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Edward L. Keenan, UCLA

Pursuing a study begun in (Keenan 2004) this note investigates inference patterns in natural
language which proportionality quantifiers enter. We desire to identify such patterns and to
isolate any such which are specific to proportionality quantifiers.

Background Keenan (2004) identified the inference pattern in (1) and suggested that it involved
proportionality quantifiers in an essential way.

(1) a More than n/m of the As are Bs
At least 1 — n/m of the As are Cs
Ergo: Some AisbothaB and a C

b. At least n/m of the As are Bs
More than 1 — n/m of the As are Cs
Ergo: Some AisbothaBandaC

To illustrate (1a): If more than three tenths of the students are athletes and at least seven tenths
are vegetarians then at least one student is both an athlete and a vegetarian.

This is indeed a valid argument paradigm. However recently Westerstahl (pc) showed that
the pattern (1a,b) is a special case of a more general one not specific to proportionality quantifiers
but which includes them simply as a special case. His result supports the claim that
proportionality quantifiers enter inference paradigms common to better understood classes of
quantifiers. But it also leads us to question whether there are any inference patterns specific to
proportionality quantifiers. To pursue these questions we need some background definitions.

Def 1 Given a domain E, the set GQ; of generalized quantifiers over E =4 [P(E) ~ {0,1}], the
set of functions from P(E) into {0,1}. Such functions will also be called (following
Lindstrom 1966) functions of type <1>. Interpreting P1s, one place predicates, as
elements of P(E) we can use type <1> functions as denotations of the DPs italicized in (2):

2 a. No teacher laughed at that joke
b. Every student came to the party
c. Most students are vegetarians

So the truth value of (2a) is the one that the function denoted by no teacher assigns to the
denotation of the P1 laughed at that joke. The Dets no, every, and most combine with a single
Noun to form a DP and are naturally interpreted by functions of type <1,1>, namely maps from
P(E) into GQ;. They exemplify three different classes of type <1,1> functions: the intersective,
the co-intersective and the proportionality ones. Informally a D of type <1,1>is intersective if
its value at sets AB just depends on ANB, it is co-intersective if its value depends just on A —B,
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and it is proportional if it just depends of the proportion of As that are Bs. Formally, we define
these notions and a few others below in terms of invariance conditions.

Def 1 For D of type <1,1>,

a.1 D is intersective iff for all sets A B, XY if AnB=XNY then DAB = DXY
a.2 Dis cardinal iff for all sets AB,X,Y if|AnB|=|XNY|then DAB =DXY

b.1 D is co-intersective iff for all A B, XY if A—B=X-Y then DAB =DXY
b.2 D is co-cardinal iff for all AB, XY if]|A-B|=[X-Y|then DAB =DXY

c. D is proportional iff for all AB,X,Y if |AnBJ/|A| = [XNY/|X| then DAB = DXY
d. D is conservative iff for all A, B, B’ if AnB = AnB’ then DAB = DAB’
e. D is permutation invariant iff for all A,B c E, all permutations 1 of E, DAB = DnAnB

One checks that NO, EVERY, and MOST defined below are intersective, co-intersective and
proportional respectively. All three of these functions are permutation invariant and conservative.

(3) a NO(A)B)=1iffANB=0o
b. EVERY(A)B)=1iffA-B=¢
c. MOST(A)B) = 1 iff JANB| > |A}/2

Here is a representative sample of these three classes (our main concern in what follows).

(4) Some intersective Dets
cardinal some, a/an, no, practically no, several, between six and ten, infinitely many,
more than six, at least/exactly/just/only/fewer than/at most six, between six and
ten, just finitely many, about/nearly/approximately a hundred, a couple of] a dozen,
How many?
non-cardinal Which?, more male than female, no...but John (as in No student but John
came to the party)

(5) Some co-intersective Dets
co-cardinal every/all/each, almost all, all but six, all but at most six, all but finitely many
non-co-cardinal every...but John

(6) Some properly proportional Dets (proportional but not intersective or co-intersective).

a. more than half the, less than two thirds, less than/at most/at least/ exactly half, at most ten
per cent, between a half and two thirds, between ten and twenty per cent, all but a tenth,
almost a third, What percentage?

b. most, every third (as in Every third student was inoculated), just/nearly/exactly/only/not
one...in ten (as in Just one student in ten was inoculated), almost/more than/less
than/exactly seven out of ten (as in Seven out of ten sailors smoke Players), between six



out of ten and nine out of ten

So the proportionality Dets include mundane fractional and percentage expressions, (6a), usually
built on a partitive pattern with of followed by a definite DP, as in most of the students, a third of
John'’s students, ten per cent of those students, etc. (half is slightly exceptional, only taking of
optionally: half the students, half of the students are both fine). The precise syntactic analysis of
partitive constructions is problematic in the literature. Keenan & Stavi (1986) treat more than a
third of the as a complex Det. But more usually linguists treat the expression following of as a
definite DP and of expresses a partitive relation between that DP and the Det that precedes of.
Barwise and Cooper (1981) provide a compositional semantics for this latter approach which we
assume here.

Proportionality Dets also include those in (6b) which are not partitive, but are followed
directly by the Noun as in the case of intersective and co-intersective Dets.

DPs built from proportionality Dets usually require that their Noun argument denotes a
finite set. We could invent a meaning for a third of the natural numbers but this would be a
creative step, extending natural usage not simply an act of modeling ordinary usage. In general
the functions denoted by proportionality Dets are not intersective or co-intersective, though a few
extremal cases are: Exactly zero per cent = no, a hundred percent = every, more than zero per
cent = some, less than a hundred per cent = not every.

Complex members in each of these seven classes can be formed by taking boolean
compounds in and (but), or, not, and neither...nor. We note without proof:

Proposition 1
a. GQ =[P(E) - {0,1}] is a (complete atomic) boolean algebra inheriting its structure
pointwise from {0,1}.
b. Each of the classes K defined in Def 1 is closed under the pointwise boolean
operations and is thus a (complete, atomic) boolean subalgebra of [P(E) » GQg].

So if D of type <1,1> is intersective (cardinal, co-intersective,...) s is D, which maps each A to
—~(D(A)), the complement of the GQ D(A). Thus boolean compounds of expressions in any of
these classes also lie in that class. E.g. af least two and not more than ten is cardinal because az
least two and more than ten are, etc.

We write INT; (CARDy,...) for the set of intersective (cardinal, ...) functions of type
<1,1> over a domain E, omitting the subscript ; when no confusion results. Many relations
between these subclasses of Dets are known. E.g. INT, CO-INT, PROP are all subsets of CONS;
CARD and CO-CARD are PI subsets of INT and CO-INT respectively. When E is finite CARD
= INTAPI and CO-CARD = CO-INTNPI. And an easily shown fact, used later, is:

Proposition 2 INT; N CO-INT;, = {0, 1}, where 0 is that constant function of type <1,1>
mapping all A,B to 0; 1 maps all A,Bto 1.
proof One checks easily that 0 and 1 are both intersective and co-intersective. For the other



direction let D € INT; N CO-INT;,. Then for A,B arbitrary, DAB = D(ANB)(E), since D is
intersective, = D(2)(E) since D is co-intersective. Thus D is constant, soD=0orD=1. O

Thus only the two trivial Det functions are both intersective and co-intersective. Further

Fact 1 In general Dets are not ambiguous according as their denotations are intersective
or co-intersective.

fewer than zero denotes 0 which is both intersective and co-intersective, but Fact 1 says that no
Det expression has fwo denotations, one intersective and the other co-intersective.

Proportionality Dets We begin with some basic facts regarding proportionality Dets:

Not first order definable Barwise and Cooper (1981) argue that MOST as
defined here, is not definable in first order logic. See also Westerstdhl (1989). The arguments
given in these two sources extend to the non-trivial proportionality Dets — those which are not
also intersective or co-intersective. Given that the proportionality Dets in general are not first
order definable (FOD) it is unsurprising that we have little understanding of their inferential
behavior as inference patterns have been best studied for first order expressions.

Not sortally reducible We say that a possible Det function D is sortally reducible iff
there is a two place boolean function h such that for all subsets A,B of E, DAB = D(E)(h(A,B)).
Note that intersective D and co-intersective D are sortally reducible, as illustrated below with
some and all:

(8)  a. Some poets are socialists
b. Some individuals are both poets and socialists

c. All poets are socialists
d. All individuals are either not poets or are socialists
(= All individuals are such that if they are poets then they are socialists)

In fact Keenan (1993) shows that the conservative D which are sortally reducible are just the
intersective and co-intersective ones. Most reasoning techniques used with formulas of the form
Jxd or Vx¢ involve removing the quantifiers, reasoning with the resulting formula, and then
restoring the quantifiers when needed. But such techniques will not apply directly to Ss built with
proper proportionality quantifiers as they do not admit of a translation which eliminates the Noun
domain of the variable in favor of the entire universe as in (8b) and (8d) above.

Are permutation invariant Given a permutation h of E (so h is a bijection from E to E)

we extend h to subsets of E by setting h(X) = {h(x)|x € X}, all X < E. And a possible Det
denotation D is said to be P1 (permutation invariant) iff for all permutations h of E,

D(A)(B) = D((A)h(B))



Proportionality Dets (over finite E) always denote PI functions (in distinction for example to no ...
but John or Which? among the intersective Dets).

Have two place variants like intersective Dets, as in:
(9) A greater percentage of teachers than (of) students signed the petition

The same proportion of little boys as (of) little girls laugh at funny faces
Proportionately fewer female students than male students get drafted

(10) (A GREATER PERCENTAGE OF A THAN B)(C) = 1 iff |AnC}/|A| > [BnCl//B]

Inference paradigms To begin our study of inference paradigms proportionality Dets
enter we first review Westerstahl’s result concerning our previous attempt (Keenan 2004). That
work built on three operations defined on GQs: complement, post-complement, and dual.
Complement has already been defined (pointwise) above. For the others:

Def2 a. F-, the postcomplement of F, is that GQ mapping each B to F(—B), that is, to F(E —B)
b. F¢ the dual of F, =,; ~(Fr). Note that ~(F~) = (=F)-, so we may omit parentheses.

We extend these operations pointwise to type <1,1> functions:

Def 3 For D of type <1,1>, ™D, Dr, and D¢ are those type <1,1> functions defined by:
a. —D maps each set A to ~(D(A))
b. Dr maps each set A to (D(A))r-
c. D maps each set A to (D(A))*

Some Examples. We write negX for a DP which denotes the complement of the denotation of
X: similarly Xneg denotes its postcomplement and dualX its dual.

X some every more than half less than half
negX no not every at most half at least half
Xneg not every no less than half more than half
dualX every some at least half at most half

So the complement of every boy is not every boy, its postcomplement is 7o boy, and its dual is
some boy. And the complement of more than half is at most half, its postcomplement is less than
half, and its dual at least half. Observe that the postcomplement and dual operators preserve the
property of being proportional but interchange the intersective and co-intersective Dets:

Proposition 3 For D of type <1,1>,
a. if D is proportional so are Dr and D, but
b. if D is intersective (cardinal), D~ and D¢ and both co-intersective (co-cardinal), and
c. if D is co-intersective (co-cardinal), then D~ and D? are both intersective (cardinal).



Proof sketch We show b. above, as it plays a role in our later discussion. Let D be
intersective. We show that D is co-intersective. Let A—B =X -Y. We must show that D-AB
=DeXY. But D-AB = (DA)~(B) = DA(~B) = DA(AN—B), since D is intersective, = DA(A ~B)
=D(E)(AN(A - B)) = D(E)}A -B) = D(E)X - Y) =..=DrXY, completing the proof. To see
that D® is co-intersective we observe that Dr is by the above and so then is —~(Dr) =D* since
pointwise complements preserves co-intersectivity (Prop 1). ]

Westerstahl’s generalization We repeat (1a) above, (1b) being similar.

1 a More than n/m of the As are Bs
At least 1 —n/m of the As are Cs
Ergo: Some AisbothaBandaC

Now the relevant Dets are interpreted as in (11):
(11) ForO<n<m 0<m,

(MORE THAN n/m)(A)(B) =1 iff A # o and |ANBJ/|A| > n/m
(LESS THAN 1 - n/m)(A)(B) = 1 iff A #  and |ANBJ/|A| < 1 —/m
(AT LEAST 1 - n/m)(A)(B) = 1 iff A # o and |ANB}/JA] > 1 —n/m

Westerstahl (pc) notes that the DPs in the premisses in (1a) are duals. (LESS THAN 1 —n/m) s
the postcomplement of (MORE THAN n/m) and (AT LEAST 1 - n/m) is its dual.

Waesterstihl’s Generalization For D conservative, [1] and [2] below are equivalent:

[1]  Disright increasing (= increasing on its second argument)
[2]  D(A)B) A D¥A)C)=> SOME(A)BNC)

Proof <« Let D be conservative and assume [2]. We show [1]. Let B ¢ B’ and assume DAB.
We must show DAB’. Assume otherwise. So DAB’ =0. Then (DA)~(—B’) =0, so
~(DA)~(—B’) =DYA)(-B’) = 1. So by [2], AnBN™B’ # o, contradicting that B < B’.
Thus DAB’ = 1, and D is right increasing.

- Let D be right increasing and assume DAB =1 and D?AC = 1, whence by the
conservativity of D and D we have DAANB = 1 and D* AANC = 1. Assume leading to a
contradiction that ANBNC = @. Then AnB c —C, so D(A)(—C) = 1 by the right
increasingness of D. Thus D—(A)(C) = 1. But “Dr(A)(C) = D°AC = 1, a contradiction.
So ANBNC #@, whence SOME(A)(BNC) = 1, establishing [2]. i

So [2] generalizes the argument paradigm in (1a,b) and does not seem specific to proportionality
Dets since it holds for DPs built from right increasing conservative Dets in general. So far
however I have found it difficult to find examples of non-proportional Dets which instantiate [1]
and [2]. One’s first guess, some and every, satisfies [1] and [2] but these Dets are, recall,
proportional: SOME = MORE THAN ZERO PER CENT and EVERY = 100%. The only other



cases I can think of are ones that make presuppositions on the cardinality of their first argument.
Perhaps the least contentious is both and at least one of the two. Both students are married and
At least one of the two students is a vegan imply Some student is both married and a vegan. But
this instance does require taking af least one of the two as a Det, which we decided against earlier.

The Mid-Point Theorems

We seek now additional inference patterns that proportionality quantifiers naturally enter.
Keenan (2004) observes that natural languages present some non-trivial DPs distinct from first
order ones which always assign the same truth value to a predicate and its negation, as in (12a,b)
and (12¢,d). (13) is the general form of the regularity. Proposition 4 is then immediate.

(12) a. Exactly half the students got an A on the exam
b. Exactly half the students didn’t get an A on the exam

c. Between a third and two thirds of the students got an A
d. Between a third and two thirds of the students didn’t get an A

(13) DP(P1) = DP(not P1)
Proposition 4 The DPs which satisfy (13) are those which denote in FIX() = {F € GQ|F =F~}

At issue then is a syntactic question: just which DPs do satisfy (13)? Let us limit ourselves for the
moment to ones of the form [Det+N], as we are interested in isolating the role of the Det. And in
characterizing that class do the proportionality Dets play any sort of distinguished role? It seems
to me that they do, though I can only give a rather informal statement of that role. Still that
informal statement at least helps us to understand why many of the natural examples of Dets
which denote in FIX(-) are proportional. We begin by generalizing the observation in (12).

Def 4 For p and q fractions withO < p<q<1,

a. (BETWEEN p AND q)(A)B)=1iff A # @ and p < |ANBJ/|A| < q

b. (MORE THAN p AND LESS THAN q)(A)(B)=1iffA # o and p < |ANBJ/|A] <q
Thus (12a) is true iff there is at least one student and at least a third of the students passed and
not more than two thirds passed. Dets of the forms in Def 4 are fixed by postcomplement, ~,
when the fractions p,q lie between 0 and 1 and sum to 1. The condition that p+q = 1 guarantees
that p and q are symmetrically distributed around the midpoint %. Clearly p < ¥z since p < q and
p+q=1. Similarly % < q. The distance from Y2to pis %2—p, and that from Y% to qis q —%2. And
15 —p = q — Y2 iff, adding ¥; to both sides, 1 —p =g, iff 1 =ptq. And we have:
(14) Theorem 5 (the Mid-Point Theorem) Let p,q fractions with 0 < p < q < 1, ptq=1. Then

(BETWEEN p AND q) and (MORE THAN p AND LESS THAN g) are both fixed by ~



The theorem (plus pointwise meets) guarantees the logical equivalence of the (a,b) pairs below:

(15) a. Between one sixth and five sixths of the students are happy =
b.. Between one sixth and five sixths of the students are not happy

(16) a. More than three out of ten and less than seven out of ten teachers are married
b. More than three out of ten and less than seven out of ten teachers are not married

A variant statement of this theorem using percentages is:
(17) Let 0 < n < m <100 with n+m = 100. Then

Between n and m per cent of the As are Bs =
Between n and m per cent of the As are not Bs

For example choosing n = 40 we infer that (18a) and (18b) are logically equivalent:

(18) a. Between 40 and 60 per cent of the students passed
b. Between 40 and 60 per cent of the students didn’t pass

And (14) and (17) are (mutual) entailment paradigms which appear to use proportionality Dets in
an essential if not completely exclusive way. Many of the pairs of proportional Dets will not
satisfy the equivalence in (14) since their fractions do not straddle the mid-point appropriately.
And Dets such as between 10 and 20 per cent do not satisfy (17) for the same reason. A very
large class of complex proportional Dets which satisfy (14) or (17) is given by Theorem 6:

Theorem 6 FIX(-) is closed under the pointwise boolean operations.
Proof in the Appendix. O

And given our earlier observation that proportionality functions are closed under the pointwise
boolean operations we infer that all the Dets that can be built up as boolean compounds of the
basic fractional and percentage Dets in (14) and (17) respectively are both proportional and fixed
by ~, so they satisfy the equivalence in (13). For example

(19)  Either less than a third or else more than two thirds of the Asare Bs =
Either less than a third or else more than two thirds of the As are not Bs

Proof The Det in this example denotes the boolean complement of BETWEEN A
THIRD AND TWO THIRDS and is thus proportional and fixed by . O

It is perhaps worth noticing what happens with proportional Dets of the form Between p
and g when their distribution with respect to the mid-pomt (%2, 50%) changes. Ifboth p and q lie
below, or both above the midpoint then we have:

Proposition7 If 0<p<q<'2 or % <p<q<1 then



Between p and q of the As are Bs =
It is not the case that between p and q of the As are not Bs

Thus such Det pairs satisfy the equivalences in (20).
(20) D(A)B) = DYA)B) = (“D(A)("B) = ~(D(A)~B))

In contrast if the fraction (percentage) pairs p,q include the mid-point but are not centered
then no entailment relation in either direction holds. In (21a,b) neither entails the other:

(21) a. Between a third and three quarters of the students passed the exam
b. Between a third and three quarters of the students didn’t pass the exam

Generalizing the Mid-Point Theorem

We observe first that the proportionality Dets differ from the intersective and co-
intersective ones in being closed under the formation of postcomplements:

Proposition 8 If D of type <1,1> is intersective and D = Dr- then by Prop (3.b) Dr1s co-
intersective, and since D = D, D is both intersective and co-intersective and hence trivial
(D=0o0rD=1). Similarly D is trivial if D is co-intersective andD=D~ 0O

Moreover the expression of the postcomplement relation is natural and does not use a distinctive
syntax. Here are the simplest cases:

(22) POSTCOMPLEMENT
more than n/m less than 1 —n/m
exactly n/m exactly 1 —n/m
at most n/m at least 1 —n/m
more than n % less than 100 — n%
exactly n% exactly 100 —n%
at most n% at least 100 —n%

Notice that in our first group n/m ranges over all fractions and so includes 1 —n/m = (m —n)/m.
Similarly in the second group n ranges at least over the natural numbers between 0 and 100
(inclusive) so includes both n% and (100 —n)%. Thus the linguistic means we have for
expressing ratios covers proportionality expressions and their postcomplements indifferently.
(Note that postcomplement is symmetric: D = Fr- iff F = Dr). Recall also that all the natural
classes we have adduced are closed under the pointwise boolean operations, expressible with
appropriate uses of and, or and not.

Now recall the fractions p,q for which the Mid-Point Theorem holds. If p=1n/m and p and
q sumto 1 then ¢ =1—-n/m. And more than n/m and less then 1 —n/m are postcomplements. (If
more than 3/10ths of the As are Bs then less than 7/10ths of the As are non-Bs). Similarly
between n/m and 1 —n/m just means the same as at least n/m and at most 1 —n/m. So we have



Theorem 9 (Generalized Mid-Points) For D of type <1,1>, (D A D) and (D V D) are fixed
by r, as are their complements (—D V D%) and (-D A D%)

partial proofa. (D ADr)- = D-AD~ = D-AD = DADr
b. (D ADr)= (-DV —Dr)=(—DV D% and
(-D V D%~ = (-Dr V D% ) = (D? V-D) = (-D V D%
These proofs use:

Proposition 10 Fix() is closed under pointwise complements, meets and joins and is in fact a
complete (and thus atomic) subalgebra of GQ;.

Proposition 11 The postcomplement function ~ is self inverting (D = D) and
thus bijective, and it commutes with — and A thus is a boolean automorphism of GQg.

Corollary 12 If D is an expressible proportionality function then so are (D A D) and (D V Dr),
and (D V D¢ and (—D A DY), and the Dets which express them satisfy (13).

Below we give some (more) examples of proportionality Dets of the form in Cor 12. Colloquial
expression may involve turns of phrase other than simple conjunction and disjunction.

(23) Some examples

A. more than three tenths but less than seven tenths
more than three out of ten but less than seven out of ten
more than thirty per cent but less than seventy per cent

exactly a quarter or exactly three quarters
exactly one in four or exactly three out of four
exactly twenty-five per cent or exactly seventy-five percent

at least three tenths and at most seven tenths
at least three out of ten and at most seven out of ten

at least thirty per cent and at most seventy per cent

between a quarter and three quarters
between twenty-five per cent and seventy-five per cent

exactly one (student) in ten or exactly nine (students) in ten

B. not more than three tenths or not less than seven tenths
= at most three tenths or at least seven tenths



(27) a. Either all or none of the students will pass that exam (F VF~)
b. Either all or none of the students won’t pass that exam

Note that the (compound) Dets in these two examples are properly proportional: some but not all
= more than zero per cent and less than 100 per cent, and all or none = either 100 per cent or
else exactly zero per cent. For the record,

(28)  some but not all, which denotes (SOME A —ALL), is proportional and not intersective or
co-intersective (E assumed to have at least two elements).

Basically some but not all fails to be intersective because of the not all part which is not
intersective; and it fails to be co-intersective because some fails to be. To see that it is
proportional, suppose that the proportion of As that are Bs is the same as the proportion of Xs
that are Ys. Then if Some but not all As are Bs is true then at least one A is a B and at least one
A is not a B, so the percentage of As that are Bs lies strictly between 0% and 100%, which is
exactly where the percentage of Xs that are Ys lies, whence some but not all Xs are Ys. One sees
then that the (complete) boolean closure of INT; u CO-INTg includes many functions that lie
outside INT; and CO-INT. In fact, Keenan (1993), this closure is exactly the set of conservative
functions and so includes in particular all the conservative proportional ones.

Note now however that (29a,b) are logically equivalent, as the <1,1> functions the Dets
denote are postcomplements, but either exactly five or else all but five is not proportional:

(29) a. Either exactly five or else all but five students came to the party
b. Either exactly five or else all but five students didn’t come to the party

To see this let A have 100 members, just five of which are Bs. The D denoted by the Det in (29a)
maps A B to 1. But for |X| = 1,000 and [XnY| = 50, that D maps X,Y to 0, even though the
proportion of Xs that are Ys, 1/20, is the same as the proportion of As that are Bs.

Clearly then certain boolean compounds of intersective with co-intersective Dets yields
some non-proportional Dets which satisfy Theorem 9, so that paradigm is not himited to
proportionality Dets.

A last case of DPs that may satisfy Theorem 9 is given by partitives of the form in (30):

(30) a. (EXACTLY n OF THE 2n)(A)(B) = 1 iff |A| = 2n and |ANB| =n
b. (BETWEEN n and 2n of the 3n)(A)(B) = 1 iff |]A| =3nand n < |ANB| < 2n  (n>0)

Of course in general DPs of the form exactly n of the m Ns are not fixed by -. But in the case
where m = 2n they are. Note that if we treat exactly n of the m as a Det (an analysis that we,
along with most linguists, reject) we have:

(31)  For m > n, exactly n of the m is in general not intersective, co-intersective or proportional
(but is conservative and permutation invariant).



Appendix

Proposition 1

Proof sketch (1b). Let D be conservative, let AnB = AnNB’. We show that ("D)(A)(B) =
(-D)A)®B’). ("D)A)B) —..= (DAB) = ~(DA(ANB)) = “(DA(ANB’)) = ~DAB’) = =
(-D)(A)(B’). For Dr, let ANB = AnB’. Then D-AB =DA(-B) = DA(A ~ B) = DA(A - (AnB))
=DA(A - (AnB’)) =DA(A —B’) =DA(-B’) =D~(A)(B). O

(2c). Let D be intersective. Let A —B =X —Y and show that D-AB = D-XY. D~AB =
(DA)~(B) =DA(-B) =DA(A-B)=D(A-B)(A-B),since AN (A-B)=(A-B)n(A-B),=
DX -Y)X-Y)=DX(X~-Y)=DX("Y) = (DX)~(Y) =D-XY. O Further, since D is
intersective so is ~D by Prop 1, whence by the above, (-D)~ = D? is co-intersective. O

The First Mid-Point Theorem
Let0 < p < q<1withptq=1. Then
Between p and q of the As are Bs = Between p and q of the As are not Bs

proof Assume (BETWEEN p AND ¢)(A)(B) =1. Show (BETWEEN p AND ¢)(A)(™B) = 1.
Suppose leading to a contradiction that JAN—BJ/|A| <p. Then the percentage of As that are Bs is
greater than g, contrary to assumption. The second case in which |An—BJ/|A| > q is similar, hence
the percentage of As that aren’t Bs lies betweenpandq. O

Theorem 6 FIX(~) is closed under the pointwise boolean operations.

a. Let D € FIX(~). We must show that for all sets A, ("D)(A) = ((“D)(A))r, that is, ~D
is fixed by . Let A, B arbitrary. Then

D) A)YB) = ~(D(A)B)) Pointwise — (twice)
= ~((D(A)-(B)) D(A) is fixed by ~
= —~(D(A)~(B) Pointwise —
= ((—D)(A))~(B) Pointwise —

Thus (—D)(A) = ((T"D)(A))~, as was to be shown.

b. Show (D AD’) = (D A D’)r, i.e. show (D A D*)(A) = (D A D*)(A))-

(D AD’)(A)B) (DAAD’AYB)

= (DA N (D’A)-)(B)
= (DA)~(B) A (D’A)~(B)
-~  DA(-B)AD’A(-B)

=  (DAAD’A)-B)

(D AD’)(A)(—B)

(D AD’)A)(B)

Essentially the same proof carries over for /\iDi replacing D A D’ showing completeness.



Atomicity then follows. O
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