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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 56, Number 1, March 1991 

AMENABLE EQUIVALENCE RELATIONS 
AND TURING DEGREES 

ALEXANDER S. KECHRIS 

?1. Introduction. In [12] Slaman and Steel posed the following problem: 
Assume ZF + DC + AD. Suppose we have a function assigning to each Turing 

degree d a linear order <d of d. Then must the rationals embed order preservingly in 
<d for a cone of d's? 

They had already obtained a partial answer to this question by showing that there 
is no such d ~-4<d with <d of order type C = ow* + ow on a cone. Already the 
possibility that <d has order type C * C was left open. 

We use here ideas and methods associated with the concept of amenability (of 
groups, actions, equivalence relations, etc.) to prove some general results from which 
one can obtain a positive answer to the above problem. 

THEOREM. Assume ZF + DC + AD. If d H-*<dis a function which assigns to each 
Turing degree d a linear order <d of d, then the rationals emded in <d for a cone of d's. 

The result holds "locally". For example, it can be proved, in ZF + DC only, that if 
d ~-4 <d is Borel (in an obvious sense to be explained below), then the rationals 
embed in <d for arbitrarily large d. Therefore it can be proved in ZF + DC + Vx (x# 
exists) only that, moreover, on a cone of d's the rationals embed in <d. (It is not 
known if Vx (x# exists) is necessary here.) Similarly for projective d ~-4 <d, using 
ZF + DC + PD, etc. Also, in ZF + DC alone, one can show that for a Borel 
d ~-4 <d the rationals embed in <d almost everywhere (with respect to the standard 
measure on 2w). 

Some of the concepts and results discussed here could be of independent interest, 
and we have organized this paper in such a way that they can be read independently 
of their application to the proof of the above theorem. 

In ?2 we review the classical concept of amenability of countable groups and we 
introduce two concepts of amenability, one for equivalence relations and the other 
for classes of structures (in the sense of model theory). 

For the first notion, let X be a Borel set in a Polish space and E a countable Borel 
equivalence relation on X (i.e. each equivalence class [X]E iS countable and E c X 
is Borel). We call E amenable if we can assign to each E-equivalence class C a finitely 
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AMENABLE EQUIVALENCE RELATIONS AND TURING DEGREES 183 

additive probability measure 5pc defined on all subsets of C so that the map C -*c 
is universally measurable (in a precise sense that will be explained below). This 
definition carries over to the "pure" Borel context a concept introduced by Zimmer 
[14] in the context of "measured" countable Borel equivalence relations, i.e. when 
an appropriately related to E fixed Borel measure pt on X is present. 

For the second notion, let X' be a class of countable structures (in a fixed re- 
lational language) closed under isomorphism. We call X' amenable if we can assign 
to each structure v = <A,...> E X' a finitely additive probability measure A, de- 
fined on all subsets of A, which is invariant under isomorphisms and such that the 
map v A-4 / is universally measurable. 

Some basic facts concerning the relationships between these notions of amena- 
bility are also proved in ?2. For example, if X' is a class of structures, E is a countable 
Borel equivalence relation and there is a Borel assignment C a-r /c which for each E- 
equivalence class C gives a structure acIc e X' with universe C, then X' amenable 
= E amenable. 

In ?3 the key result of this paper, which asserts that the class Y of countable 
scattered linear orders is amenable, is proved. The proof of this result requires ZFC 
+ CH, since a basic step in the proof is the result of Mokobodzki (see [3]) asserting, 
under CH, the existence of universally measurable shift-invariant finitely additive 
probability measures defined on all subsets of Z. (It is not known if Mokobodzki's 
result is provable in ZFC.) 

According to the preceding comments this shows that a countable Borel equiv- 
alence relation each of whose equivalence classes is ordered, in a Borel way, by a 
scattered ordering must be amenable (under CH again). Finally, in ?4 it is shown 
that the Turing equivalence relation-T is not amenable, and with some additional 
work this is combined with the above to prove the above theorem. (Along the way 
one has to avoid the potential conflict of using a result proved in ZFC + CH to 
prove a result in ZF + DC + AD. This is done by standard metamathematical 
arguments concerning absolute consequences of CH.) 

Some final comments: 
1) There is possibly some question on whether the notion of amenability of 

countable Borel equivalence relations and classes of structures used here is ulti- 
mately the right one, one inconvenience of the present definition being the need 
to invoke the CH to establish the existence of amenable equivalence relations and 
classes of structures. It should be pointed out, however, that the present notions 
work smoothly because of the nice closure properties of universally measurable 
functions, especially their closure under composition, while the use of CH poses no 
problem in applications of these notions to various problems, since CH can often be 
eliminated by metamathematical arguments. 

2) Foreman and Wehrung [5] have been motivated by some of the ideas used 
in ?2 to prove the following result, solving a problem of Pincus, Solovay, and 
Luxemburg: ZF + Hahn-Banach = there exists a nonmeasurable set. 

3) We have recently found out that the concept of an equivalence relation with an 
ordering attached to each equivalence class has come up independently in a very 
interesting way in work of Muhly, Saito and Solel in operator algebras [8], [9]. In 
fact in [8] the authors establish that for a measured equivalence relation each of 
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184 ALEXANDER S. KECHRIS 

whose equivalence classes is ordered (in a Borel way) by a scattered ordering, the 
associated von Neumann algebra (see [4]) is amenable. By known facts in operator 
algebras and ergodic theory this implies that the measured equivalence relation is 
amenable (in Zimmer's sense). This is the "measured" version of a "Borel theoretic" 
result (Theorem 4.1) that we prove in this paper. The set theoretic version implies 
immediately its "measured" counterpart (and CH can be avoided by standard 
metamathematical facts concerning absoluteness), so one has a different proof of the 
"measured" version, avoiding reference to von Neumann algebras. 

4) Scatteredness seems intimately connected with amenability in the context of 
linear orderings. If one calls a single structure v = <A,...> auto-amenable if the 
class X, = {X: -_ } is amenable (i.e. there is a finitely additive universally 
measurable probability measure defined on all subsets of A, which is invariant under 
automorphisms of d), then Woodin has established a characterization of auto- 
amenable linear orderings which ties it very closely to scatteredness. In fact it may 
well be the case that Woodin's characterization reduces to the following: 

A linear ordering v = <A, < > is auto-amenable iff v has a scattered orbit, 
although this seems not to have been verified yet. 

5) Another kind of structure where amenability has been studied is that of a tree. 
By a tree, we mean here an acyclic connected graph which is locally finite (i.e. every 
vertex has only finitely many immediate neighbors). Measured equivalence relations 
with trees attached (in a Borel way) to each equivalence class were studied first in 
S. Adams' Ph.D. thesis (see [1]), and a lot of the inspiration for our work here 
came from Adams' work. Dougherty and Kechris have afterwards identified various 
amenable classes of trees, and most recently Adams and Lyons have shown that the 
class of trees of branching number 1 (see Lyons [7]) is amenable, which includes all 
the earlier classes. Moreover, using results of C. Nebbia [10], they have character- 
ized completely the auto-amenable trees. Their work will appear in a forthcoming 
paper. 

Acknowledgements. We would like to thank S. Adams, R. Dougherty, 
B. Velickovic and H. Woodin for many useful conversations related to the results in 
this paper. 

?2. Amenability. We first recall some standard notions. Given a countable set C a 

finitely additive probability measure (f.a.p.) on C is a function (p: {A: A c C} -+ [0, 1] 
such that sp(A u B) = p(A) + s(B) if A r) B = 0, and s(C) = 1. A mean on C is a 
continuous functional P on lV(C), the Banach space of bounded real functions on C, 
such that inf(f) < P(f) < sup(f). Means and f.a.p.'s on C are essentially the same 
thing: Given (p, define ' by 0(f ) = I f dip. Given ', define p by s(A) = O(XA), where 

XA is the characteristic function of A. We will usually identify (p and ' as above. (For 
more on fa.p.'s the reader can consult, for example, J. DIESTEL, Sequences and series 
in Banach spaces, Springer-Verlag, Berlin, 1984.) 

A countable group G is amenable if there is a G-invariant f.a.p. (eq. mean) on G, 
i.e. an f.a.p. (p on G such that (p(A) = (p(gA), for all A c G, g E G. (eq. ?(f) = 

(h- f(gh)), Vh E G, f E It(G)). The book Wagon [13] is a very good reference 
for this notion. Examples of amenable groups are the finite groups, the abelian (in 
fact the solvable) groups, etc. (To see, for example, that Z is amenable, let U be a 
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AMENABLE EQUIVALENCE RELATIONS AND TURING DEGREES 185 

nonprincipal ultrafilter on ao. Then, for each subset A of Z, define sp(A) to be the limit 
over U of the sequence card(A r [- n, n])/2n + 1.) The following is the standard 
nonamenable group. 

Fact 2.1. The free group with two generators F2 is not amenable. 
Proof. Let a and b be the generators of F2. Let W(a), W(a'), W(b), and W(b') 

be the sets of words starting with the indicated elements. Since F2 = { 1} u W(a) u 
W(a-') u W(b) u W(b-') = W(a) u aW(a-') = W(b) u bW(b-'), we immediately 
get a contradiction. -1 

Now let X be a Borel set in a Polish space. We will consider equivalence relations 
E on X which are Borel and countable, i.e. each equivalence class [X] E is countable. 
By a measure on X we mean always a a-finite Borel measure on X. Given an 
equivalence relation E as above and a measure p on E, we call p quasi-invariant (for 
E) if the E-saturation [A] E of each Borel set A C X of i-measure 0 has also /- 

measure 0. A triple <X, E, IL>, where p is quasi-invariant for X, is called a measured 
equivalence relation. In this measured context, there is a standard notion of 
amenability of <X, E, /t> due to Zimmer [14]. We will now define, motivated by an 
equivalent form of Zimmer's definition (see [2]), a concept of amenability when no 
particular measure is present. 

DEFINITION 2.2. Let X be a Borel set in a Polish space, E a countable Borel 
equivalence relation on X. We call E amenable if there is a map C - Oc, assigning to 
each E-equivalence class C = [X] E of E a mean Tc on C which is universally 
measurable, in the following sense: if F: X2 -+ R is bounded and Borel, then the 
function G: X -+ R given by G(x) = i[] (Fx) (where here and below Fx will denote 
the function y e [X] E H-* F(x, y)) is universally measurable. (Recall that a function 
h: X -* Y between Borel subsets of Polish spaces is universally measurable if it is 
i-measurable for every (probability) measure p on X.) 

There is a simple relation between amenability of groups and equivalence 
relations that we explain now. 

A Borel automorphism of a Borel set X in a Polish space is a Borel bijection of X 
with itself. An action of a group G on X by Borel automorphisms, or simply a Borel 
action, is a homomorphism of G into the group of Borel automorphisms of X. 
We denote by x 4 x * g the Borel automorphism corresponding to g E G. Thus 

(x * g) * h = x * (gh), x * 1 = x. 
The following is a standard fact in the context of measured equivalence relations. 
Fact 2.3. Let X be a Borel set in a Polish space, G a countable group acting in a 

Borel way on X. Denote by EG the corresponding equivalence relation on X, i.e. 

XEGY 'S ]g E G (y = x * g). 

i) (CH) If G is amenable, EG is amenable. 
ii) If G acts freely, i.e. Vg # 1 Vx(x * g # x), and there exists a G-invariant 

probability measure p on X, i.e. /p(A) = [i(A * g) for all Borel A c X and g E G, then 
if EG is amenable, G is amenable. 

Proof. i) As we will not use this part, we will be sketchy. By a result of 
Mokobodzki (see [3] and ?3) and using the Folner condition of amenable groups 
(see [13]) it is easy to see that G admits a universally measurable G-invariant 
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186 ALEXANDER S. KECHRIS 

mean P. (To say that P is universally measurable means that P1 = P [[1, 1]'G: 
[-1, 1]G +[_ 1, 1] is universally measurable.) Now given an E = 

EG-equivalence 
class C = [X]E, define Pc as follows: For f E It'(C), Oc(f) = P(g H-* f(x * g)). By 
the G-invariance of P, Tic is well-defined independently of the choice of x E C. To 
check the universal measurability of C - Oc, fix F: X2 -) R bounded and Borel, 
and let 

H(x) = 0 [XIE(Fx) 
= P(g H+F(x, x * g)). 

Assuming without loss of generality that F: X2 -, [-1, 1], we have that H(x) = 
P1(F'(x)), where F': X -> [_1, 1] G is given by F'(x)(g) = F(x, x * g). Clearly F' is 

Borel, and since universally measurable functions are closed under composition, H 
is universally measurable. 

ii) For xEGY, let (by freeness) g(x, y) = the unique g E G with y = x * g. Given 
C l-* >c that witnesses the amenability of E = EG define the following mean on G: 

=) ONE(Y 
- 

[X]E ~-4 f(g(x, y))) dp(x). 

Note that this formula becomes more comprehensible by going to the associated 
f.a.p.'s: 

p(A) = XP[X9E(X A) dp(x). 

The above integral makes sense as the map F(x, y) = f(g(x, y)) is bounded and 
Borel for each fixed f E cI(G); thus H(x) = P[XIE(Fx) is universally (hence it-) meas- 
urable. The G-invariance of P follows from that of p. (Notice that g(x * ho', y) = 
hg(x, y).) H 

We now define our final notion of amenability, that for a class of countable 
structures. 

Let 9 be a relational language, which for simplicity we will assume to be finite, say 
Y = {R1, ... , R4, where Ri is a ki-ary relation symbol. By a class X' of countable 
structures for Y we mean a collection of countable 9-structures closed under 
isomorphism. We want also to encode countable 9-structures canonically by 
"reals". Let X(y) denote the Polish space 2' x 2k x ... x 2 kn. An element a of 
this space is a tuple a = <A, RI. . .. Rn> where A c co and R. c ow)ki. We associate 
with it the 9-structure 2/ = <A, Rd R'h >, where Ro - Aki r Ri. Every count- 
able 9-structure is isomorphic to one of this form. 

DEFINITION 2.4. A class X' of countable structures in a language Y is called 
amenable if there is a map v ?-4 P, assigning to each v E X' a mean P,, on A, where 

= <A,... >, such that 
(1) the assignment is invariant under isomorphisms, i.e. if 7c: s/ -> d/' is an 

isomorphism, then P,(f) = A, (f r-'), and 
(2) the assignment is universally measurable, i.e. for each Borel set S c 

X(S) r) X' (i.e. a E S => E ef X) the map Fs: X(9) x [-1,1]C- [-1,1] given 
by 

F (a> fi meau( r A) if a l S. 

where a = <A,...>, is universally measurable. 
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AMENABLE EQUIVALENCE RELATIONS AND TURING DEGREES 187 

Note that this definition implies that Fs is universally measurable for all univer- 
sally measurable S as well. 

A basic fact that we will prove now is that an equivalence relation each of whose 
equivalence classes supports (in a Borel way) a structure in some amenable class is 
amenable. We first need to give one more definition. 

DEFINITION 2.5. Let X be a Borel set in a Polish space, E a countable, Borel 
equivalence relation on X. Let Y = .RI. ... , R4} be a language, with arity (Ri) = ki. 
An assignment C - sc, which for each E-equivalence class C gives an 9-structure 
Jdc = C,Rj c,.. . ., RC> with universe C, is called Borel if the relations 

Ri(x, Y1,., Yk) )> Y1, ., k, e [X]E & Rl[X]E(y1...,Yk.) 

are Borel. 
PROPOSITION 2.6. Let X' be a class of countable structures. Let X be a Borel set in a 

Polish space, E a countable Borel equivalence relation on X. If there is a Borel assign- 
ment C t-4s/c which for each E-equivalence class C produces a structure s?c E- X' 
with universe C and X' is amenable, E is amenable. 

PROOF. Assign to each E-equivalence class C the mean tC =def 04c on C, where 
/ H P ?.,? witnesses the amenability of X To verify the definition of amenability fix 

bounded Borel F: X2 -+ R and consider G(x) = P[XNE(FX) We can of course assume 
F: X2 -> [-1, 1]. 

As E is Borel and countable, there is a sequence {Fl} of Borel maps on X with 
[XIE = {1F(x): i e w}. (We can actually take these to form a group of Borel 
automorphisms-see Feldman and Moore [4]-but we will not need this here.) 
It follows easily that there are Borel maps s: X -+ X(y) and i: X -> X' such that 
s(x) = ax with Q2, = <Ax,...> and SxJINxIE and i(x) = fx, where 7Ex = fx [Ax: 
Q - 

[XIE Thus, by property (1) in Definition 2.4, 

G(x) = x]E(Fx) = 
[XE P,(n e Ax H-* F(x, tx(n))). 

Let S = range(s). Then S is X', so universally measurable. In the notation of 
property (2) in 2.4 we have then 

G(x) = Fs(s(x), n ~-4 F(x, i(x)(n))) 

Now Fs is universally measurable, s is Borel and f: X [-1, 1]' given by 
f (x)(n) = F(x, i(x)(n)) is Borel too, so as universally measurably functions are 
closed under composition, G is universally measurable. - 

The referee has raised the question of the existence of a converse to 2.6. That is, if 
E is amenable can one assign in a Borel way to each equivalence class a structure in 
some amenable class? 

Finally we state some simple closure properties of amenable equivalence 
relations. 

PROPOSITION 2.7. Let X be a Borel set in a Polish space, and E a countable Borel 
equivalence relation on X. 

(i) If E is amenable and A c X is Borel, then E [ A is amenable. 
(ii) If A c X is Borel and full, i.e. A rn [XIE # 0 for all x E X, then if E [ A is 

amenable, so is E. 
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(iii) If Y is a Borel set in a Polish space, F is a countable Borel equivalence relation 
on Y and H: X -+ Y is Borel such that xEy '- H(x)FH(y), then if F is amenable, so is 
E. 

(iv) If F c E is a Borel subequivalence relation of E and E is amenable, so is F. 
(v) (CH) If E0 c El c are amenable equivalence relations and each En is 

amenable, so is E = UnEn 
PROOF. We will prove only (i)-(iv), since these are the only properties we will use 

later. 
(i) Fix a sequence of Borel functions {Jf} generating E, i.e. xEy '3 ]i(Fi(x) = y). 

Given an E [ A equivalence class C', let C = [C'IE be its E-saturation. For x E C let 
ix = least i with Fi(x) E C'. Then F(x) = Fix(x) maps C into C'. If {1c} witnesses the 
amenability of E and we put Oc(f) = Oc(f a F), then {1c } witnesses the 
amenability of E [ A. 

(ii) Given an E-equivalence class C, let C' = C r) A be the corresponding E [ A- 
equivalence class and put Oc(f) = rc (f r C'). 

(iii) Put Y' = U{[H(X)IF: X E X}. As H is countable-to-1, Y' is a Borel subset of 
Y. Consider the disjoint union X @ Y' = {<O,x>: x E X} u {<l,y>: y E Y'} of X 
and Y', and define in it the countable Borel equivalence relation R whose 
equivalence classes are the sets [XlE ( [H(X)IF. Since R [ Y' is just F [ Y', we have 
by (i) that R [ Y' is amenable. But Y' is full in R, so by (ii) R is amenable and so by (i) 
again R [ X = E is amenable. 

(iv) Let C' be an F-equivalence class and C the unique E-equivalence class 
containing C. Now use the argument of the proof of (i). - 

?3. Scattered orders. Recall that a linear order L = <L, < > is scattered if the 
rationals do not embed in an order-preserving way into L. For the results about 
scattered orders that we will use below, see Rosenstein [11]. We denote by Y" the 
class of countable scattered orders. We now have 

THEOREM 3.1 (CH). The class JY of countable scattered linear orders is amenable. 
PROOF. We will make use of the following basic result of Mokobodzki (see 

[3, pp. 102-108]). 
THEOREM 3.2 (MOKOBODZKI). Assume CH. Then there is a universally measurable 

shift-invariant mean Pt on Z. Similarly there is a universally measurable shift-invariant 
mean ON on N. 

Of course, universally measurable here means that At [ [-1, 1IZ is universally 
measurable. Shift-invariance means that Oz(f) = Oz(f a s), for s(n) = n + 1. 
Similarly for ON 

REMARK. It is well known (see [13]) that such P cannot have the property of 
Baire. It is not known if Mokobodzki's theorem can be proved in ZFC alone. 

If now L = <L, < > is a countable scattered linear order, denote by c', for a < wc, 
its ath iterated Hausdorff condensation-denoted by c' in [11]. Thus 

c'(x) = {y E L: the interval between x and y is finite}, 

cO(x) = U c"(x), for A limit. 

The sets c"(x) are intervals in L and partition L; denote by <a the order on these 
intervals induced by <. Then c '(x) = U{c"(y): the <a- interval between c"(x) and 
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AMENABLE EQUIVALENCE RELATIONS AND TURING DEGREES 189 

c'(y) is finite}. There is a least countable ordinal Go such that C'o(X) = L for all x E L. 

Call it the rank of L, in symbols r(L)-it is called F-rank and denoted by rF in [11]. 
We assign now to each L E f a mean 'kL on L by induction on r(L) as follows: 
(1) r(L) = 1: then L necw or L w or L _ o* or L Z. 
If L = {x0 l x< < xn -1}, put PL(f) = f(x). 

If L = {x0 < x1 < ...}, put again L(f) =f (xo). 
If L = {... < x < x0}, put OL(f) = f(xo). 
Finally if 7c: L -+ Z is an isomorphism put OL(f) = z(f ) -.) 
Since Pz is shift-invariant, it is obviously invariant under order-preserving 

automorphisms 6: Z -> Z, so this definition is independent of 7r. 

(2) r(L) = a + 1: Consider then the linear order 

L' = <c'[L] = {c'(x) x e L}, <a>- 

We must have L' - n Ew (, L'a- (, L' -w* or La Z. Since y cc(x) :- cx(x) = 

c"(y), it follows that r(c"(x)) < a, so we have already assigned cx(x) for each 
x E L-here c"(x) means <c"(x), < [ c"(x)>. 

We consider again cases: 
If La = {ca(x0) <a c(x2) <a *. <. c'(xn)}, put L(f) = PC(xo)(f r C'(XO)). 

If L, = {c'(xo) <.cC(x1) <a. .}, put OL(f) = Ck(xO)(f 0Ca(x0)). 
If L" = {... <aXcC(x1) <aXc (xo)}, put OL(f ) = 0k2(xO)(f r C(X0)). 
Finally, if 7c: L' - Z is an isomorphism, say with 7-'(n) = c'(xn) for n E Z, put 

4L(f) = Pz(n E Z H-* lr-(.)(f r r-'(n))). 

Again since ha is shift-invariant this is independent of the choice of M. 

(3) r(L) = A, limit: Fix any x E L. Again for any a < A, r(c"(x)) < A, so we have 
already defined cx(x)* Fix once and for all for each limit i < co1 a sequence an = 

an() T i, n E N. Then put 

OL(f) = qN(n e N F-* 'xn(X)(f 
r 

c n(x))). 

Let us note that this is independent of x. Indeed, if y E L is another point, then 
can(x) = can(y) for all large enough n E N, so by the shift-invariance of ON we 
are done. 

We now verify properties (1) and (2) of Definition 2.4. 
(1) is a routine induction on the rank. 
To verify (2), fix a Borel set S c X(y) rn A, where Y = { <}. 
LEMMA 3.3. If T c X(S) n f is L', then, for some 4 < w, r(L,) < 4, Vla e S. 

Here L. is the linear order coded by a. 
PROOF. For each scattered L. consider the equivalence relations 

xEoy , c0(x) = c0(y) (- - x e c0(y)), 

for 0 < wo,. Starting with E0 = {(x,x): x E L}, we have E. = Uo<AEo, if i is limit, 
and 

XEO+ 1Y [-- x < Y & SXi .. Xn(X < xlI < ..< Xn < Y 

& Vz E [x, y] (zEox 1 v * v zEoxn))] 

V [X > Y A ..] 
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Thus {E0} is given by a positive elementary induction on La x La leading to the fixed 
point Eoo = La x La. It follows that r(La), which is the closure ordinal of this 
induction, is < coa. By a standard boundedness argument we can now find 4 < cot 
such that Vla e T (r(La) < c). 

(Equivalently one can check that X(S) q Y is H' and the map a H-* r(La) is a 
HIl-norm on X(y) r) A, so the above fact follows from the boundedness theorem 
for HI-norms.) 

So in order to show that the function Fs of Definition 2.4 is universally 
measurable, it is enough to show for each 4 < a), that the function 

F f) 
= fLj(f 

r La) if r(L.) < , 
0 

~~otherwise 

(where a E X(S) r) 5 and f E [-1, 1]W) is universally measurable. This can be 
done easily by induction on X, using repeatedly that Pz and ON are universally 
measurable and simple closure properties of universally measurable functions, 
particularly closure under compositions. H 

It is interesting to consider also the following "local" notion of amenability. 
DEFINITION 3.4. Let v be a countable structure in a relational language Y. We 

call v auto-amenable if the class '() ) = {X: _ d} is amenable. Spelled out, 
this means that if v = <A,...> there is a universally measurable mean P on A which 
is da/()d)-invariant, i.e. P [[-1, 1]' is universally measurable and for any 
automorphism ic of AZ, P(f) = P(f a 7). 

Recall that the orbits of a structure v = <A, . . .> are the equivalence classes of the 
following equivalence relation on A: 

a - b Hz-- E7 c- d&/(,ds)[7r(a) = b]. 

It is clear that if an orbit of a structure A, viewed as a substructure of A, is auto- 
amenable, so is d. Thus from Theorem 3.1 it follows (from CH) that if a countable 
linear order has a scattered orbit then it is auto-amenable. Woodin has established a 
characterization of the auto-amenable orders which relates them closely to 
scatteredness. In fact it may be that Woodin's characterization reduces to this: L is 
auto-amenable iff some orbit of L is scattered, but this has not been verified yet. 

Finally, we point out that although each rigid (i.e. having no nontrivial 
automorphisms) linear order is auto-amenable, the class of rigid linear orders is not 
amenable (we will prove this in ?4). 

?4. Orderings on equivalence relations. We now combine the preceding results to 
provide proofs of the theorem in the Introduction and related facts. 

First we have as an immediate corollary of 3.1 and 2.6. 
THEOREM 4.1. Assume CH. Let X be a Borel set in a Polish space, E a countable 

Borel equivalence relation on X, and let C ~-4 <c be a Borel assignment which for each 
E-equivalence class C produces a scattered linear order <c of C. Then E is amenable. 

On the other hand, a key property of the Turing equivalence relation -T on 2W is 
the following. 

THEOREM 4.2. The Turing equivalence relation T on 2' is not amenable. 
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PROOF. By 2.7(iv) it is enough to find a nonamenable subequivalence relation 
of --T We will give two different proofs of that. 

1) We use here the following lemma of Slaman and Steel [12]. 
LEMMA 4.3. There is a free action of the free group F2 of 2 generators on 2' by 

Lipschitz recursive homeomorphisms. 
(This means that for each g E F2, x -*x x g is a Lipschitz recursive homeomor- 

phism on 2', i.e. (x * g) [ n depends only on x [ n and in a recursive way.) 
Now notice that if i is the standard probability measure on 2', then i is in- 

variant under Lipschitz homeomorphisms. Thus if x 4 x * g is the group action 
of F2 given in Lemma 4.3, i is invariant under this action. If EF2 is the equiv- 
alence relation induced by this action, then clearly EF2 '-T and by 2.3(ii) EF2 
is not amenable. 

2) Consider the space 2F2 with the canonical F2-action given by (x * f )(g) = x(fg). 
Let i be the standard probability measure on 2F2. Although this action of F2 is 
not free it is 2-a.e. free, i.e. {x E 2F2: 3g #0 1(x * g = x)} has A-measure 0. Since i 

is invariant under this action, the proof of 2.3(ii) applies as well to show that the 
equivalence relation E'F2 induced by this action is not amenable. By a standard 
recursive identification of F2 with wo we can identify 2F2 with 2W, and then clearly 
EI2 ' =T so we are done. - 

For further reference let us note the following strengthening of 4.2. 
THEOREM 4.4. Let X c 2W? be Borel and =T-invariant. If 2 is the standard measure 

on 2W and 2(X) > 0, then =T r X is not amenable. 
PROOF. Apply the preceding argument to X and X X instead of 2. H 
COROLLARY 4.5 (ZF + DC). Let E be a countable Borel equivalence relation on 

2W extending -T. i.e. -T = E. Let C I4 <c be a Borel map which assigns to each 
E-equivalence class C a linear order of C. If 2 is the standard measure on 2', then, 
for 2-a.e. x, <[XIE, <[X]E> is not scattered. 

PROOF. Since the statement we want to prove is H 2, it is enough to prove it from 
ZFC + CH. So assume this below. 

If this corollary fails, let X c 2W be Borel and E-invariant with 2(X) > 0 such that 
for x e X, <[X]E, ?<[X]E> is scattered. From 2.6 and 3.1 it follows that E [ X and 
thus =T r X is amenable, contradicting 4.4. H 

We now have 
THEOREM 4.6 (ZF + DC + AD). Let d 4 <d be a map assigning to each Turing 

degree d a linear order <d of d. Then for a cone of d's, the rationals embed order- 
preservingly in <d, <d>. 

PROOF. Otherwise, by Turing determinacy, on a cone of d's <d, <d> is scattered. 
Fix x0 e 2W so that, for all x ?TXO, <[XIT, <[XIT> is scattered. Define the following 
countable Borel equivalence relation E on 2W: 

xEy -- <x, x0 >T <y, XO > 

Clearly -T C E. Define for each E-equivalence class C a linear order <c of C as 
follows: 

x <CY KX,xo> <[<X,XO>]T<Y X?> 

This content downloaded from 131.215.71.79 on Thu, 16 May 2013 18:03:57 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


192 ALEXANDER S. KECHRIS 

Clearly <C, <c> is scattered for every C. We would now like to apply 4.5, but 
C c <c might not be Borel. However we claim that there is an E-invariant Borel 
set X c 2W of l-measure 1 on which C | 4 <c is Borel, and this completes the proof. 

Indeed, let {Fi} be a sequence of Borel functions on 2W such that [x]E = {Fi(x): 
i E c}. Since [X]E is always infinite, we can easily arrange to have Fi(x) #0 Fj(x) for 
i #A j. Put 

f(x) = {<i)j>: Fi(x) <XNE Fj(x)}. 

Then f: 2W - 2" is A-measurable (since we have AD), so there is Borel g: 2W -+ 2W 

such that f = g X-a.e., say f (x) = g(x) for x E X', where )(X') = 1, X' Borel. Let 
X = [X]E be the E-saturation of X'. Then, since E is countable Borel, X is Borel 
with A(X) = 1. We check that C r <c is Borel on X. Indeed, for x, y, z E X 

Y <[X]EZ yEzEx A 3x'[x'Ex A X' X' 

A ]i, j(Fi(x') = y A Fj(x') = z A g(x')(<i,j>) = 1)]. -i 

The previous proof is "local". For example it shows in ZF + DC that if d a d 
is a Borel assignment of a linear order to each Turing degree, then, for ar- 
bitrarily large d's, <d, <d> is not scattered. Moreover, assuming also Vx (x# exists), 
'arbitrarily large" can be replaced by "on a cone of". Similarly, for projective 
d ia <d under PD, etc. 

?5. Further results and problems. If d a <d assigns to each Turing degree d a 
linear order of d, what kind of order type can it have on a cone? If <d, <d> has the 
same order type on a cone, one has the following assertion. 

THEOREM 5.1 (WOODIN). Let d a <d assign in a Borel way to each Turing degree d 
a linear order of d, and assume, for some fixed linear order L, that L <d, <d> on a 
cone. Then no orbit of L can be scattered. 

Similarly for any d | 4 <d in ZF + DC + AD. 
PROOF. Consider first the case of Borel d a <d. Again by absoluteness we 

can assume CH. Let M c L be a scattered orbit, towards a contradiction. Say 
<d, <d> -L for d > do, and for such d put 

Xd = {x e d: 3]i: L <d, <d> (X E 7rMM- 

Notice that also Xd = {x E d: Vit: L <d, <d> (X e 7c[M])} and <Xd, <d F Xd> M. 
Put X = Ud~dOXd. Notice that X is Borel, since d o <d is Borel. Look at 

T p X. Since <Xd, <d p Xd> M is scattered, -=T p X is amenable. So, by 2.7(ii), 

{T {X: [x]T ? do} is amenable. If do = [xo]T put xEy : <x, xo> =T <Y, XO>. 

Then, by 2.7(iii), E is amenable and as =T C E we have a contradiction. 
For the ZF + DC + AD case note that X is cofinal in the Turing degrees, so by 

Martin's proof of Turing determinacy (see e.g. [6]) there is a recursively pointed 
perfect tree S with [S] = {x: x in a path through S} c X. Let hs: 2W -+ [S] be the 
canonical homeomorphism. Put xEy : hs(x) T hs(y). Then -T C E (as S is 
pointed). Also we can define the scattered order <c on each E-equivalence class 
C = [z]E by 

x c yo cn b t - hs(x) <[hS(Z)eT hs(y). 

A contradiction can be attained now as in the proof of 4.6. 
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It would be interesting to find a characterization of such L. 
For the case where <d, <d> is allowed to have different order types (on a cone), 

Woodin has also pointed out <d, <d> can be actually rigid. In fact, given a countable 
Borel equivalence E extending the tail equivalence relation on 2W 

x > y : 3n3mVk(x(n + k) = y(m + k)) 

a Borel assignment C c <c can be constructed which gives for each E-equivalence 
class C a linear order <c of C which is rigid. This is done as follows. Consider the 
ordinal _)w2. For x E 2W define a linear order <x as follows: If x(n) = 0, replace by co 
every point in the nth copy of co in w0 2. If x(n) = 1, replace by co* every point in the 
nth copy of co in w0 2. View <x in some canonical way as having universe co. Clearly 
<x is scattered rigid, and x # y => -x > <My Given now an E-equivalence class C 
for which we can assume without loss of generality that it does not contain the 
constant sequences 0 and 1, define <c as follows: For x E 2W not constant, let x' be 
defined by x = 1n0x' and put x0 = n. Notice that in the lexicographical order <ex, 

{x': x E C} has the order type t7 of the rational. For x, y E C, put 

x <cy : X' x exy' v (x' = Y A x0 <x YO). 

Then <c is isomorphic to an order obtained by replacing each rational by a distinct 
scattered rigid order, so <c is rigid. 

We can use this example to show that the class M of rigid countable orders is 
not amenable: Indeed, if X = 2W consider the equivalence relation= T. Since to each 

-T-equivalence class C one can assign in a Borel way a rigid order <c, if M was 
amenable, so would be= T. a contradiction. 

Finally, let us point out that in Slaman and Steel [12], the authors pose the 
following additional problem: Assume ZF + DC + AD. If d -<d assigns to each 
Turing degree d a linear order of d, is there a linear order < of all of 2W such 
that <d = < P d on a cone? They point out that this would imply the theorem of 
the Introduction. We do not know the answer to this question. 
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