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Abstract

Explaining the connection, if any, between simplicity and truth is among the
deepest problems facing the philosophy of science, statistics, and machine learning.
Say that an efficient truth-finding method minimizes worst-case costs en route to
converging to the true answer to a theory choice problem. Let the costs considered
include the number of times a false answer is selected, the number of times opinion
is reversed, and the times at which the reversals occur. It is demonstrated that (1)
always choosing the simplest theory compatible with experience and (2) hanging
onto it while it remains simplest is both necessary and sufficient for efficiency.

1 The Puzzle of Simplicity

Philosophy of science, statistics, and machine learning all recommend the selection of
simple theories or models on the basis of empirical data, where simplicity has some-
thing to do with minimizing independent entities, principles, causes, or equational
coefficients. This intuitive preference for simplicity is called Ockham’s razor, after the
fourteenth century theologian and logician William of Ockham. But in spite of its
intuitive appeal, how could Ockham’s razor help us find the true theory? For if we
already know that the truth is simple, we don’t need Ockham’s help. And if we don’t
already know that the truth is simple, what entitles us to assume that it is?

It doesn’t help to say that simplicity is associated with other virtues such as testabil-
ity (Popper 1968), unity (Friedman 1983), better explanations (Harman 1965), higher
“confirmation” (Carnap 1950, Glymour 1980), or minimum description length (Li and
Vitanyi and Li 2000), since if the truth weren’t simple, it wouldn’t have these nice
properties either. To assume otherwise is to engage in wishful thinking (vanFraassen
1981).

Overfitting arguments (Akaike 1973, Forster and Sober 1994) show that using a
complex model for predictive purposes in the presence of random noise can increase
the expected squared error of predictions. But that is still the case when you know
in advance that the truth is complex, so overfitting arguments concern accuracy of
prediction rather than finding the true theory. Furthermore, if one is interested in
predicting the causal outcome of a policy on the basis of non-experimental data, the
prediction could end up far from the mark because the counterfactual distribution after
the policy is enacted may be quite different from the distribution sampled (Spirtes and
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Zhang 2003). Finally, such arguments work only in statistical settings, but Ockham’s
razor seems no less compelling in deterministic ones.

Nor is Ockham’s razor explained by a prior probabilistic bias in favor of simple
possibilities, for the propriety of a systematic bias in favor of simplicity is precisely
what is at issue. The argument remains circular even if complex and simple theories
receive equal prior probabilities, for theories with more free parameters can be true in
more “ways”, so each way the complex theory might be true ends up carrying less prior
probability than each of the ways the simple theory might be true, and that prior bias
toward simple possibilities is merely passed through Bayes’ theorem (e.g., Rosenkrantz
1983 and the discussion of the Bayes information criterion in Wasserman 2004).

There are non-circular, relevant arguments for Ockham’s razor, if one is willing
to grant speculative premises. G. W. Leibniz (1714) appealed to the Creator’s taste
for elegance. More recently, some “naturalistic” philosophers and machine learning
researchers have replaced Providence with an equally benevolent, evolutionary etiology
(e.g., Mitchell 1997, p. 66; cf. also Duda et al. 2000, pp. 464-465). But even if
these adaptationist speculations were were true, they explain the truth-finding efficacy
of Ockham’s razor only in dealings with matters of pre-historic survival. How does
simplicity continue to track the truth in the vastly expanded linguistic and experiential
realm of contemporary science? To respond that what was successful in prehistorical
applications will continue to succeed in future situations is an appeal to the simple
uniformity of nature and, hence, to Ockham’s razor, which is another circle.

Even if Providence or evolution did arrange the truth of simple theories in a way
that we can never know without begging the question, it would surely be nice, in
addition, to have a clear, normative argument to the effect that Ockham’s razor is the
most efficient possible method for finding the true theory when the problem involves
theory choice. This note presents just such an argument.1 The idea is that it is hopeless
to provide an a priori explanation how simplicity points at the truth immediately, since
the truth may depend upon subtle empirical effects that have not yet been observed or
even conceived of. The best that Ockham’s razor could guaranteed to achieve a priori
is to keep us on the straightest possible path to the truth, allowing for unavoidable
twists and turns along the way as new effects are discovered—and that is just what it
guarantees. Readers who wish to cut to the chase may prefer to peek immediately at
theorem 1 in section 5 prior to reviewing the relevant definitions.

2 Illustration: Empirical Effects

Suppose that you are interested in the form of an unknown polynomial law

f(x) =
n∑

i=0

aix
i.

1The approach is based on concepts from computational learning theory. For a survey of related
ideas, cf. (Jain et al., 1999) and (Kelly 1996). Earlier versions of the following argument may be found
in (Schulte 1999, Kelly 2002, Kelly 2004, Kelly and Glymour 2004, and especially, Kelly 2005 and Kelly
2006).
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It seems that laws involving fewer monomial terms are simpler, so Ockham’s razor
favors them. Suppose that patience and improvements in measurement technology
allow one to obtain ever tighter open intervals around f(x) for each specified value of
x as time progresses.2 Suppose that the true degree is zero, so that f is a constant
function. Each finite collection of open intervals around values of f is compatible with
degree one (linearity), since there is always a bit of wiggle room within finitely many
open intervals to tilt the line. So suppose that the truth is the tilted line that fits the
data received so far. Eventually you can obtain data from this line that refutes degree
zero. Call such data a (first-order) effect. Any further, finite amount of data collected
for the linear theory is compatible (due to the remaining, minute wiggle room) with
a quadratic law, etc. The truth is assumed to be polynomial, so the story must end,
eventually, at some finite set A of effects. Thus, determining the true polynomial law
amounts, essentially, to determining the finite set A of all monomial effects that one
will ever see.

So conceived, empirical effects have the property that they never appear if they
don’t exist but may appear arbitrarily late if they do exist.3 To reduce the curve-
fitting problem to its essential elements, let E be a denumerable set of potential effects
and assume that at most finitely many of these effects will ever occur. Assume that your
lab merely reports the finite set of effects that have been detected so far, so a world or
input sequence is an a sequence of finite subsets of E that converges to some finite subset
of E. An input stream or empirical world is an infinite input sequence. Let the effects
presented in input sequence s be denoted ε(s). The true answer to the effect accounting
problem in empirical world w is then just ε(w). Call this more abstract problem
the effect accounting problem. The effect accounting problem subsumes a number
of naturally posed inference problems, such as determining the set of independent
variables a dependent variable depends upon, determining quantum numbers from a
set of reactions (Schulte 2000), and causal inference (Spirtes et al. 2000), in addition
to the polynomial inference problem already mentioned.

A strategy for the effect accounting responds to an arbitrary input sequence either
with a finite set of effects or with ‘?’, indicating a refusal to choose. Strategy σ solves
the effect accounting problem iff σ converges to the true set of effects ε(w) in each
empirical world w ∈ K. One obvious solution to the effect accounting problem is
the strategy σ0(e) = ε(e), which guesses exactly the effects it has seen so far. If the
possibility of infinitely many effects were admitted, then the effect accounting problem
would not be solvable at all, due to a classic result by E. Gold (1978).

Ockham’s razor is the principle that one should never output an informative answer
unless that answer is among the simplest answers compatible with experience. In
the effect accounting problem, there is a uniquely simplest answer compatible with

2In statistics, the situation is analogous: increasing the sample size reduces the interval estimates of
the values of the function at each argument. The analogy is sketched in greater detail in the conclusion.

3In typical statistical applications, something similar is true: effects probably do not appear at each
sample size if they don’t exist and probably appear at some sample size onward if they do exist. The
data model under discussion may be viewed as a logical approximation of the statistical situation, if
one thinks of samples accumulating through time.
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experience e, namely, the set ε(e) of effects reported so far along e. Thus, strategy σ
is Ockham at e if and only if σ produces either ε(e) or ‘?’ in response to finite input
sequence e.

If the inputs currently received are e = (e0, . . . , en+1), then let the previous eviden-
tial state be e− = (e0, . . . , en) (where e− is stipulated to denote the empty sequence if e
does). Say that solution σ is stalwart at e if and only if σ(e) = σe− if σ(e−) = ε(e). The
intuition behind stalwartness is that there is no better explanation than the simplest
one, so why drop it? One may speak of stalwartness and/or Ockham’s razor as being
satisfied from e onward (i.e., at each extension e′ of e compatible with K) or always
(i.e., at each e compatible with K).

The simplicity puzzle now arises because neither Ockham’s razor nor stalwartness is
necessary for solving the effect accounting problem. For example, one could start with
answer A 6= ∅ and retract back to ∅ if no effect appears after by stage 1000. Or one
could spontaneously retract the set A 6= ∅ of effects seen so far at stage n even though
no new effect has been seen and then return to set A at stage n + 1. In either case,
one would still converge to the true number of effects in the limit. The trouble is that
there are infinitely many ways to solve the effect accounting problem, just as there
are infinitely many algorithmic solutions to a solvable computational problem. The
nuances of programming practice—the very stuff of textbook computer science—are
derived not from solvability, but from efficiency or computational complexity (e.g., the
time or storage space required to find the right answer). The proposal is that Ockham’s
razor is similarly grounded in the efficiency of empirical inquiry.

3 Costs of Inquiry

An obvious, doxastic cost of inquiry is the total number of times one’s strategy produces
a false answer prior to convergence to the true one, since error is obviously to be avoided
if possible. Another is the number of times a conclusion is “taken back” or retracted
prior to convergence, which corresponds to the degree of “straightness” of the path
followed to the truth.4 One might also wish to minimize the respective times by which
these retractions occur, since there is no point “living a lie” longer than necessary
or allowing subsidiary conclusions to accumulate prior to being “flushed” when the
retraction occurs. Taken together, these statistics concern the accuracy, bumpiness,
and timeliness of one’s route to the truth. For a given strategy σ and infinite input
stream w, let the loss or complexity of σ in w be represented by the pair

λ(σ,w) = (q, (r1, . . . , rk)),

where q is the total number of errors or false answers output by σ in w, k is the total
number of retractions performed by σ in w, and ri is the stage of inquiry at which the
ith retraction occurs.

4Retractions are called mind-changes in computational learning theory (cf. Jain et al. 1999) and
contractions in the literature on belief revision (Gärdenfors 1988).
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Happily, it turns out that the hard (apples and oranges) comparisions along these
dimensions are irrelevant to the argument that follows: one need only consider compar-
isons in which one cost sequence is as good as or better than another in each dimension.
Such comparisons are called Pareto comparisions. Accordingly, let (q, (r1, . . . , rk)) ≤
(q′, (r′0, . . . , r′k′)) iff q ≤ q′ and there exists a sub-sequence (u0, . . . , uk) of (r′0, . . . , r′k′)
such that for each i from 1 to k, ri ≤ ui. Then for cost pairs v,v′, define v < v′ iff
v ≤ v′ but v′ ≤ v. With respect to Pareto comparison, each set S of cost pairs has a
unique supremum sup(S), of form (q, (r1, . . . , rk, . . .)), in which q and ri may assume
the first infinite ordinal ω as values.

4 Empirical Complexity and Efficiency

No solution to the effect accounting problem achieves a non-trivial cost bound over
the whole problem, since each theory can be overturned by future effects in the ar-
bitrarily remote future. Computational complexity theory (cf. Aho et al.) has long
since sidestepped that difficulty by partitioning problem instances (inputs) into respec-
tive sizes and then then examining worst-case resource consumption as instance size
increases. In empirical problems, each input stream w has infinite length, but another
plausible measure of input stream complexity is the total number c(s) = |ε(s)| of em-
pirical effects presented in w. Then the conditional empirical complexity of w at e be
given by: c(w, e) = c(w)− c(e) and the nth empirical complexity cell at e is defined by:
Ce(n) = {w ∈ Ke : c(w, e) = n}. Let σ be an arbitrary solution to the effect account-
ing problem. Define the worst-case loss of solution σ over complexity class Ce(n) as:
λe(σ, n) = supw∈Ce(n) λ(σ,w), where the supremum is understood in the sense of the
preceding section.

Suppose that input sequence e has just been received and the question concerns
the efficiency of one’s strategy σ. Since the past cannot be altered, the only relevant
alternatives are strategies that produce the same answers as σ along e−. Say that such
a strategy agrees with σ along e− (abbreviated σ ³e− σ′).

Given solutions σ, σ′, the following, natural, worst-case performance comparisons
can be defined at e:

σ ≤e σ′ iff (∀n) λe(σ, n) ≤ λe(σ′, n);
σ ≺e σ′ iff (∀n) Ce(n) 6= ∅ ⇒ λe(σ, n) < λe(σ′, n).

These comparisons give rise to two natural concepts, efficiency and being strongly
beaten with respect to worst-case cost over empirical complexity classes.

σ is strongly beaten at e iff (∃ solution σ′ ³e− σ) σ′ ≺e σ;
σ is efficient at e iff (∀ solution σ′ ³e− σ) σ′ ≥e σ.

A solution that is strongly beaten does worse than some solution in worst-case perfor-
mance over each non-empty, empirical complexity cell. An efficient solution is as good
as an arbitrary solution in worst-case performance over each empirical complexity cell.
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Since efficiency can be reassessed at each time, one may speak of being efficient from e
onward or always. There may also be situations in which one method does better over
some complexity cells and worse over others but, remarkably, these messy comparisons
are irrelevant to the argument that follows.

5 The New Solution

Here is the proposed efficiency argument for Ockham’s razor. The proof is in the
appendix.

Theorem 1 (efficient = unbeaten = Ockham + stalwart) Let the costs be Pareto-
comparison of the total number of errors, the total number of retractions, and the re-
spective times of the retractions. Let σ solve the effect accounting problem. Let e be a
finite input sequence.

Then, the following statements are equivalent:

1. σ is stalwart and Ockham from e onward;

2. σ is efficient from e onward;

3. σ is never strongly beaten from e onward.

So the set of all solutions to the effect accounting problem is cleanly partitioned at e
into two groups: the solutions that are stalwart, Ockham, and efficient from e onward
and the solutions that are strongly beaten at some stage e′ ≥ e due to future violations
of the stalwart, Ockham property. As promised, the argument is a priori, normative,
truth-directed, and yet non-circular. The argument presumes no prior bias of any
kind, so there is no question of a circular appeal to a simplicity bias, as in Bayesian
arguments. The argument is driven only by efficient convergence to the truth, so there
is no bait-and-switch from truth-finding to some other aim. There is no confusion
between “confirmation” and truth-finding, since the concept of confirmation is never
mentioned. There is no wishful presumption that the truth must be testable or nice in
any other way. There is no appeal to the hidden hands of Providence or evolution.

Furthermore, the argument in favor of Ockham’s razor is diachronically stable in
the sense that it always makes sense to return to the Ockham fold no matter how
many times you violated Ockham’s razor in the past. Not only do you become efficient
as soon as you return to the stalwart, Ockham fold—you are strongly beaten each
time you stray, no matter what you have done in the past, so the entire argument
is stable in spite of past deviations. That is important, for Ockham violations are
practically unavoidable in real science because the simplest theory cannot always be
formulated in time to forestall acceptance of a more easily conceived but more complex
alternative (e.g., Ptolemaic astronomy vs. Copernican astronomy, Newtonian optics
vs. wave optics, Newtonian kinematics vs. relativistic kinematics, and special creation
vs. natural selection). So although it has been urged that scientific revolutions are
extra-rational events governed only by the vagaries of scientific politics (Kuhn 1975),
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revision to the simpler theory when it is discovered has a clean explanation in terms of
truth-finding efficiency.

The preceding result is proved only for problems structurally identical to the effect
counting problem. One can also define problems very generally and then define sim-
plicity in terms of problem structure so that simpler worlds are worlds in which nature
loses fewer opportunities to force retractions of answers from an arbitrary, convergent
method. Simpler answers are satisfied by simpler worlds and Ockham’s razor requires,
plausibly, that one never produce an answer that is not among the simplest compatible
with experience. According to this approach, simplicity does not depend upon mere
description (it is invariant under grue-like translations of the inputs provided to the
method). It is then possible to show a more general version of theorem 1 once for all
for a broad class of inference problems (Kelly 2006).

The proposed solution to the simplicity puzzle does not accomplish the impossible:
Ockham’s razor cannot be shown, without circularity, to point at the truth immedi-
ately, like an occult divining rod; there is not even an a priori bound on the number of
times an Ockham method might produce the wrong answer or reverse its conclusion in
the worst case. The justification for using a method with such weak properties is, how-
ever, straightforward and compelling: Ockham’s razor is demonstrably the uniquely
most efficient strategy and the best possible strategy had best be good enough. That
is the routine argument for algorithms generally in computer science and all that has
been done is to extend that form of argument to the vindication of Ockham’s razor.
Of course, weak efficiency arguments of this sort can readily be overturned by genuine
background knowledge concerning the nature of the world one faces. The puzzle about
simplicity is not to incorporate existing knowledge into rational choices—Bayesian up-
date does that, after a fashion. The puzzle is to justify our default preference for
simplicity when such knowledge is entirely lacking, and that is just what the argument
does. By way of loose analogy, the argument can be thought of as doing the same
thing for Ockham’s razor that Dutch book arguments do for coherence, itself. In both
cases, more structural recommendations are invoked to vindicate aspects of Bayesian
reasoning when the aspects in question are laid aside, temporarily, for the sake of the
argument.

One might hope for a guarantee stronger than minimization of worst-case, accrued
doxastic costs, but the obvious candidates fail. (1) One cannot establish weak dom-
inance for Ockham methods with respect to all problem instances jointly, because
anticipation of unseen effects might be vindicated immediately, saving retractions that
the Ockham method would have to perform when the effects appear. (2) Nor can one
show that Ockham’s razor does best in terms of a global worst-case bound over all prob-
lem instances (minimax theory), for such worst-case bounds on errors and retractions
are trivially infinite for all methods at every stage. (3) Nor can one show a decisive
advantage for Ockham’s razor in terms of expected retractions. For example, if the
question is whether one will see at least one effect, then the expected retractions of the
obvious strategy σ(e) = ε(e) are less than those of an arbitrary Ockham violator only
if the prior probability of the simpler answer is at least one half, so that if more than
one complex world carries nonzero probability, no complex world is as probable as the
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simplest world, which begs the question in favor of simplicity.5 If the prior probability
of the simple hypothesis drops below 0.5, the advantage lies not only with violating
Ockham’s razor, but with violating it more rather than less. So Bayesians must either
beg the question or rule strongly against Ockham.
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7 Appendix

Proof of theorem 1. (2 ⇒ 3), is immediate from the definitions. For (3 ⇒ 1),
suppose that σ violates Ockham’s razor or stalwartness at finite input sequence e. Let
σ be a solution that is stalwart and Ockham from e′ onward. Let e ≥ e′ have length
j. Then σ is Ockham and stalwart from e onward. Let σ′ be an arbitrary solution
such that σ′ ³e− σ. Let r1, . . . , rk be the retraction times for both σ and σ′ along e−.
Let q denote the number of times σ produces an answer other than ε(e) along e−. Let
w ∈ Ce(0). In w, σ never retracts after e (but may do so at e) and σ produces only the
true answer ε(e) after e. Hence:

λe(σ, 0) ≤ (q, (r1, . . . , rk, j)).

Consider the hard case in which σ retracts at e. There exists w0 ∈ Ce(0) (just
extend e by repeating ε(e) forever). Then σ(e−) = σ′(e−) is false in w0. So since σ′

is a solution, σ′ converges to the true answer ε(e) in w0 at some point after e−, which
implies a retraction at some point no sooner than e. Hence:

λe(σ′, 0) ≥ (q, (r1, . . . , rk, j)) ≥ λe(σ, 0).

If Ce(n + 1) = ∅, then every method succeeds under the trivial bound (0, ()), so
suppose that Ce(n+1) 6= ∅. Since σ is a stalwart, Ockham solution, σ retracts at most
once at each new effect, so

λe(σ, n + 1) ≤ (ω, (r1, . . . , rk, j, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)).

Let arbitrary natural number i be given. Since σ′ is a solution, σ′ eventually converges
to A0 = ε(e) in w0, so there exists e0 such that e ≤ e0 < w0 by which σ′ has retracted
the false answer σ′(e−) and has produced the true answer A0 successively at least i
times after the end of e, so σ′ retracts at least as late as e in e0. Then there exists
w1 ∈ Ce(1) such that e0 < w1 (since Ce(n+1) 6= ∅, nature can choose some x0 ∈ E−A0

and extend e0 forever with answer A1 = A0 ∪ {x0}). Again, σ′ must converge to A1 in
w1 and, therefore, produces A1 successively at least i times by some initial segment e1

of w that extends e0. Continuing in this manner, construct wn+1 ∈ Ce(n + 1). Then

λe(σ′, wn+1) ≥ (i, (r1, . . . , rk, j, j + 1i, j + 2i, . . . , j + (n + 1)i)).
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Since i is arbitrary,

λe(σ′, n + 1) ≥ (ω, (r1, . . . , rk, j, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)) ≥ λe(σ, n + 1).

Now consider the easy case in which σ does not retract at e. Then the argument is
similar to that in the preceding case except that the retraction at j is dropped from all
the bounds.

For the proof of (1 ⇒ 2), let σ be a solution that violates either Ockham’s razor
or stalwartness at e of length j. Let σ′ return ε(e′) at each e′ ∈ Kfin such that e′ ≥ e
and let σ′ agree with σ otherwise. Then σ′ ³e− σ by construction and σ′ is evidently
a solution. Let r1, . . . , rk be the retraction times for both σ and σ′ along e up to but
not including the last entry in e.

Consider the case in which σ violates Ockham’s razor at e. So for some A ⊆ E,
σ(e) = A 6= ε(e). Let w ∈ Ce(0). Then A is false in w and ε(e) is true in w. Let q
denote the number of times both σ and σ′ produce an answer other than ε(e) along e−.
Since σ′ produces the true answer at e in w and continues to produce it thereafter:

λe(σ′, 0) ≤ (q, (r1, . . . , rk, j)).

There exists w0 in Ce(0) (just extend e forever with ε(e)). Since A is false in w0 and σ
is a solution, σ retracts A in w0 at some stage greater than j, so

λe(σ, 0) ≥ λ(σ,w0) ≥ (q + 1, (r1, . . . , rk, j + 1)) > λe(σ′, 0).

As in the proof of (3 ⇒ 1), it suffices to consider the case in which Ce(n + 1) 6= ∅.
Since σ′ produces ε(e′) at each e′ ≥ e,

λe(σ′, n + 1) ≤ (ω, (r1, . . . , rk, j, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)).

Let i ∈ ω. Answer A = σ(e) is false in w0, so since σ is a solution, σ eventually
converges to A0 = ε(e) in w0, so there exists e0 properly extending e by which σ has
produced A0 successively at least i times after the end of e and σ retracts A back to
A0 no sooner than stage j + 1. Now continue according to the recipe described in the
proof of (3 ⇒ 1) to construct wn+1 ∈ Ce(n + 1) such that:

λ(σ,wn+1) ≥ (i, (r1, . . . , rk, j + 1, j + 1i, j + 2i, . . . , j + (n + 1)i)).

Since i is arbitrary,

λe(σ, n + 1) ≥ (ω, (r1, . . . , rk, j + 1, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)) > λe(σ′, n + 1).

Next, consider the case in which σ violates stalwartness at e. So σ(e−) = ε(e) but
σ(e) 6= ε(e). Let w ∈ Ce(0). Let q denote the number of errors committed in w by
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both σ and σ′ along e−. Since σ′(e−) = ε(e), it follows that σ′ does not retract in w
from j onward, so:

λe(σ′, 0) ≤ (q, (r1, . . . , rk)).

Again, there exists w0 in Ce(0). Since σ retracts at j,

λe(σ, 0) ≥ (q, (r1, . . . , rk, j)) > λe(σ′, 0).

Let Ce(n + 1) 6= ∅. Since σ′ produces ε(e′) at each e′ ≥ e,

λe(σ′, n + 1) ≤ (ω, (r1, . . . , rk, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)).

Let arbitrary natural number i be given. Since σ retracts at j, one may continue
according to the recipe described in the proof of proposition ?? to construct wn+1

extending e in Ce(n + 1) such that:

λ(σ,wn+1) ≥ (i, (r1, . . . , rk, j, j + 1i, j + 2i, . . . , j + (n + 1)i)).

Since i is arbitrary,

λe(σ, n + 1) ≥ (ω, (r1, . . . , rk, j, ω, . . . , ω︸ ︷︷ ︸
n+1 times

)) > λe(σ′, n + 1).

a
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