kelly Glymour 1992). 
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numerous studies. This impact on science has no counterpart in any of the 

alternative contemporary conceptions of science. In short, the reliabilist 

conception of science wins on every single criterion offered: integrity, 

coherence, precision, response to skeptical challenges, compliance with the 

history of science and continuity with science. 

 As it appears, both philosophers and scientists are challenged by the 

reliabilist conception of science. For there is a number of issues that on the 

reliablist perspective would require a thoroughgoing elucidation. One issue is 

the prevalence of unreliable methods of inquiry in science. How to go beyond 

a mere attribution of irrationality in evaluation is well illustrated by A. Woody 

(1997). She studied – the history of diagrams representing molecular structure 

for covalent bonding introduced by G. N. Lewis in 1916. These diagrams 

work only for relatively light atoms and are not approximations of general 

theories of atomic structure, especially quantum theory. Woody explains their 

prevalence in chemistry textbooks and professional literature as “a useful 

shorthand for certain limited types of information”. The fact that they turn out 

to be similar to graphical representation of discrete data sets and do not 

require complex skills makes them an easy instructional tool historically 

connected to “earlier episodes of chemical practice” (1997, 59). There seem to 

be plenty of cases like Lewis’s diagrams to be elucidated, e.g. the unrestricted 

use of regression in causal inference. One can go even further and inquire 

                                                                                                                               
63 With the opening date somewhat arbitrarily assigned to the publication of (Kiiveri and 
Speed 1982). 
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about the general underlying mechanism in the functioning of science that 

promotes the sustenance of unreliable methods of research. 

 Another issue is the link between reliability and explanation. The 

voluminous philosophical and methodological literature on explanation omits 

the important question: How the explanatory virtues of a theory contribute to 

its being more reliable in getting to the truth? A “rational reconstruction” of 

explanation and discussion of its nature have little to contribute to this 

question. Instead, one would expect that an investigation into historical 

examples, e.g. Kepler’s preference of Copernican vs. Ptolemaic theory, may 

yield a clue to answer the question. 

 Seemingly endless philosophical discussions of token causation64 are 

yet another example where reliabilist perspective would provide with criteria 

to resolve many issues. It is not only that the norms of reliability form a firmer 

ground than individual’s intuitions about particular cases. They also could 

help philosophers and scientists to bring about methodological standards for 

causal discovery of token causes. With such a tool at hand the automation 

revolution would exercise an immense influence on the public life by design 

of individual-oriented health care system or more reliable judicial recognition 

of what are an individual’s responsibilities in a particular case.  

 Finally, there is a set of problems that once used to be in the focus of 

philosophers and now has been almost entirely shifted towards computer 

                                                 
64 Token causation applies to cases when one is interested in spelling out causes of a 
particular event rather than – as is with type causation – spelling out causal dependencies 
between classes of events, e.g. smoking and lung canser (which are standardly represented by 
random variables). 
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scientists, namely scientific discovery. Surely, the language for discussing this 

topic today has been shifted towards sophisticated mathematics, especially 

with the advent of research on machine learning in the 1970’s and 1980’s. 

Nevertheless, there is ample room for philosopher’s ideas to contribute in 

solving such challenging problems as modeling complex systems in terms of 

their parts, e.g. the Earth ecosystem or models of gene regulation. Out of five 

prevailing issues P. Langley (2002) identifies as especially important three 

have always been of major concern to philosophers: how to develop a system 

of representation that will ensure commensurability between groups of 

researchers using different conceptual schemes and systems of representation, 

how to incorporate background knowledge and revision into the process of 

learning and how to attain explanations of the data rather than a mere 

description.  

 As it seems, we are now facing the dawn of the automation revolution 

in science. The moral of this paper is that how far this revolution will take us 

on the road to the truth turns on how deeply it will be framed by the ideas of 

reliability.65 

 

                                                 
65 The survey on reliabilism is largerly stimulated by writings and teachings of Clark Glymour 
to whom I express my great debt for numerous discussions and illuminating comments to 
earlier drafts of this paper. I am grateful to the Foundation for Polish Science for sponsoring 
my research at the Center for Philosophy of Science at the University of Pittsburgh where the 
text has been composed. 
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