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IN MEMORIAM: GREGORY HJORTH
1963–2011

Greg Hjorth suddenly and unexpectedly passed away on January 13, 2011
in Melbourne, at the age of 47, due to a heart attack. He was a remarkable
person, a chess prodigy who competed internationally at a high level until his
early 20s, then devoted himself to the study of philosophy and mathematics
and went on to become a leading figure in the field of mathematical logic
and its applications.
Hjorth was born in Melbourne on June 14, 1963, the son of Dr. Robert
Hjorth, a neurologist, and Noela Hjorth, an artist. His sister Dr. Larissa
Hjorth is a lecturer in the School of Media and Communication at the Royal
Melbourne Institute of Technology. He went to school in London, while his
father was working there, and then inMelbourne, where he attended Preshil
School (roughly grades 4–8) and then St. Leonards College (roughly grades
9–12).
In his early teens, Hjorth became (in his own words) “madly obsessed
with chess” and went on to compete in Australia and internationally over
the next decade or so. At age 16 he got 2nd place in the 1979–80 Australian
Championship and started his international career. In 1980 he played against
GaryKasparov, the later world chess champion (also aged 17 at that time), in
Dortmund, inwhatwas described as a hard fought game, which he eventually
lost.
In 1982, 1985 and1987hewon the annualDoeberlCup, amajorAustralian
Chess Tournament, and in 1983 he tied for first in the BritishCommonwealth
Chess Championship. For a while he was ranked number three in Australia,
with only two professional chess players ahead of him. Greg represented
Australia in threeWorld Chess Olympiads in the 1980’s and gained the Inter-
national Master title in 1984. It is widely believed that if he had continued he
would have inevitably achieved the title of International Grand Master. As
far as I can tell, his highest FIDE rating was 2440, which would be among the
highest ever achieved, at least in recent decades, by a professional research
mathematician.
His friend and chess colleague Guy West described him as follows:

“Greg was a chess player with a deep appreciation of the artistic side of
the game and he played games of great beauty and subtlety.”

One can also say that this characterizes much of his mathematics.
c© 2011, Association for Symbolic Logic
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Hjorth is supposed to have said about chess players “If you are not in the
top 100 by 21, get out”, so apparently following his own advice he started
shifting away from chess and enrolled at the University ofMelbourne, where
he studied Philosophy andMathematics and obtained his BA (Hons) degree
in 1988 with combined honours in these fields, receiving subject prizes not
only in these subjects but also in classics.
In 1988 he started graduate school at theUniversity of California at Berke-
ley, in the group of Logic and Methodology of Science. His Ph.D. thesis
supervisor was Hugh Woodin, who describes him as a “remarkable student,
more of a colleague than a student.” In 1993 he received his Ph.D. with a
thesis for which he was awarded the first Sacks Prize from the Association
for Symbolic Logic (ASL).
From 1993 to 1995 Hjorth was a Bateman Research Instructor at the Cal-
ifornia Institute of Technology (Caltech) and then was appointed Assistant
Professor of Mathematics in 1995 at UCLA, where he advanced to the rank
of Associate Professor in 1997 and Full Professor in 2001. Since 2006, he
was also appointed to an ARC Australian Professorial Fellowship at the
Department of Mathematics and Statistics of the University of Melbourne.
Hjorth had 8 Ph.D. students at UCLA, in chronological order: Su Gao,
Lyman Chaffee, Michael Oliver, Asger Törnquist, John Kittrell, Ioannis
Souldatos, Alex Thompson and Inessa Epstein, whose thesis also won the
Sacks Prize in 2008. He was moreover a co-advisor of a Ph.D. student at
Caltech, XuhuaLi, and aPh.D. student at theUniversity ofMünster, Philipp
Schlicht, and also had several students working with him in Melbourne at
the time of his death. Hjorth was an excellent advisor who deeply cared for
and was devoted to his students. But beyond his own students, his work and
his always exciting lectures at seminars and conferences around the world,
as well as his private conversations, have inspired and influenced many other
young logicians over the years.
Greg Hjorth made a series of far reaching contributions to mathematical
logic and its applications to other areas of mathematics, especially various
aspects of dynamical systems. His work, part of which I will describe below,
included the development of entirely new theories as well as solutions of
very hard problems, and was characterized with a striking originality and
technical wizardry. It has been recognized by many honors, including a
Sloan Foundation Fellowship in 1998, an invitation to the International
Congress of Mathematicians in 1998, the Karp Prize of the ASL in 2003
and, just last year, the invitation to deliver one of the major lecture series in
logic, the Alfred Tarski Lectures at UC Berkeley.
It is impossible, in a limited space, to really do justice to his mathematical
work, which spans a very diverse range of subjects. I can only hope to give
a glimpse of his remarkable achievements by highlighting a few of his main
results.
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Hjorth’s early workwas largely concernedwith problems in the interface of
descriptive set theory, large cardinals and innermodel theory, in the tradition
that developed from the foundational work of what is often referred to as
the “Cabal School of set theory” in the 1970’s and 1980’s. Hjorth introduced
many new ideas in this intensely studied field and in the mid 1990’s he
achieved breakthroughs in several difficult problems that had remained open
for two decades or so.
One such result was the following: In the constructible from the reals
universe L(R), assuming it satisfies the Axiom of Determinacy, there is no
sequence of ℵ2 distinct Σ12 sets. This completely settled a long standing
conjecture on which various partial results had been obtained by among
others Jackson and Martin.
Another impressive result is the following: In the early 1970’s the problem
of the invariance of the inner model L[Tn] was proposed by Moschovakis.
Working within Projective Determinacy, Tn is the tree of a Π1n-scale on
a complete Π1n-set of reals, when n is odd, and the tree of Δ

1
n+1-scale on a

completeΠ1n-set of reals, when n is even. The case n = 1was quickly resolved
and the first odd case n = 3 became one of the Victoria Delfino Problems.
The odd case was finally settled affirmatively by Becker and Kechris in the
early 1980’s but no progress was made in the even case for many years. A
breakthrough was finally achieved in 1996, when Hjorth established the first
even case n = 2. The higher even case n ≥ 4 is still open.
Hjorth always had a strong interest in set theoretic aspects ofmodel theory.
Here are two of his most interesting results in that area. Shelah proved in
1978 that for each countable cardinal κ, there is a complete countable theory
with exactly κ minimal models and asked whether, assuming the failure of
the Continuum Hypothesis (CH), it was possible to have exactly ℵ1 many
minimal models. In 1995 Hjorth found a beautiful answer to this problem
by showing that such a theory fails to exist iff ℵ1 is inaccessible in every
constructible from a real model.
Julia Knight showed in 1977 that there is countable model which charac-
terizes ℵ1 (i.e., whose Scott sentence has a model of that cardinality but no
higher one) and raised the question ofwhether this is true for eachℵn , n finite.
Laskowski and Shelah provided a positive answer for n = 2. In 2002 Hjorth
solved completely Knight’s problem by proving something much stronger,
namely that it is actually true for each ℵα, α < �1, which is the optimal
result in ZFC.
TheVaught Conjecture (VC) and its generalization, the Topological Vaught
Conjecture (TVC), are famous open problems in mathematical logic. The
original form, due to Vaught, is exactly 50 years old and asserts that any
first-order theory has either countably many or else perfectly many count-
able models up to isomorphism (i.e., it is a strong form of the Continuum
Hypothesis for the cardinality of the set of countable models of a theory).
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The TVC, formulated by D. E. Miller in the 1970’s, is a natural extension
of this conjecture to a topological dynamics context: if a Polish group G
acts continuously on a Polish space X , then any invariant Borel subset of X
contains either countably many or perfectly-many orbits. Hjorth made two
crucial contributions to this problem.
The TVC is true for locally compact Polish groups by classical theorems
and in the 1970’s Sami showed that it is also true for abelian groups, but
nothing more was known beyond that for the next two decades until Hjorth
and Solecki proved around 1995 that the TVC holds for all nilpotent Polish
groups and also those admitting a 2-sided invariant metric. A couple of
years later Becker beautifully completed this line of work showing that the
TVC holds for all Polish groups admitting a left-invariant complete metric.
The TVC was known to fail if one replaces invariant Borel by invariant
analytic sets, even in a classical model theory context, which corresponds
essentially to actions of the infinite symmetric group S∞. It follows also
that TVC for analytic sets also fails for any group G that can be mapped
homomorphically and continuously onto S∞, i.e., any G which has S∞ as
a factor. Remarkably, Hjorth showed in 1998 that a Polish group G fails
to satisfy the TVC for analytic sets exactly when S∞ is a factor of G . This
has also the following striking consequence: if the VC fails (which is widely
believed but not proved yet), then the groups that satisfy the TVC are exactly
the ones that do not have S∞ as a factor.
The theory of Borel and analytic equivalence relations is a very active area
of research in set theory today and serves as the foundation for the devel-
opment of a theory of complexity of classification problems in mathematics.
The global structure of Borel equivalence relations is guided by a series of
dichotomies, the earliest instances of which are the Silver Dichotomy (1980)
and the general Glimm–Effros Dichotomy (Harrington–Kechris–Louveau,
1990). Hjorth and his collaborators have substantially advanced our un-
derstanding of this structure by establishing further dichotomy results that
serve as the background for some sweeping conjectures that delineate the
overall structure.
I will next describe some further contributions of Hjorth in this area.
Countable Borel equivalence relations, i.e., those generated by Borel actions
of countable groups, play a central role in this area. An important subclass
are the so-called treeable ones, i.e., those for which the equivalence classes are
endowed, in a uniformway, with the structure of an acyclic, connected graph.
Up to Borel bi-reducibility, these can be also viewed as the ones induced by
a free Borel action of a free group. It was known that there are at least two
non-trivial examples of such equivalence relations, the hyperfinite and the
universal one (again up to bi-reducibility), and it was a major problem to
show that others exist. Thiswas finally solved byHjorth, first by proving a far
reaching orthogonality theorem, concerning Bernoulli vs profinite actions,
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which implied that there are intermediate ones, which are both non-universal
and non-hyperfinite, and finally in one of his latest (still unpublished) papers
by proving that there are in fact uncountably many incomparable ones.
The simplest kinds of classification problems in this context are the so-
called concretely classifiable ones. In this case one can classify the objects
under discussion, under some notion of equivalence, by invariants that are
fairly concrete, usually taking the form of real numbers, sequences of inte-
gers or more generally elements of some Polish space. There are classical
techniques for showing that such classifications are impossible. However,
once one goes beyond the concretely classifiable case things become much
more complicated. The next level is what is called classification by count-
able structures. Here the invariants are isomorphism classes of countable
structures. Such classifications occur often in mathematics, e.g., in ergodic
theory, topological dynamics, operator algebras, etc.
No general method for showing non-classifiability in this wider sense ex-
isted until Hjorth developed his theory of turbulence that provides a powerful
tool for dealing with such problems. Turbulence is a topological dynamics
property of a continuous action of a Polish group on a Polish space that
expresses the complexity of the “local orbits” of the action. The remarkable
result of the theory is that turbulence prohibits classification by countable
structures and in fact, under certain circumstances, a problem fails to admit
classification by countable structures iff some turbulent action can be embed-
ded in it (in a precise sense). This reduces the problem of non-classification
to the discovery of appropriate turbulent actions.
This theory has been applied widely over the last few years by Hjorth
and many others to show strong non-classifiability results in a variety of
subjects, in topology, ergodic theory, operator algebras and group represen-
tations. For instance, Hjorth used these ideas to show that, as opposed to
the classical classification theorems of Halmos-von Neumann and Ornstein,
no classification by countable structures is possible for isomorphism of ar-
bitrary ergodic, measure-preserving transformations. This line of research
was continued with further remarkable results by Foreman, Rudolph and
Weiss.
The classification of torsion-free abelian groups of finite rank, i.e., additive
subgroups of (Qn,+), is a classical problem in group theory. The case n = 1
was settled affirmatively by Baer in the 1930’s but no substantial progress had
been made since then towards the classification of rank 2 or higher groups.
Looking at this problem from the point of view of the preceding theory of
complexity of classification, Hjorth made a major breakthrough by showing
that the rank 2 case was, in a precise sense, strictly more complicated than
the rank 1 case, using in a very ingenious way methods of ergodic theory.
This was eventually completed by the beautiful work of Simon Thomas, who
showed that for each n the complexity of the classification problem for rank n
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groups is strictly less than that for rank n + 1 groups. Equivalently this can
be stated as a rigidity result: the cardinality of the isomorphism classes of
rank n groups, understood in the definable sense, determines the rank n.
These results can be interpreted as meaning that no reasonable classification
for rank 2 or higher groups exists.
Hjorth also made a significant contribution to the study of (countably) in-
finite rank, torsion-free abelian groups by showing that the isomorphism
relation on such groups is not Borel. This was extended by Downey–
Montalban to show that it is actually complete analytic. It is still open
whether it has the maximum complexity among isomorphism problems for
countable structures.
In recent years, Hjorth has also made several important contributions to
various aspects of ergodic theory.
Orbit equivalence is a currently very active area of research in ergodic
theory and its relation with the theory of operator algebras. Two free,
ergodic, measure preserving actions (just actions in the sequel) of countable
(infinite, discrete) groups are called orbit equivalent if they have essentially
the same orbit spaces, more precisely the equivalence relations induced by
these two actions are (measure theoretically) isomorphic. A famous theorem
of Dye and Ornstein–Weiss asserts that any two actions of amenable groups
are orbit equivalent. In the early 1980’s Klaus Schmidt showed that any non-
amenable group without Kazhdan’s property (T) has at least two non-orbit
equivalent actions and raised the question of whether this also holds for all
non-amenable groups.
This was finally answered by Hjorth in 2003, when he showed that every
non-amenable group that does have property (T) has actually continuum
many distinct actions up to orbit equivalence. This gives the beautiful
characterization: a group is amenable iff it has a unique action up to orbit
equivalence. The question of whether any non-amenable group has indeed
continuum many non-orbit equivalent actions was studied intensively over
the next few years, with important breakthroughs by Gaboriau–Popa, who
proved this for non-abelian free groups, and then by Ioana for all groups
containing non-abelian free subgroups and finally culminated in the thesis of
Epstein who showed that every non-amenable group has indeed continuum
many such actions.
The theory of costs, originated by Levitt and developed extensively by
Gaboriau, assigns to each action an important invariant (depending only
on the equivalence relation it generates), called its cost, that can be used
to distinguish such actions up to orbit equivalence. A fundamental result
of Gaboriau’s theory is that the cost of any action of the free group with
n generators is exactly equal to n. This implies immediately that no two
actions of free groups with different numbers of generators can be orbit
equivalent.
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Hjorth proved a deep converse to Gaboriau’s theorem: any (countable,
ergodic, measure preserving) equivalence relation which is treeable and has
cost n can be induced by an action of the free group with n generators.
Among other things this provides a powerful tool for generating actions
of the free group. In that form it was used in a recent result of Gaboriau–
Lyons, which established the so-calledmeasurable version of the vonNeumann
Conjecture: every non-amenable group has an action the orbits of which
contain the orbits of an action of the free group with 2 generators.
GregHjorth has made a lasting impact inmathematical logic and its appli-
cations. His influence on his colleagues and students, both at a professional
and personal level, has been immense and the outpouring of sympathy that
I have seen over the last few weeks from many mathematicians across the
globe attest to the great loss that we all feel at the passing of such a brilliant
colleague and a most gentle, generous and caring man.
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Alexander S. Kechris
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