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Abstract

We present some general results concerning the topological space of
cuts of a countable model of arithmetic given by a particular indicator Y.

The notion of ‘indicator’ is defined in a novel way, without initially
specifying what property is indicated and is used to define a topological
space of cuts of the model. Various familiar properties of cuts (strength,
regularity, saturation, coding properties) are investigated in this sense,
and several results are given stating whether or not the set of cuts having
the property is comeagre.

A new notion of ‘generic cut’ is introduced and investigated and it is
shown in the case of countable arithmetically saturated models M E PA
that generic cuts exist, indeed the set of generic cuts is comeagre in the
sense of Baire, and furthermore that two generic cuts within the same
‘small interval’ of the model are conjugate by an automorphism of the
model.

The paper concludes by outlining some applications to constructions of
cuts satisfying properties incompatible with genericity, and discussing in
model-theoretic terms those properties for which there is an indicator Y.

1 Introduction

For this paper, we look at cuts or initial segments of models of Peano arithmetic
(PA), i.e., initial subsets closed under the operations of successor, addition and
multiplication. As we have no need to look at subsets not closed under addition
or multiplication, the terms ‘cut’ and ‘initial segment’ will be in all practical
terms synonomous.

This paper presents some general results concerning the topological space of
initial segments of a model of arithmetic, M, and introduces natural subspaces
of cuts given by a particular indicator Y. We shall look at this space as a tool
for examining constructions of cuts of the model and other structural properties
of the model. In particular, we shall look at generic cuts of the model, that is,
the class of almost all cuts in the sense of Baire, and describe these; in the case
when M is a countable recursively saturated model we give a back-and-forth
system that classifies such cuts up to conjugacy.

Indicators were first introduced by Kirby and Paris [3] as a way of con-
structing initial segments of models of arithmetic. They provide an elegant and
rather uniform way of handling most of the main classes of cuts that arise. In
due course they also led to independence results for Peano arithmetic [8, 10],
and these independence results have been studied extensively and re-proved by



other means. However indicators are still an important tool for understanding
the structural properties of models of arithmetic and their initial segments, and
some interesting questions about them remain.

This paper starts by presenting a rather more general study of indicators
than is usual. Our first aim is to abstract the main properties of ‘an indicator’
independently of the set of cuts it is supposed to indicate. Indicators will be used
later to isolate the topological subspaces of interest. The goal is to prove results
about the structure of the model, the topological properties of the set of its
cuts identified by the indicator, and in particular to investigate the complexity
of constructions of such cuts. Sections 4 and 5 form the bulk of the paper and
is an investigation of the properties of almost all cuts (in the sense of Baire)
and the new notion of generic cuts. The final section returns to the question of
indicators and the sets of cuts that they indicate.

All terminology used here is standard and except where indicated is as in
Models of Peano Arithmetic [1]. For further information, and in particular
for information on semiregular, regular and strong cuts, I recommend Kossak
and Schmerl’s book [4]. Throughout this paper, £ is the usual language of
arithmetic and M denotes a fixed countable nonstandard model of arithmetic;
for sake of definiteness we shall assume M F PA throughout, though much
less than this (such as M F IAg) suffices for several of our results. The set of
elements definable in M by a formula in £ with parameters from C, i.e., the
definable closure of C = {¢} C M will be denoted dcl(¢).

For simplicity we restrict our attention to indicators without parameters that
work in a uniform way for all M E PA, though other variations such as indica-
tors defined with parameters in a particular model, or more complex indicators
for ¥,-elementary cuts are possible. Similarly, several of our results apply to
uncountable models too, but in this respect there are many delicate points here
and we leave the topic of uncountable models to future investigations.

2 Indicators

A question that has been around for some time, which I first heard asked by
Jeff Paris, asks what properties of an initial segment I can be indicated by
an indicator. In part, this questions motivates some of the work on indicators
discussed here, and some of the results of this paper may be seen to be as a
partial answer to this question (Propositions 2.6 and 2.7, Theorem 6.2). The
question is presented here as I learnt it; what it actually might mean is discussed
later.

Question 2.1 (Paris). Give a preservation theorem for properties of cuts with
indicators.

Here, we would like a logical characterisation in syntactic or quasi-syntactic
style of those properties that can be described by indicators. The main difficulty
with this question is that the same indicator may indicate several different
properties. (This phenomenon is called symbiosis by Paris and Kirby. See
Definition 6.3.) Some of these properties may be easily described in logical
terms (for example, in a first-order way) and others may be considerably harder
to describe.



To progress, we shall be more precise about our terms, ‘indicator’, etc. Our
definition of indicator is novel in that it tries to abstract the properties of an
‘indicator’ without actually specifying what property is indicated. (But see
Proposition 2.6 below which gives at least some property.)

Definition 2.2. Let M be a nonstandard model of arithmetic (always, for this
paper, countable and at least IA). An indicator Y is a ¥ formula Y (z,y) = 2z
for which the following properties hold, in the model, or provably in the theory,
as required.

1. VaVy 3z Y (z,y) = =
2.x2y—Y(x,y)=0

<o <y <y—-Y(x,y) 2Y(@,y)
If Y(x,y) > N then y > (z + 1)?

If Y(z,y) > z then there are 2/, 3’ such that Y(2/,y) =Y (x,y') = 2

A

If Y(z,y) > N and « < z < y then either Y(z,2) > Nor Y(z,y) >N

Example 2.3. There is a ‘minimal’ indicator Yy(z, y), defined to be the greatest
k such that f(®)(x) < y where f is the function defined by f(u) = (u + 1)2. This
function indicates the presence of initial segments (i.e., without any additional
specified property in the sense that Y'(a,b) > N holds iff there is a cut I C, M
with a € I < b).

In general, indicators are often defined by Y (z,%) = max{k | F*)(z) < y}
or max{k | Fi(z) < y}, for some increasing function F or family of functions
Fi. Indeed, for each indicator Y in PA there is a family of partial functions,
which we will denote Y,,, defined by Y, (x) = min{y € M | Y (z,y) > n}, and
in fact for many natural indicators, these Y,, are partial functions even in the
weaker base theory IAg. (Note that when we write ‘Y (z,y) = z’, or any other
formula without specifying which model it is interpreted in, we mean that it is
true in the ground model M, and not necessarily in any initial segment I of M;
see also Definition 2.8 below.)

We are going to discuss properties of indicators in this generality. The first
result is well-known.

Proposition 2.4. Let Y be an indicator. Then for any © < y € M with
Y (z,y) > N there is z with z < z < y and both Y (z,z) > N and Y (2,y) > N.

Proof. Let z be least such that Y(x,z) > Y(z,y). Note that the standard
properties of indicators imply that Y(x, z) > N. Also, as Y (z—1,y) > Y(x,2—1)
we have Y(z — 1,y) > N. Thus by other elementary properties of indicators,
Y (z,y) > N too. O

An indicator usually is thought of as indicating the presence of a cut I with
a particular property. In general the property of the cut under consideration
concerns how the cut sits inside the ground model M and so is more accurately
considered as a property of the expanded structure (M, I).

Definition 2.5. An indicator Y indicates cuts with the property Q™ (I) if when-
ever a < b € M then



Y (a,b) > N iff there is a cut I with a € I < b such that QM (I).

As the ambient model M is usually fixed for this paper, we shall often write
our properties QM (I) as Q(I), omitting the possible dependence on M from the
notation.

Proposition 2.6. Let Y be an indicator. Then Y indicates cuts I with the
following property Qy (I): ‘for all @ € I and b > I we have Y (a,b) > N.’

Proof. One direction is clear: if Qy (I) holds and a € I < b then Y(a,b) > N.
For the other direction, given a = ag, b = by with Y (a,b) > N we can, using
the properties of the indicator given above and countability of M choose an
w-sequence of successively smaller intervals [a,41,bn+1] € [an,b,] such that
Y (an,bn) > N for each n and the sequences (a,) and (b,) both tend to some
initial segment I as n — oco. Then for x € I < y we must have x < a,, and b, <y
for some [a,,b,] in the construction so Y (a,,b,) > N and hence Y (z,y) > N,

as required. O

Proposition 2.7. Let Y be an indicator. Then Y indicates cuts I C. M such
that I # M and Py (I), where Py (I) is the property: ‘for all a € I and n € N
there is b € T such that Y (a,b) > n.’

Proof. Let I C. M be a proper initial segment which has the property Py (I).
Then given a € I and n € N, the least ¢ € M such that Y(a,c) > n is in I.
Thus if b > I by properties of the indicator Y, Y (a,b) > N. Thus I has Qy (I).
Conversely, suppose Qy (I) and a € I and n € N. Then for each b > I we have
Y (a,b) > n. So by underspill there is some b € I with Y (a,b) > n and hence
by properties of the indicator, some b € I with Y (a,b) = n. O

Given a,b € M with Y (a,b) > N there are two obvious cuts I witha € I <b
satisfying Py (I). The first is My (a) = {z € M | Y (a,z) € N} and the second
is My [b] = {x € M | Y (x,b) > N}. An easy overspill arument shows these cuts
are not the same. These cuts generalise the cuts M (a) and M [b] that appear in
the literature for certain specific indicators. For example, Kotlarksi [5] studies
these for the Paris—Harrington indicator and shows that there are countably
many nonisomorphic cuts of the form My (a).

Definition 2.8. An indicator Y is absolute if, for all a,b,c € M and I C, M
containing a, b, ¢ such that Py (I) holds, M E Y(a,b) = c if and only if T E
Y(a,b) = c.

One way that ¥ might be absolute is if the formula Y (z,y) = z is A, rather
than just ¥;. In some cases, if Y (z,y) = z is the formula 3w 0(x,y, z, w) with
0(x,y, z,w) being Aq then we may replace this with the Ay formula stating that
z is least such that 3z, @ < z6(z,y, 2/, w), and the same cuts will be indicated.
Or it may be that the ‘witnesses’ @ required in Y'(z,y) = z are bound by some
Y, (y) = min{y’' | Y(y,y’) = n} for some n € N. Most ‘natural’ indicators are
absolute.

In the case when the indicator Y is absolute, the property Py-(I) depends on
I only and not on (M, I). In the sequel we will focus on Py (I) rather than Qy (1)
because it is more convenient in the case of absolute indicators, and because the
special case of the improper initial segment M is often topologically important
as a limit of proper initial segments. The proof of the last proposition shows
that this is the only initial segment that might have property Py but not Qy .



3 The topological space of indicated cuts

We start our work proper in this section, by defining for each indicator Y a
topological space, denoted Z{YI or more simply as Zy, whose elements are the
cuts in M indicated by Y.

Definition 3.1. Let Y be an indicator. The set Zy is the set of (not necessarily
proper) I C, M such that Py (I) holds. A basic open subset of Zy is either a set
of the form (a,b)y ={I € Zy |a € I < b} for some a,b € M with Y (a,b) > N,
or is a set of the form (a,00)y = {I € Zy | a € I}. An open subset of Zy is a
union of basic open subsets.

We shall use round-bracket intervals such as (a,b)y or (a,00)y for sets of
cuts, omitting the subscript Y if it is clear from context. In contrast, square-
bracket intervals such as [a,b] will always denote sets of elements of M, in
this case {x € M | a < = < b}. Definition 3.1 makes Zy into a topological
space, as the intersection of two basic open subsets is either empty or a basic
open subset. Basic open subsets of the form (a,c0)y are only needed if Py (M)
holds; otherwise there will be b € M such that (a,c0)y = (a,b)y.

Proposition 3.2. If Zy is non-empty, it contains a maximum cut Ina.x = |J Zy
and a minimum cut Iin = () Zy.

Proof. Easy. O

For the ‘minimal’ indicator Yy(z,y) of Example 2.3, we denote Zy, more
simply as Zy. This space consists of all initial segments of M with the topology
given above.

Proposition 3.3. Let Y be an indicator. Then Zy is a closed subset of the
space Zg of all initial segments of M, and the topology on Zy is precisely the
subspace topology inherited from Zj.

Proof. Let I Co M satisfy =Py (I). Then there is a € I such that Y (a,b) < n
for all b € I and hence by overspill (if I # M) some b > I with Y (a,b) < n.
Thus the basic open neighbourhood of I, U = (a, b)g is disjoint to Zy. In the
case when I = M we may take U = (a,00)o instead, and the argument is the
same. If U C Zy is open in the subspace topology, then for each I € U there
is a basic open set V = (a,b)o of Zy such that {J € Zy | J € V} contains I.
But then this latter set is precisely the basic open set (a,b)y of Zy, and so the
topologies coincide as stated. O

Proposition 3.4. Let Y be an indicator such that Zy is non-empty. Then
Zy is homeomorphic to the Cantor space 2V. In particular, if a,b € M with
Y (a,b) > N there are 2%0 initial segments I with a € I < b and Py (I).

Proof. Enumerate M as g, 1, ..., and define open sets (a,,b,) of Zy for o €
2<% strings of Os and 1s of finite length. We will arrange that, for all k, Zy is
the disjoint union of all (as,b,) as o ranges over strings of length k.

To start, we set (ag,bp) to be (0,00). Given (ay,by) with o of length k, we
first choose as0 = ar < by0 = @y, < by, = b, using Proposition 2.4 so that
(a0,b00) and (ay1,bs1) are both non-empty. In particular, if xj is a suitable
choice for b,y = a,1 we use this. Otherwise we choose some other value. Now



consider the other end-points, (as0 and b,1). If xx was not used for b,g = ag,
then we may be able to replace one of (as0 and by1) with 2 and having the set
of I € Zy so defined stay the same; if we can do this then we do.

The construction results in a full binary tree of intervals such that each
infinite path through the tree has a unique limit in Zy. (The uniqueness of
the limit is from the way we used the enumeration of the model and used xy
whenever possible as an end-point.) Therefore this gives an homeomorphism
between Zy and the Cantor space. O

4 Almost all cuts in the sense of Baire

In this section we shall fix some countable model M and an indicator Y such
that Zy is non-empty.

Definition 4.1. An interval (or Y-interval) of M is a set [a,b] = {x € M |a <
x < b} such that a < b and Y (a,b) > N.

If [a,b] is an interval and I € Zy is an initial segment of M we shall write
(with slight abuse of notation) ‘I € [a,b]’ for the statement ‘a € T and b & I’.
In this case we say ‘[a,b] contains I’.

As already noted, the space Zy is isomorphic to the Cantor set and so is
compact and Hausdorff. Therefore Baire’s theorem applies. We shall study
properties of ‘almost all’ I € Zy in the sense of Baire.

The most natural construction of initial segments I € Zy is by the successive-
interval technique used above in Proposition 2.6. This corresponds in the topo-
logical setting to building a cut in Zy by a Banach-Mazur game [7, Chapter
6], i.e., by looking at comeagre subsets of Zy. For this section we look at such
subsets of Zy or (equivalently) cuts I € Zy constructed by the Banach—Mazur
game.

Definition 4.2. A subset S C Zy (or property P(I)) is enforceable by Y iff the
set S (or the set of I € Zy satisfying P(I)) is comeagre in Zy.

By Baire’s theorem and the definition of a comeagre set, any enforceable
property has continuum-many cuts satisfying it, and these cuts are dense in Zy-.
Moreover, the intersection of any countable number of enforceable subsets is
enforceable and hence non-empty.

We now give a sequence of results concerning enforceable properties. The
first of these is obtained by modifying an argument due to Paris (written up by
Kotlarski [5, theorem 3]) that the cuts I F PA form a meagre subset of Zpy,
where Ypy is the Paris—Harrington indicator for PA.

Theorem 4.3. It is enforceable that {n € M |Ve € I3y € IY (z,y) > n} =N.
Proof. Let a > N in M be nonstandard and let

Ay ={l€Zy |Fx € IVyeIY(z,y) < a}.

We show that A, is open and dense. The result then follows from the count-
ability of M and looking at the comeagre set [,y Aa. But given non-empty
open (a,b) C Zy with Y(a,b) > N we may simply choose ¢ < b maximal so
that Y (a,c) < a. As Y(a,b) > N and o > N the set (a,c) C (a,b) is open and
non-empty as required. O



Corollary 4.4. It is enforceable that the cut I is not strong.

Proof. (Sketch.) Let I be as in the previous result and working in M define
f({z,n)) to be the least y such that Y (x,y) > n, or some fixed b > I if no such
y exists. Then by overspill there cannot be ¢ € M such that, for all x,n € I,
f((z,n)) € Iiff f({(xz,n)) < ¢; this shows I is not strong in M. O

Corollary 4.5. Let Y be absolute. Then it is enforceable that:
1. N is I-definable (without parameters) in I;
2. THIYy;
3. I is not Ils-recursively saturated.

Proof. All of these follow from the previous theorem and absoluteness, which
shows that there is a Il formula 0(x) (namely Yy 32 Y (y,z) > x) such that it
is enforceable that N is defined by this formula in I. The last two properties
listed follow since every model of I¥, satisfies the least number principle for ¥
formulas [9], and the recursive IIy type {8(z)} U {z > n|n € N} is not realised
in 1. O

Given that it is enforceable that N is IIs-definable it is natural to ask if it is
also enforceable that N is Y5-definable. The answer to this question is ‘no’. In
fact, slightly more is true.

Theorem 4.6. It is enforceable that I is Xo-recursively saturated as an Za-
structure.

Proof. We play a step of the Banach—-Mazur game with some non-empty interval
(a,b)y given, considering a recursive set of formulas

p(x) ={3gVz0;(x,y,2) | i € N}

where each 6;(x, 7, Z) is Ap. The formulas in p(x) may involve any finite set of
parameters from [0,a]. We will choose non-empty (a’,b')y C (a,b)y such that
either p(z) is not finitely satisfied in all I € (a’,b)y or else p(x) is satisfied
inall I € (a,V)y. By using a pairing function we may assume each @,z is
a single variable, and by using another pairing function and considering (x, y)
we may assume that the quantifier Jy is absent and our set of formulas is
p(z) = {Vz0;(z,z)|i € N}.

We are done if we can find a < @’ <V < b with Y(a/,b’) > n for each n € N
and 3z < o’ A\, Vz < 0;(x,2) for each n € N. For then by saturation in M
there is < o with Vz < ¥/ 0;(x,2) for all ¢ and thus p(x) is reaslied in any
I € (a',V)y since each 6; is Ag. Otherwise, there is n € N such that

M EVd Y (aga'<b'§b/\Y(a’,b') >n—Vr<d \/—\Vz<b’0,-(x,z)>.

i<n

Now let I € (a,b)y satisfy Py (I). Then for any xz < o’ € I there is &’ € I with
Y(a',b') 2 n and hence some z < b’ and ¢ < n such that M F —0;(x, z). Thus
by absoluteness of Ay formulas p(x) is not finitely satisfied in I.

This step is played in the Banach—-Mazur game for all such sets p(z) of
formulas in parameters from the constructed cut I. O



In fact, the previous result can be improved by adding to the language of
I subsets of I coded in M, and showing that any recursive % type involving
finitely many of these parameters is realised. The details are left as an exercise.

The special case of countable short IT;j-recursively saturated .Za-structures
I is worth noting, as this property is useful for constructing end-extensions.
A model I is short Iy -recursively saturated if, for every recursive set p(x) of
formulas in £ with finitely many parameters from I, including one parameter
a such that z < a is in p(z), we have: p(x) is realised iff it is finitely satisfied.

Proposition 4.7. Let I £ BX; be countable and nonstandard and short II;-
recursively saturated. Suppose T'= T'(a) is a coded set of sentences in £y U{a}
where a € I are finitely many parameters, such that I F II; — Th(7'), the set of
II; consequences of T'. Then there is an end-extension J D, I such that J F T

Results of this type were given by Paris and Wilkie [11]. This particular
one can be proved by inductively constructing a complete extension T, = T U
{00,01, ...} in the language £ U T such that I EII; — Th(T'U{0¢,01,...,0n})
for each n and for each b € I the set of formulas gy(z) = {x < bjU{x # ¢|c € I}
has no support. Thus by the omitting types theorem there is a model J of T,
omitting all g,(x) and J can be regarded as a (not necessarily proper) end-
extension of I.

Obviously a Ys-recursively saturated model is short II;-recursively satu-
rated. Another consequence of Ys-recursive saturation is given in the next
corollary.

Corollary 4.8. It is enforceable that N is not 3o-definable in I with parameters.

Proof. U N = {n € I|I F ¢(n)} with ¢)(z) X3 then the recursive 35 type
p(z) ={z >n|n e N}U{¢(x)} is finitely satisfied but not reaslised in I. [

Definition 4.9. A cut [ is an w-limit if in the obvious sense of ‘limit’, I =
lim,,¢,, (a), for some monotonic sequence, (a),, of elements of M that is coded
in M.

Theorem 4.10. It is enforceable that [ is not an w-limit.

Proof. Given r < s with Y(r,s) > N and (a),, choose ¢ with Y'(r,t) > N and
Y (t,s) > N by Proposition 2.4 and note that by monotonicity at most one of the
intervals [r, ], [¢, s] contains all but finitely many (a),,. Choose some [r,t] or [t, $]
not containing some such inifinite set of (a),s. Repeat this for all a € M. O

Paris and Kirby [3] construct cuts satisfying I3 via the notion of semireg-
ular cuts. Their construction is a Banach-Mazur game and so (for the right
indicator) the property of being semiregular is enforceable. We will look into
this argument in slightly greater generality in a moment. On the other hand.
the usual constructions of regular cuts, such as the game-construction given
by Paris and Kirby in the same paper, are rather more complicated. It seems
natural to attempt to prove that it is not enforceable that a cut is regular. For
technical reasons, we start with the case of semiregular cuts.

Definition 4.11. Let Y be an indicator and recall the function Y;, defined in M
by Yy (z) = min{y € M|Y (z,y) > n}. We iterate these functions Y, in the style
of the Grzegorczyk hierarchy, defining Yy, (z) by Yo(z) = Yo(z) and, for n > 0,
V() = max(Yéf)l(x), Y, (x)). We also set Y (z,y) = max{n | Y, (z) < y}.



Definition 4.12. Two indicators Y7, Y5 have the same strength if and only if,
for all a,b € M, Y1(a,b) > N < Ys(a,b) > N.

Theorem 4.13. It is enforceable that I is semiregular if and only if Y and Y
have the same strength.

Proof. We start by assuming that Y and Y do not have the same strength, and
there is [a,b] with Y (a,b) > N but Y (a,b) = n € N. We claim that no I € Zy
with a € I < b can be semiregular. Indeed, for some k < n we must have I
closed under Y(z) but not under Y, i(x). Let ¢ € T with Yy11(¢) > I and

define f(z) = Yk(r)(c) for x < ¢. This f has I NIm(f) Ce I, and hence I is not
semiregular. Therefore the property of being semiregular is not enforceable, as
if such an interval [a, b] exists, our opponent may play it on his first move and
there is nothing we can do to build a semiregular cut in the interval [a, b].

On the other hand, if Y and Y have the same strength we may as well use the
indicator Y in place of Y. Now given an interval [a,b] with ¥, (a) < b for some
n > N, and considering some definable function f: {z € M |z < ¢} — M where
c<a—1,1let ap =a and a;11 = Yn,l(ai). Then {a = agp,a1,...,aq} C [a,b]
and the interior of at least one of the intervals [a;, a;+1] must be disjoint with
Imf. We play such an interval [a;,a;+1] in the Banach-Mazur game, dealing
with all such definable functions in the same way at some other stage of the
game. In this way we enforce the resulting cut to be semiregular. O

Remark 4.14. Of course, if [ is semiregular then it satisfies IX, so if Y and Y
have the same strength then it is enforceable that I F I¥;. The proof just given
also shows that if Y is absolute and Y and Y do not have the same strength
then it is not enforceable that I F I34.

In contrast with the last theorem, the property of being regular is never
enforceable.

Theorem 4.15. It is enforceable that I is not regular. In fact, if Y is absolute,
it is enforceable that I does not satisfy BX.

Proof. We show how to play the Banach—Mazur game to enforce a failure of
regularity. Without serious loss of generality, we may assume that Y and Y have
the same strength; for if otherwise either we are given [a,b] with Y(a, b) e N
in which case all constructed cuts fail to be semiregular and hence fail to be
regular, or else we may play an interval [c, d] C [a,b] with Y (¢,d) € N. We shall
assume this is not possible, that is: we are given [a, b] such that Y (¢, d) > N for
all subintervals [c, d].

We may assume that b = Yu(a) for some nonstandard p < @ — 1 and we
start by defining a ‘u-colouring’ of [a,b], i.e., a recursive function F: [a,b] —
{0,1,..., 4 — 1}. The definition of F' is by induction on px.

Suppose C' C {0,1,...,u—1} and [ag, bo] is an interval. We define a function

FC [ag,bo] — C as follows. If C' = {c} has a single element, then F[go,bo]

[a0,b0] *
is the constant function F[go bo] () = ¢. Otherwise let n = cardC and C =
{co,cl, ...yCn—1} in increasing order. and define a; for ¢ > 0 by a; = max{b |
Y(a;—1,b) < n} define C; C C by C; = C\ {Cimodn} and inductively set
F[gojbo](az) = F[a:',a“ﬂ(:z:) whenever a; < z < a;41. This function F' is recursive

and given by a ¥, formula F(z) = s, as the reader may verify.



We are now going to play the game, constructing a cut I so that for no
colour s < u are the elements with colour s cofinal in I. This obviously means I
is not regular, but if Y is absolute (and hence Y is absolute) then it also means
that I fails to satisfy the following instance of BX,:

Vs < pdaxVy >z F(y) #£s— Vs < pIz <tVy >z F(y) #s.

At a later stage in the game we are given an interval [r,s] C [a,b], with
Y(r,s) = v and N < v < p, and we are considering colour ¢. (There are
countably many colours, and we consider each at some stage.) At this stage in
the construction it is already decided that r € I and s > I. If no x € [r, s] has
F(z) = c there is nothing to do!. Otherwise we may find an interval [a;, a; 1] C
[r, s] and set of colours C; C {0,1,...,u — 1} as in some stage of the recursive
definition of F' such that F' is equal to F[(j:’aiﬂ] on [a;, a;11], and cardC; = n.
Then our colour ¢ is some ¢, in the set C;, and in the next level of the definition
of F we divide [a;,a;4+1] up into subintervals [a;o,a;1], [@i1,ai2), [ai2,ais)],- .
where a; ; = max{b|}7(aij_1, b) < n} and define F as F[SH\{;JJ}“] on [a; j, a; j+1)-
Therefore we can achieve our objective in the game by playing the subinterval
[@ik,a;g+1] for which F = F[Szz{cffk}ﬂ] does not use colour ¢ = ¢;. We need
only check that this is a valid move ni the game, i.e., k£ is not too big and
[@ik, aik+1] C [r,s]; but this is clear as k < p < a — 1 < a; and from the
iteration scheme in the definition of V. O

At this point I shall digress briefly to mention an interesting technical ques-
tion I was unable to settle.

Question 4.16. Is there a model I of BXs such that the set of x in M such
that M EVa F,(a) exists is precisely the standard cut?

This question appears quite interesting as it asks about the ‘height’ of ‘n-
dense sets’ (i.e., the sets used in the construction of regular cuts in Chapter 4
of Kirby’s Ph.D. thesis [2]) or equivalently for information about a stage of the
game used in the Paris—Kirby game-construction of regular cuts [3]. It seems a
natural idea to settle this by introducing another step in the game-construction
to make these sets short. However, I was not able to prove this modification
works, and note that the analogous attempt of a modification of the construction
of a strong cut cannot work.

We now look at the theory of the cut I, and in particular whether it is coded.
The following result shows that the II; theory of the cut, with a parameter, is
coded.

Theorem 4.17. Tt is enforceable that for each a € I the set II; — Th(I, a) of
II; statements true in I is coded in M.

Proof. Given a € M and r < s with Y (r,s) > N, choose r < ' < s’ < s with
Y(r',s") > N and

dz < ¢ 0(z,a) < Jz <r' 0(x,a)
for all Ag formulas 6. The existence of such 7'/, s’ is a simple saturation argu-
ment in M, using Proposition 2.4 to show that infinitely many suitable disjoint

subintervals [r,s’] C [r,s] exist, and therefore for any finite set of fs suit-
able [r',s'] can be found. But having chosen such [r/,s'], if ¥’ € I < s’ then
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II; — Th(l,a) = {VzO(z,a) | M E Va < s’ 6(x,a)} and hence this set is coded in
M. The result follows by using the same strategy on all a € M. O

Question 4.18. Assuming if necessary that the indicator Y is absolute, is it
enforceable that IT; — Th(I) is not coded in I?

5 Generic cuts

Throughout this section we work with an indicator Y and a countable arith-
metically saturated model M F PA. (A model M is arithmetically saturated if
and only if it is recursively saturated and the standard cut is strong in M. For
further information on arithmetically saturated models of PA see Kossak and
Schmerl [4].) We assume Zy is non-empty. Our objective is to identify a single
property of cuts that is enforceable and implies all other enforceable properties
of cuts. We call cuts satisfying this property generic. Analogous results have
been proved for different topologies, especially in the context of automorphisms
of models. For models of arithmetic, such a characterization of generic auto-
morphisms was achieved by Lascar [6], and we have used this as a model for
our results. The context here is, however, quite different and our presentation
is self-contained and does not require any of Lascar’s results.
We need some definitions.

Definition 5.1. Let ¢ € M be a tuple of finitely many parameters. An interval
[a,b] is é&-small for Y (or just ¢-small if Y is understood) if for n = Y (a,b) we
have n < x for each nonstandard = € dcl(a, ¢) and, moreover, that b is the least
element of M such that Y(a,b) = n for this n.

The existence of ¢-small intervals is an easy consequence of the arithmetic
saturation of M.

Proposition 5.2. Let [a, b] be an interval and ¢ € M. Then there is a é-small
interval [a/, '] C [a, b].

Proof. Let @’ = a. We must choose ¥ € [a,b] such that Y (a/,b’) > N and
[@', V'] is é-small. Let n = Y(a,b) € M and using the arithmetic saturation
of M let n’ < n be nonstandard such that n’ < d for each nonstandard d €
del(a’, ). Finally, let b’ =Y,/ (a’) and the interval [a’, '] is the required ¢-small
subinterval. O

Definition 5.3. Let ¢ € M. An interval [a,b] is é-constant for Y (or just
¢-constant if Y is understood) if we have:

Whenever z € [a,b] and [a¢/,V'] C [a,b] is a subinterval, then there
is 2’ € [d/,b] such that, for all formulas 0(x,¢) of £ involving
parameters ¢, we have M E 0(z,¢) < 6(z/,¢).

Proposition 5.4. Let [ag,b] C M be an interval and ¢ € M. Then there is a
subinterval [a, b] C [ag, bp] which is ¢-constant.

Proof. Given an interval [r, s] C [ag, bo], and a formula 6(x, ), and trying to find
[r', 8] C [r,s] satisfying the definition for the formula 0(x,¢), we define fy(r,s)
to be the greatest n € M such that there are r',s" € [r, s] with s’ =Y, (') and

Vo (r' <z < s — —0(z,0)).
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There are two cases. Either fy(r,s) is nonstandard, in which case [/, s'] is an
interval which satisfies the definition for 6(z,¢), or else fy(r,s) € N, in which
case [r, s] satisfies the condition already. This argument enables us to deal with
a single 0(x, ). Repeating this argument with different 6(x,¢) and sucessively
refining our interval enables us to deal with any finite number of formulas. To
deal with all f(x, ¢) simultaneously we use arithmetic saturation to encode the
construction tree and find an infinite path through this tree.

For each 6(x,¢), define ag(r,s) to be the least a € [r,s] such that for n =
fo(r,s) and b = Y, (a) we have Vx (a < v < b— —0(x,¢)). Also, let by(r,s) be
this b.

Now fix a recursive (and hence coded) enumeration of #Zs-formulas 6, 01,02, . . ..

We define functions f: 2<% — M, a: 2<% — M, b: 2<% — M, with arguments
that a finite sequences of Os and 1s, as follows. For the empty sequence we
set a(P) = ag, b(0) = by corresponding to our initial given interval [ag, by, and
F(@) = fo,(ao,bo). Also, assuming that f(e), a(e), b(e) are defined and ¢ has
length [, we set

a(e0) = ag(a(e), b(e)), b(c0) = by(a(e), b(e)),
and
f(€0) = fo(a(e), b(e)),

where 6 is )1, corresponding to the choice of ‘best’ subinterval [a(£0), b(e0)] C
[a(g), b(e)] making ;41 (z,¢) false everywhere. Also, set

a(el) = a(e), blel) =b(e), and f(el) = f(e)

corresponding to the choise of selecting the whole interval from [a(e), b(e)].

These functions, and in particular the function f: 2<“ — M, can be encoded
in M as f: N— M. Using the strength of N in M we take d € M such that for
each £ € 2<% we have:

f(e) e Nif and only if f(e) < d.
Now using the saturation of M we select a coded sequence of intervals
[ag, bo] 2 [a1,b1] 2 [az,b2] D [as,bs] D ...
and a coded sequence
€0,E1,€2,E3, .-
of elements of 2<% (where ¢; has length i, so € = }) such that, for each [,
if f(e;) > d then ;41 = 0, and [a;4+1,bi11] = [a(g0), b(g;0)]

corresponding to the choice of a part of the interval making the formula false,
and

if f(e;) < d then €141 = g1, and [ai4+1,bi11] = [a(e1l), b(g11)]

for the choice of the whole interval.
Clearly [ar, b;] has Y (a;,b;) > N for each I, so by overspill there is [ > N such
that
[ah bl] g [al/, bl/] for all l/ < l
and Y (a;,b;) > | > N. Note too that for each 6(z,¢c), this formulas is 0;(x,¢)
for some ¢ so:
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either Vx € [ay, b)) —0;(x, ¢);

or there is some n € N such that between any a,b € [a;, b;] with b =Y,,(a)
there is some x satisfying 6,(z, ¢).

Thus [a;, b;] satisfies the requirement in Definition 5.3.

To satisfy requirement (a) simply find ¢; € [a;, b;] such that both [a;, ¢] and
[c1, by] are intervals by Proposition 2.4, and take [¢;, b;]. For then if 3z < b; 6(z, ¢)
but not 3x < a; O(x, ¢) then there is some x < Y, (a;) with 6(z, ¢) for some n € N
by the construction above, and hence 3z < ¢; 0(z, ). O

Here is the definition of a generic cut.

Definition 5.5. A cut I € Zy is generic for' Y (or generic, if Y is understood) if
for all ¢ € M:

(a) there is a é-small é-constant interval [a,b] C M containing I;

(b) whenever [a, b] is é&-constant, and contains I, and [r, s] C [a, ] is a &-small
subinterval, then there is [/, s'] C [a, b] containing I and an automorphism
g € Aut(M,¢) (i.e., fixing ¢ pointwise) such that g[r, s] = [/, s'].

Theorem 5.6. Let ¢ € M and I, I’ € [a, b] be generic, where [a, b] is é-small and
¢-constant. Then there is an automorphism g € Aut(M, ¢) such that gI = I'.

Proof. We build a suitable g € Aut(M, ¢) by back-and-forth. At a stage in the
construction we have d, [u,v] and d’, [u/,v'] such that:

1' tp(57 d_7 u7 v) = tp(67 Jl’ u/’vl);
2. I €u,v]and I' € [/, v'];

3. [u,v] is ¢, d-constant and ¢,d-small and [u’,v] is €, d’-constant and ¢,d'-
small.

We shall do the ‘forth’ step extending d to d,e. ‘Back’ is symmetrical.

Let h € Aut(M,¢) with h(d) = d’ and hfu,v] = [u',v']. Let e € M be arbi-
trary and take I € [ug, vo] where [ug,vo] is €, d, e, u, v-constant and ¢, d, e, u, v-
small by genericity of I. Then clearly [ug, vg] C [u,v] since [ug, vg] must meet
[u,v] as I is contained in both and by w, v-constant cannot contain either u or
v. Consider hlug,vg] C [u/,v']. This is ¢,d’, h(e)-constant and ¢,d’, h(e)-small

so by the genericity of I’ there is k € Aut(M,é,d’) and [uf,vy] C [u’,v] such

that I" € [ug,vy] = khlug,vo]. Let €/ = kh(e) and continue the construction
with d, e, [ug, vo] and d’, €/, [ug," vp] in place of d, [u,v] and d’, [u',v'].

It is evident that if this construction of an automorphism g: d — d’ is
completed in the back-and-forth style we have gI = I’; as required. O

Finally, we prove the existence of generic cuts.
Theorem 5.7. It is enforceable that the cut I is generic.

Proof. We must show how in a Banach—Mazur game we can enforce the resulting
cut to be generic.

Given an interval [u, v] and tuple of parameters ¢, by Proposition 5.4 followed
by Proposition 5.2 we can find [u/,v'] C [u,v] which is é&-small and éconstant.
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We play such an interval at some stage of the Banach—Mazur game for each
tuple ¢. This enables us to enforce property (a) in Definition 5.5.

Now suppose we are playing the game, having been given [u,v], and are
considering a é-constant interval [a, b] D [u,v] and a é-small interval [r, s] C [a, b].
We want to find g € Aut(M, ¢) such that g[r, s] C [u, v] for then we can continue
the game playing this interval g[r,s]. All such constants ¢ and such intervals
[a,b] and [r, s] are to be considered in this way at some point in the game.

To achieve our objective, we first choose t = g(r) € [u, v] such that:

1. for all formulas 6(z,¢), M F 0(t,c) < 0(r,c);
2. Y, (t) <wvforallneN;
3. t>u.

The choice of this ¢ is straightforward from the recursive saturation of M as
it is just realising a type in M. In particular, note that the type just written
down is finitely satisfied as a consequence of the é-constant nature of [a,b] and
so elements realising the same type as r appear densely in [a, b].

Now we use smallness of [r, s]. In particular [r, s] is é-small, so s = Y,,(r) for
some nonstandard n € M with n < x for each « € dcl(r,¢) \N. To define g(s) it
suffice to select m = g(n) and put g(s) = Yy(,)(9(r)) = Yin(t). First take n’ > N
such that Y,/ (t) € [u,v] and then take m < n’ such that tp(¢,t,m) = tp(¢,r,n).
Once again this is by recurive saturation, using the fact that tp(¢, r,n) is coded,
and that the corresponding type tp(¢, ¢, m) is finitely satisfied by m < n’ in M:
if this last were not the case then for some true 6(¢,r,n) we would have the
least m € M such that 6(c,t,m) is greater than n’, hence the least m € M
such that 6(¢,r,m) is a nonstandard element of dcl(c,r) which is greater than
n, contradicting smallness. O

Thus generic cuts enjoy all the properties enforceable in the Banach—-Mazur
game. For given a generic cut I and any ¢ € M we may take a ¢-small ¢-constant
[a,b] containing I, and play the Banach-Mazur game to obtain a generic I’ €
[a, b] satisfying the property P we are interested in. Then by the above, I and
I’ are conjugate by an automorphism fixing ¢ and hence (provided the property
P is preserved by all such automorphisms, and all the above properties clearly
are) our cut I also has P.

A natural question to ask is whether generic cuts exist for M if M is not
arithmetically saturated. For example, do generic cuts exist under the assump-
tion that M is recursively saturated? I don’t know the answer. There are in
fact two versions of this question, one slightly more interesting than the other:
firstly, do generic cuts exist, where ‘generic’ means according to Definition 5.57
and, secondly and slightly more interestingly, is there a notion of generic in
the more general setting that includes Definition 5.5 as a special case for which
versions of Theorem 5.6 and Theorem 5.7 can be proved?

6 Symbiosis
The results in Section 4 in one light are positive, in that they show that a cut

with a great number of interesting properties (semiregular, not an w-limit, all
II;-types are coded, and so on) can be constructed using an indicator. They
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also, however, show that many properties such as regular or strong, cannot be
enforced in such a construction. I cannot see any straightforward topological
way out of this dilemma at the level of the generality of this paper.

Paris and Kirby originally constructed strong and regular cuts by means of
games [3] and then by combinatorial notions of ‘density’. Chapter 4 of Kirby’s
thesis [2] contains a notion of ‘n-density’ which (for nonstandard n) suffices
to build regular cuts and hence cuts satisfying BYs, and Paris’s original pa-
per on independence results for PA [8] contains a different notion (also called
‘n-density’) that is used to build strong cuts and hence cuts satisfying PA.
These notions of density seem to be ad hoc notions specifically designed for
the constructions in mind, and are not obviously topological, but are instead
combinatorial.

However, using the easier Banach-Mazur constructions above and some
further modifications, alternative straightforward constructions of regular and
strong cuts can be given. This will be demonstrated below. But first, we turn
to a restricted version of Question 2.1. This restriction to local properties is, we
think, natural and very mild.

Definition 6.1. A property PM (I) of a proper cut I C, M is local if whenever
I1C.JCe M and I #J then

PM(I) < P/(I).

More generally, PM(I) is Y-local if PM(I) < P7(I) whenever I C. J, I # J
and PM(I), PM(J) both hold.

For example, denoting by SSy;(M) the set of subsets of I coded in M,
SSy;(M)={ACI|Jae MA={iel|ME(a); #0}},

then any property P (I) depending on I and SSy (M) only is local as SSy;(J) =
SSy;(M). All the usual combinatorial properties, such as ‘strong’, ‘regular’, etc.,
are local for this reason.

The next result gives model-theoretic description of the local properties of
indicated cuts. The saturation assumptions on I here (that II; — Th(M,a) is
coded, I is not an w-limit, and I is short II;-recursively saturated) are conve-
nient, being the ones most useful in practice, and are made available by previous
results. The exact details of these conditions are not particularly essential: they
could be replaced by ‘I is generic’ for example. We emphasise that in this and
all other results in this section there is a global assumption that M is countable.

Theorem 6.2. An indicator Y indicates cuts satisfying a local property P (1)
if and only if for all @ € I € Zy with Iy — Th(M, a) coded, I not an w-limit, and
I short II;-recursively saturated there is I C, J C, K E II; — Th(M,a) + B%;
such that J # K, K is short II;-recursively saturated and PX(J).

Proof. For one direction, suppose Y indicates cuts satisfying P*(I), and sup-
pose a € I € Zy with II; — Th(M,a) coded, I not an w-limit, and I short
II;-recursively saturated. Then let ¢ > I and b,, be the greatest b < ¢ such
that M E Vz <b60(x,a) for all 0(x,a) with Gédel-number at most n with
I F Vx6(z,a). By Xj-recursive saturation of M the sequence b, is coded,
and as I is not an w-limit there is b > I in M such that b < b,, for each n.
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So Y(a,b) > N. Again using our assumption that [ is not an w-limit, there is
I < ¢ < bwith Y(c,b) > N since the maximum ¢, such that Y(c,,b) > n is
above I and the sequence of such ¢, is coded and does not tend to I. Hence
there is d € M with Y(¢,d) > N and Y (d,b) > N and there is some K € Zy
with d € K < b and by a Banach-Mazur game and the results of Section 4 we
may take K to be short II;-recursively saturated. Also there is some J C, K
with ¢ € J < d and PM(J). Thus PX(J) as P is local, and as K < b we have
K ETl; — Th(M,a) +BXq, so we have I C J C K EII; — Th(M, a) + BX; such
that PX(J) as required.

Conversely, suppose there are end-extensions J, K as described for each suit-
able a € I € Zy. Then suppose Y (a,b) > N. We must show there isa € I < b
with PM(I). Take instead some I € Zy with a € I < b and II; — Th(M, a)
coded, I not an w-limit and I short II;-recursively saturated; such I exists
by a Banach—-Mazur game and the results of Section 4. Then by hypothe-
sis there are I C, J C, K F II; — Th(M,a) + BY; such that PX(J) and
K is short IIj-recursively saturated. By Friedman’s embedding theorem [1,
Chapter 12] and K E II; — Th(M,a) there is an embedding h of K onto
an initial segment h(K) < b of M, where h(a) = a. Then a € J and so
a = h(a) € h(J) Ce h(K) < b hence h(J) has P"5)(h(J)), so h(J) has the
property PM(h(J)) as P is local. Thus Y indicates the property P. O

Definition 6.3 (Kirby—Paris). Two properties P(I) and Q(I) of initial seg-
ments I are symbiotic if whenever a < b € M then: there is I C, M with
a €I <band P(I) if and only if there is J Co M with a € J < b and Q(J).

As an application of the ideas already presented, let us sketch new proofs of
two old results of Kirby and Paris.

Corollary 6.4. The properties ‘I is strong’ and ‘I F IIy — Th(PA)’ are symbi-
otic.

Proof. We take any indicator Y for the IIs-consequences of PA; such indicators
can be constructed directly [1, Chapter 14] or we may base Y on the Paris—
Harrington statement. Thus, for all initial segments I of M, we have I € Zy
iff I F I — Th(PA). Since ‘I is strong’ implies ‘I F PA’ [3] we simply have to
show that there is a strong I € (a,b)y whenever (a,b)y # 0.

Let a € I < bwhere I € Zy; by Section 4 we may assume that I satisfies the
conditions in Theorem 6.2. Since I satisfies IIs — Th(PA) and II; — Th(I, a) we
have I E IIy — Th(PA+1I; — Th(I, a)) for if PA+0o(a) F 7(a) with I F o(a) and
7(a),o(a) both II; then PA + Va (o(x) — 7(z)) which is II, hence I F 7(a).
Since I E B3, is short IIj-recursively saturated and the required theory is
coded, there is J D I with J EF PA +1II; — Th(Z, a).

Now let K D, J with K E BX; 4+ II; — Th(7,a) be constructed by means
of the arithmetised completeness theorem. Such a K exists as II; — Th(I, a)
is coded and consistent, so by the satisfaction relation for II; formulas in J
and an induction, J F Con(IA¢ + T'(a)) for some J-finite II; set of formulas
T(a) D II; — Th(Z,a). But PA proves that BY; is IIs-conservative over 1A,
hence J E Con(BX; + T'(a)) and so K exists by the arithmetised completeness
theorem. As K is an arithmetised completeness theorem model constructed
from the nonstandard model J it is recursively saturated and hence short II;-
recursively saturated.
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Now it is straightfoward to use J E PA to see that (J,SSy;(K)) FE PA in
this expanded language, or—in the notation of Kirby and Paris [3]—J E PA™.
This is because any subset of J coded in K is actually represented by a J-finite
formula of the language of arithmetic and this in turn can be used to give a direct
A definition of the subset in J. The property J F PA* is, by an alternative
characterisation of ‘strong’ due to Kirby and Paris, equivalent to saying that J
is strong in K, and we have verified the conditions of Theorem 6.2. O

Corollary 6.5. The properties ‘I is regular’ and ‘I F IIy — Th(I¥;)’ are sym-
biotic.

Proof. Our indicator now is Y (z,y) = max{n | F,(z) < y} where F), is the
Grzegorczyk hierarchy of functions; this indicator is absolute in the sense of
Definition 2.8 and IA( together with the axiom scheme Vz 3y F,(x) =y for
n € N axiomatizes II; — Th(IX;). Any cut I € (a,b)y satisfies II; — Th(IX;).
In other respects the argument is very similar to the preceding one.

Let a € I F BX; 4 IIs — Th(IX;) satisfy the conditions in Theorem 6.2. By
saturation, the fact that BX, is II-conservative over I¥; [1, Chapter 10] and
the fact that II; — Th(/,a) is coded in I, there is an end-extension J D, I of T
with J E BXg +1II; — Th(I, a). By the arithmetized completeness theorem there
is an end-extension K D, J of J with K F BX; 4+ II; — Th(/,a). Now using
J E BX, we can see that (J,SSy;(K)) F B, in the expanded language, i.e.,
J E BX3. This is again because each K-coded subset of J is definable in J by a
A, formula. This B¥j is an alternative characterisation of ‘regular’. Thus, by
Kirby and Paris [3], J is regular in K and Theorem 6.2 is satisfied. O

We finish this paper by stating a conjecture for the preservation theorem
question. The most natural class of properties P (I) to understand are first-
order properties of the expanded structure (I, SSy;(M)).

Conjecture 6.6. The first-order properties of the form (1, SSy;(M)) E A,y 0
that have an indicator Y uniformly for all countable models M E PA are pre-
cisely those properties that can be re-written as (I,SSy;(M)) F A,;cy¥: with
{1 | i € N} recursive.

The other important class of properties P (I) of a cut are ¥} properties, so
that the property looks like (1,SSy;(M)) F 3R, f,... Njeny0i(R, f,...). Forex-
ample, it is possible to say that I is recursively saturated in such a way. For
this we would make a similar conjecture, that the class of such properties with
an indicator (uniformly in all countable models of PA) are those for which the
%1 formula 3R, f, . .. Nien 0i(R, f,...) is equivalent to a recursive one.
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