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I

INTRODUCTION

Science builds models to manage and to understand the phenomene}l
world. In choosing between competing models, a common .standard i
based on the idea of goodness of fit: that model is best which best fits
the data. This paper looks at the idea of goodness of fit for mo;dels.of
scattered data. We concentrate the discussion on a context of mqu_nry
that is of considerable philosophical interest and explore the question
oodness of fit is decidable there.
o Wk’gg ii)itext for our discussion is chaos theory, where we focus qn
Robert Shaw’s illuminating analysis of the dripping faucet as a c}.xaotlc
system (1984). Shaw’s analyis is comprehensive. It proposes not }us; a
chaotic model of the dripping faucet, but a whole .methodol‘ogy or
modeling complex and apparently aperiodic bet.lawnor. It ralsei tllle
question of the suitability of chaos theory as a scientific approac . 2
examining this question, we argue for sever.al theses: first, that1 wit
important exceptions, it is-not generally dec1daple when a mod‘e con-
stitutes a best fit; second, that goodness of fit in the contexts mvestl-
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gated by chaos theory has less to do with exact replication of the data
than is typically assumed; finally, that the choice of whether to accept
models like Shaw’s depends on contextual and pragmatic judgments
about methodological issues as much as on the goodness of fit of the
particular model.

II

TWO TYPES OF MODELS

During the past two decades, under the name of ““chaos theory,” there
has been an explosion of interest in the use of simple mathematical
models to study complex behavior in physical systems, systems as di-
verse as hydrodynamic flow, autocatalytic chemical reactions, and pop-
ulation biology (Hao 1984; Holden 1986). Moreover, this “chaotic”
approach promises fruitful applications to fields such as cardiology,
economics, and neuroscience. One of the systems that provides an
exemplary prototype for this approach is the familiar case of the drip-
ping faucet. The analysis of this case offers some evidence that chaos
theory can deliver on its promise.

As'we all know, when water leaks slowly from the end of a pipe,
it forms drops that eventually detach and fall, and at intervals that are
(unfortunately!) detectable. For low rates of water flow, this dripping
can be as regular as a metronome, exhibiting periodic behavior. As the
flow rate is increased, however, the drops begin to fall irregularly. The
transition from regular drips to irregular and seemingly patternless
behavior suggested to Robert Shaw that study of the dripping faucet
might provide insight into a similar phenomenon, the problem of the
onset of turbulence in fluid flow past an obstacle.

Turbulence is along standing problem for classical physics. There
is still no adequate classical treatment of the whorls and eddies that
appear in waterfalis, whirlpools, and wakes. Before chaos theory, the
standard approach: was the account suggested by Lev Landau (1944).
The Landau model seeks to understand turbulence by describing how
smooth laminar flow (i.e., flow where the fluid can be considered as
moving along in separate, neatly stacked sheets) becomes disrupted as
the speed of the fluid past an object is increased. To illustrate the
technique, imagine water in-a slowly moving creek flowing past a large
rock. Suppose we place a very accurate device downstream from the
rock that measures the velocity of the water at that point. For laminar
flow, the device will register a constant value, but as the current in-
creases in speed the smooth flow lines around the rock begin tobend,
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causing undulations which detach in?o small eddies that move (;1(3]\;129
stream in time. As one of these eddies passes our measurlﬁg "i wi}i
the velocity will register an increase, then a decrease, and t eg i b
return to the undisturbed value until ano.ther ed.dy comes ?/.f e
sequence of velocity measuremejnts_——the time series—changes fr
constant to periodic behavior (see Fig. 1a,b).
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FIGURE 1. (after Kadanoff (1983})

So far, a straightforward model suggests i'fself for this syslitem.t Aﬁ
low flow velocities, the rock has no susbstantlal effect; sma} pertzte
bations in velocity are quickly smoothed out. We can plot tlhli in smte
space; that is, on a graph where a poipt. {epresents thg ve ;)(.1 v-§ e
of the system at a given moment. The initial ﬁo“{ v;elocnty t 1e?hripthe
sents what is called a fixed point attractor, which is ]us.t to sayt z; e
fiow velocity remains constant and, if perturbed, quickly re (;Jgies to
the initial value. At higher velocities, when the r.ock causei _e dies 12
appear below it, we get periodic flow cha{actenzed by a l:ﬁ ; ;;1 ¢
attractor. That is, in state space, we have a circle representmgA o ige c
of velocities through ‘which the state pf the system cycle.st, SCZ ches
appear within eddies, however, the time series of' velocll mihe e
ments will vary with two frequencie§, as seen in Figure c. 1 ariund
representing the state of the system 1n state _space now sp.nra ;11 ound
a two-dimensional torus. If the two frequencies are not ration : ayt o
mensurate, the system will never return exactly to the same state;
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stead it will wind around and around the torus forever and never regain
its starting point. This situation is labeled quasi-periodic behavior.

The heart of the Landau model then is the torus. All systems of

fluid flow, even turbulent systems, are modeled by an n-dimensionai
torus (where the dimensionality n depends on the system of eddies
within eddies). One treats behavior that appears to be aperiodic as
quasi-periodic, making some or all of the frequencies incommensura-
ble. Since it is not obvious how to distinguish genuinely random tur-
bulence from highly complex quasi-periodic behavior, rather than
treating a particular fluid system as behaving randomly, it seems that
we could always look for a Landau model with suitable frequencies
and dimensionality. The Landau model for the onset of turbulence
thus embodies a classical view of complexity, which treats complex
behavior as arising from a welter of competing influences, degrees of
freedom, or interacting subsystems. (Below we speak of a “Landau
model” to refer, generically, to any model that adopts this approach.)

Chaos theory challenges this classical picture of complexity and
randomness.! One of the seminal works in chaos theory is an alterna-
tive account for the onset of turbulence. Known as the Ruelle-Takens-
Newhouse (RTN) model, this account questions the idea that the com-
plex behavior in turbulent flow must be modeled by the agglomeration
of incommensurable frequencies (Newhouse, Ruelle, and Takens
1978). Instead, the RTN mode} explains the transition to turbulence
by the appearance in state space of an attractor that represents €x-
tremely complicated dynamical behavior, yet is described by a very
simple set of mathematical equations. This novel mathematical object
is'called a “sirange attractor.”

In the RTN model, the behavior of fluid: flow past an obstacle
follows the path laid down by Landau only up to the appearance of a
two-dimensional torus. After that point, a further increase in the flow
rate can render this attractor unstable; and for a wide variety of cases,
the behavior will change to weak turbulence characterized by motien
on a strange attractor. The strange attractor is characterized by several
important features: (1) it is an attractor, that is, an object with 1o
volume in state space and toward which all nearby points converge; (2)
typically, it has the appearance of a fractal, which is to say, a stack of
two-dimensional sheets displaying a self-similar packing structure; 3)
motion on it exhibits sensitive dependence on initial conditions, that
is, for any point on the attractor there is a nearby point which traces
a path that diverges exponentially from that of the first; {4) it can be
generated by the numerical integration of a very simple set of exact
dynamical equations.
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We now turn to the dripping faucet for some lessons in how to

adjudicate the choice between the torus and the strange attractor.

381

THE DRIPPING FAUCET

Shaw’s analysis of the dripping faucet is an exemplgr'for chaos theory.
It describes the experimental procedures for ob;talmng relevant data
from a physical system and develops the Fheore’ucal apparatus nce.de‘d
to analyze that data using the mathema;.ﬂcs gf chaos. The analysis is
especially important in two regards.. First, it sl_lows how tc? stlud.yda
very complex physical process using mmp?e chaotic ma;themat‘xca mgk-
els. This vindicates the notion that exotic mathematnca'tl objects, h.c
strange attractors and fractal sets, are relevant to physwgl systems in
the natural world. Second, the analysis develops an invariant measur,e;
for the unpredictability of chaotic systems: the “en{tropyu measure.
This measure provides a quantitative tool for comparing different chg—
otic systems and for characterizing the way they respond to changes in
i ironment. .
thelrl?ln:ﬁioanalysis of the dripping faucet system, the crucial ﬁrs.t step
is to focus attention on just one macroscopic fea:ture of a complicated
situation. Instead of trying to analyze the changing shape of the drgps
as they form and detach, data are collected and presentqd as a series
of numbers (7, T, T...) that represent the elapsed time bet\f@en
successive drops (the “drop interval”). The problc?m of the trans;tlon
to complex behavior then takes the form of modeling thf: cha}nge }rlom
a situation where all these numbers are th;: sar?e t}? a situation where
rvin a complex and seemingly random fashion.
they I\; 3I;Ic,wtting thI; pairs (7, T..0) Shaw.and his colleagues conélci
probe the data collected for evidence that a simple muathematlcal‘mo ef
would be appropriate for understanding the behavior. In the case oh
periodic dripping, 7, is always (roughly) equal to T, ; and the grap
of the data is approximately a point (see Fig. 2a). After the flow rate
is increased into the aperiodic region, we weould eyfpect to see a plot
such as that in Figure 2b, if we assume the behavior to be %'andom.
That is, if there were no correlation at all between suc?esswe drop
intervals, the graph would show a random scatter of pﬁ)lant.s. Sucllli a
scatter could be the result of some intrinsically probab}hst%c mecha-
nism at work, or it could point to the presence of competing mﬂuenc::s
from innumerable microscopic subsystems of the Landau type (the

nested “‘eddies’).
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“periodic” “stochastic”

(a) (b) .

n+t

29 {msec) 35 28 {msec) 33
FIGURE 2

Surprisingly, the experimental data produce plots such as those in
Figures 2c and 2d. These patterns found in data from “random” drip-
ping help explain why researchers often speak of finding ““order in
chaos.”” This simple graphical analysis suggests that a complicated
continuous system, which presumably would require a high dimen-
sional Landau model, can “behave in a ‘low-dimensional’ fashion’
(6)°. :

Following this suggestion, the model Shaw proposes is quite dif-
ferent from a Landau-type one. It is based on a simple analogy, which
constitutes the second stage in the analysis. Suppose we have a body
suspended from a spring, and that the body undergoes a constant
increase in mass. As the mass increases, the body will accelerate down-
wards. Let us suppose that at some critical distance the body separates
into two bedies—one with the original mass still attached to the spring,
which will then spring back up to its original position, and the other
body with some mass Am that detaches and falls (see Fig. 3). If g is
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the acceleration due to gravity and k is the spring coefficient, then the
system can be characterized as follows (15):

mg—kx = mX
= constant
Am o Xy,

FIGURE 3

The assumption in the analogy is that _the viscosity of };Nate: ag;snilaksz
the spring coefficent and that flow rateis analogc.)us tot e trs fes s
change. Thus the model ¢émbodies the hypothesxs that, \gxh eSplike °
the effects of viscosity and flow rate, dripping water behav

mass on a spring.

data analog model
(®)
90 | (@) PN

é:‘f’“*\ \\x
A i

"0 & \ /
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w{ —
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To examine the hypothesis, Shaw constructed an analog simula-
tion of the mass and spring and used it to generate time series data,
just as with the dripping faucet. The result was that “physical faucet
data can be found which closely resembles time vs. time maps obtained
from the analog simulation . .. ’(16). This resemblance (see Fig. 4}
seems to confirm the hypothesis. The advantage of postulating the
dripping faucet as like a mass on a spring is that it ““makes available
continuous variables, which are not obtained from the physical exper-
iment as it is presently conducted”(17). Pursuing the analogy, the func-
tions describing the mass and spring are taken to indicate the under-
lying dynamic in the dripping faucet and used to construct an attractor
in state space for the system.

The result, however, is not an n-dimensional torus. Instead we get
a strange attractor (see Fig. 5). According to Shaw, “this structure can
be recognized as Réssler attractor in its ‘screw type’ or ‘funnel’ param-
eter regime. The close correspondence of model and experiment. ..
argues that such a structure is imbedded in the infinite-dimensional
state space of the fluid system” (17). The dripping faucet experiment
thus demonstrates how strange attractors may model real physical
systems.

Specification of the attractor yields a geometric specification of
the model. If the same attractor manifests itself in other systems, then
we would have reason to believe that the same type of chaotic behavior
is at work in these other cases. The fact that the dripping faucet data
“looks” as though it matches the Réssler attractor hardly constitutes
a sufficient test of the model, however. It would alse be useful to have
a quantified characterization of the dripping faucet model.

position
X

\

velocity 0
~& (up)
FIGURE 5
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The third stage of Shaw’s experimental analysis develops:. a

method for characterizing strange attractors by giving a qugnmatwe
5‘ measure for their unpredictability. He contends that the resulting meas-

ure comes from data that contains a stochastic element beyond what

would be introduced by observational error alone. Shaw borrows from

information theory to develop this mea}SUf;e, which he calls the “en-
tropy”’ or “rate of information produc:tnon of t.he §y§tem. e

Laplace once conjectured that, given premse'm (?rm; b 2bou
the present position and momentum of every particle 11111 t :5 :,1 " thé
it would in principle be possible to predict exactly t ’e z ate o
universe at any future time. However untenabl.e Laplace’s i Fg 1 0yf ar;
it will serve as a useful vehicle in order to illustrate the i e? of an
entropy measure. Suppose that we have a three—p.art si';texg othe s
mitter (T), channel of transmissiop {C), and receiver ( )jt ne e one
hand, we might consider the physical worlfi to b§ an nis anc of this
system, where present states (T) are transmitted via thg ;\tvs o nathre
(C) into future states (R). On the otl}er hand, we mig cogtations
scientific theory to be an instance of thn.s system, where' rct:pxresge PR
of present states (T) are transmitted via a r{lodel (C) m:g gies Hons
(R). Laplace’s conjecture amounts 1o the claim thgt our eatCh Sould
in principle be perfect transmitters,. §o the_it predlctlpns tmLa future
states perfectly. If perfect predictability f_alls:., according % caﬁ a ;ur
can only be either because our r.nodelflitlmperfect or be

i f present states is imperiect. .

TCPTCEZI:;%;E?S; icll?eas can be quantified. Given initial data, we c;rex
measure the degree of predictive ac(:ic*lllra?By tof :C?I?ii@aﬁi :;r;lepthe

rees of accuracy of different models. But w (
S&ict of increased accuracy in our initial da%a;i i;:éxvzdn;(;d;i;p\fgviiz

w much our predictive accuracy 1s
iiﬁf:yh; our initiai data. Call the first o.f t-hese the meagz;ftgje’
predictability (P); it measures degrees of prefhctwe accur;cy:m e
second of these the information measure (I)g it measu:r;s the ;e Isesems
adding to our initial information. The{r difference (. -—I)Thilz coerss
the rate at which predictive accuracy is lost over time.
entmggst’:;?zgierned by classical attrac?o_rs, like the fixed p;;mrtr ;:ic:
limit cycle attractors, do not gave a p(t)snézzregt;c;pycnﬁziii S.ystems
predictive accuracy does not degenerate oV . ey
strafige attractors-have a.positive entropy. measure;
ig:s‘iee;izﬁrzz,y over%ime at an increasing rate. Furthermqre, thfe:tric;piy;
measure is an invariant of the particular tzp:s (‘):f1 ;l;?gzztizsis c;n]y s
i re of the system just as muc .

Eglilfnta};;gt)xll:t:ignature rather than a geometric one. However, 10 get a
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model with positive entropy, one could take a classical system and
simply add a noise term. Shaw contrasts such an alternative, the par-
abolic map, with his chaotic model.?> With noise added, the parabolic
map can produce a point spread that roughly matches the data and
one for which the entropy measure is positive.
The issue is the source of noise; classically one locks to measure-
ment error as the source. According to Shaw, however, the data from
the dripping faucet indicate that not all of the noise in the system can
be attributed to measurement error alone (79-83). So in particular, we
cannot interpret the noise term in the parabolic map as representing
just measurement error. We must look for another source. By contrast,
Shaw’s chaotic model is complete. The assumption that the system 1is
chaotic suffices to account for all the noise. We can agree with Shaw
that this fact seems a more conclusive reason for thinking that chaos
provides a good model of the dripping faucet than simply the fact that
a state space graph resembles the Réssler attractor. Nevertheless, cha-
otic systems are not predictable in any standard sense, and models of
chaotic systems do not give us a comprehensive set of predictions that
we can verify to confirm the model. The entropy measure is the only
exact quantitative prediction that Shaw’s technique generates. Thus we
must ask two related questions: is the dripping faucet in fact a chaotic
system and, more specifically, is Shaw’s chaos model superior to a
Landau model of aperiodic flow? Shaw argues that the latter question

is fundamentally undecidable. We turn now to an assessment of Shaw’s
argument.

Iv

MODELING AND PREDICTIVE OPTIMALITY

Shaw’s argument presupposes an account of science as model-build-
ing. More specifically, this account of science sees physical systems as
producing “data streams,” or sequences of numbers, which the scien-
tist seeks to match by constructing a model in the form of an algorithm
that also generates a number sequence. One can then try to judge these
models. by how closely their data stream mimics the stream produced
by the physical system, as well as by other criteria such as simplicity
or explanatory power. This “two-stream’’ account agrees with a pic-
ture of scientific theorizing proposed by Ray Solomonoff in 1960 de-
scribed as follows by Gregory Chaitin (1975, 49): *“atheory that ena-
bles one to understand a series of observations is seen as a small
computer program that reproduces the observations and makes pre-
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dictions about possible future observations. The smaller the program%
the more comprehensive the theory and the greater the degree O

nderstanding.” . —
The two-stream doctrine suggests a straightforward way to quan

tify goodness of fit in terms of what we will call predictive optimality.
. As Shaw describes it (88), we take a string of data from the actual

system starting with some value X, and f:ompare it tg !:k}e strmg‘tgeﬁ—
erated by the model when it is supplied W}th X as the initial COI}; i lo'ﬁ
The two strings are stipulated to be identical at time %ero, ‘t?ut t' ey wi
eventually begin to differ. The slower the rate at v.vhlch this dlffe@nce
grows, the more predictively optimal th;e .model is. As Shaw wmes%
«_ .. the average number of matching digits, apd the average rate (;
Joss of matching digits as predictions farther into .the futurie]l are ak;
tempted, can be recorded. It is unclear to: the writer whet er sulc1
measures are coordinate independent, but they see'm c?peratlgna 3;
well-defined in a given setting, and capable of measuring improving o

’ mogi;iictive accuracy is not the only thing we value in ‘a mgdelg1
nowever. Other things being equal, a model §hould be concise. god
predictions are of less value if the computational gpparatu? requx;c;el
to generate them is extremely unwielfiy. The conmsex}ess 0 la m;; 2
can also be quantified. The computational appara}tus isan a %Orl'thn;
and we can measure the computatioqal complexity of the a g(gr.l oo
(Kolmogorov 1965). Obviously there is a tradeoff betweer} prec ic e
accuracy and computational simplicity. We gan always obtalg ism;;ﬂ
algorithm at the expense of accuracy. It might ‘al'so seem t at tgrrmore
accuracy could always be obtained if we were willing to rgsor 0 o
complex algorithms. But if the system gnder study cc.)nt.am.s s:l)mg d'g "
uinely random elements, then predictive accuracy 18 limite ?1 e
algorithm can duplicate the output stream of the system exactly
reha“j\;’yl.len, then, is 2 model optimal? The difﬁculty is dec.fldil:lg whcn
we have reached the point of diminishing r.etums 1r} sacqgcmg slllr;
plicity for accuracy. In the extreme, the: c'hfﬁculty is deﬁ:l 1?g n\;\Odel
greater accuracy is not obtainable; ifl deciding, that is, when to

a system as though it contains genuinely random elements.

v
UNDECIDABILITY

The appearance of randomness in chaotic systems poses a stratgg;:
problem for theorizing. If 2 novel analysis of apparently random da
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can reveal intelligible patterns, how can we be justified in ceasing the
search for simple models? At what point do we regard a statistical
spread in the data as not requiring further analysis? This is equivalent
to the question of predictive optimality. Consider the plot in Figure 4a
once more. There is a specific squiggly “shape” to the data that is
apparent to the eye, and it is indeed this geometric' pattern that the
model successfully matches. But there is also some “‘fuzziness,”
resenting a statistical spread about the specific squiggle. To say we
have successfully modeled the data can only mean that we have suc-
cessfully modeled the data stream so Jar as it is not random. The
remaining spread must then be regarded as mere noise.

At some point, one must stop looking for “fine structure’” and
start seeing “random noise.” But when? For chaotic systems, Shaw
argues that this question is undecidable. In principle, he contends,
there is no way to determine which fluctuations are “signal” and which
are “noise.”

The argument proceeds from the fact, noted above, that a model

of a chaotic system will necessarily produce a data stream that differs
from the system. :

rep-

The discrepancy between the predictions of a model and obser-
vations of a physical system is, to the observer, a random element.
If the model embodies the observer's complete knowledge of a
system (including perhaps the addition of a noise element), he will
be'unable to distinguish the two resulting number streams, should
he get themn mixed up. A “proof”’ that the model was the best
possible would involve a proof that the random element, or dis-
crepancy, was intrinsic to the system, or “truly random.’ not
susceptible to any further deterministic description. (93)

Shaw suggests that proving a number sequence to be random is
an undecidable problem. More specifically, he means it is a search task
not guaranteed to halt. One can look for an effective rule that generates
the sequence and upon finding it know that the sequence is not ran-
dom. Yet from the fact that one has not found such a rule, it does not

follow that there is none. It does not follow that th

€ sequence is in fact
random.

““As Chaitin and others argue on the context of the theory of
algorithms, one cannot ‘prove’ a number to be random, 'to possess
such a proof would imply a logical contradiction. Thus, given a set of
seemingly random numbers, there is no way in general to show that
there does not exist an algorithm shorter than the list itself to generate
the numbers, and thus reduce the randomness”’(94). In discussing
whether one can prove the assertion that a given model best fits the
data, Shaw suggests (somewhat tentatively, to be sure) a connection
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. with Godel incompleteness; i.e., the occurrence .of um‘iecidable sen-
~ tences in any sufficiently rich system of formal'arxthn_neu; imatity
We shall try to bring out importar'lt ways in which the op : 4
of a model is a matter of non-algorithmic ]udgrr.len@s tl;ft epznflt
ensitively on specific features of the contc;xt, W}fule m‘t is sens;.d ;
i be undecidable, we suggest that nothing so imposing as Gode
ﬁizmpleteness lies behind it. Further, the undecidability is net .;2
universal as Shaw’s remarks would indicate. We turn to the latter pot

first.

Vi

QUANTUM STATISTICS

Shaw rests his suggestion that the optimality of a m.ociel ;s L;Egzczgabils
i t show that a system 1is truly o
on the claim that one canno : I8 ruly ranecn,
i ing eptible to any further
he sense of its being “‘not susceptit :
Elescription” (93-94). Investigations in the found;tlons c;f q;i;?;ngg
t this claim is false. The most ce
theory, however, show thal . Sibiag
i t two decades is Bell’s :
ndational result of the pas ‘ : 5
i;327) one version of which demonstrates precisely the 1r}1pos:1b11i1;ti};
: ) nts w
ivi inisti del for a whole class of experime
of giving a deterministic mo - e
i the ‘connection to Shaw’s p -
stochastic outputs. To show : . v
describe the situation for just one experxmer.lt in tl}e class. (See Cushing
and McMullin for further references and dxsc;ussmn.) e
In the experiment an atomic source steadily decays ax} Cn’gl ? 12t>0ta1
i i lectrons) in the singlet state (so, :
of spin-Y4 particles (e.g., € he O
in i it i d). After emission, the elec
spin is 0, and it is conserve : fter ¢ e e the ox.
i site directions to distinc .
separate and meve in oppo , St M
i for observation. In the wings,
perimental apparatus . Dere B ctron
the spin componen
ments that can be set t0 measure D O s
irecti in the plane perpendicularto
along one of two directions:in ﬁ ! C
i nt involves the measurem
line of motion. Thusthe experime olves e o
i 5, el ! e particle in a pair) a ‘
variables, either 4 or 4’ (for on : e o
icled corresponding to
! he other particle in the same pair), ' ; .
| o i i surement of spin. A particular spin
ossible orientations: for the mea \ z op
E‘leasurement has two possible outcomes: the electron 15 either spménd lg
3 £ 2y 3 -
clockwise (““up”’) or counterclockwise (* d'own ?‘ 1r,1, the m;:lasl,:;eown”
rection. We will record the *“up” resuit with a 1”2 and t. ?0 [ down
i g tions each of the four varia
with a “0”. Under these conven . ] g
either 1 or 0 asa value. In four-separate runs, on palr;dl pay:gc};s,and
H i
measure orientations 4 with B, then A with B’, then wi 1
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finally A’ with B’. The best tested experimental geometry corresponds
to the situation where the relative angle between directions in the first
three runs (A-B, A-B’, and A'-B) is 135° and the relative angle be-
tween the orientations in the last run {A’-B') is 45°. In a number of
experiments of this type (more accurately, in experiments involving
photon polarization, which is formally similar to electron spin), the
statistics predicted by the quantum theory have been very well con-
firmed. Rounded to just one decimal place, the statistics are these.
P(A)=PB)=P(A")=PB")=0.5 (D
P(AB)=P(AB')=P(A'B)=0.4 and P(A'B")=0.1 (2)
(We write P(A) for Prob(4 = 1) and P(AB) for Prob(A=1 & B= 1),
and similarly for the other variables.) We shall see that, contra the
claim made in connection with chaos theory, an experiment producing
these statistics is “not susceptible to . . . deterministic description.”

To show this, suppose (to the contrary) that there were factors
that determined the experimental outcomes. Let “x* be a variable that
ranges over these outcome-determining factors. If you like, one can
think of x as an ordered couple whose two components constitute the
factors relevant, respectively, to the two separate particles in an emit-
ted pair. Thus if an emitted pair is characterized by a particular factor
x and we measure A4 on one particle in the pair, then x (or its relevant
component} determines whether the result of the A-measurement is
either 1 or 0; similarly x would determine the outcome if we measure
B (or B’} on the other particle in the pair. With this understanding,
to suppose that there is a deterministic description of the experimental

- outcomes amounts to representing the measurement outcomes by func-
tions A(x), Bfx), A'(x), and B’ (x) taking values either 1 or 0, depend-
ing on the determining factor x, We will show that such a deterministic
representation is inconsistent with the data in (1) and (2).

For that purpose, notice that if numbers g and r are either 0 or 1,
then gr=g and gr<r. If p is also either 0 or | then the following

inequality holds
qr=pr—pg+gq
since, depending on whether p=0or p= 1, the right hand side is either

g or r. Because averaging over the values of variables PIeserves sums,
differences and order, it follows that

(gry=«(pr)—{pg)>+{g)
if p, q, and r are random variables taking only 0 or 1 as values, and
(.) denotes the average (or expected) value of the enclosed variable.
If we now set ¢ = B(x), r=B'(x)and p=A"'(x), then

(BB')<{(A'B')—(A'B) +(B).
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If we set q=A(x), r=B'(x), and p= B(x), then (after transposing)
(AB'Y +{AB) - {AY=<{(BB').

‘Combining these two inequalities yields

(ABY +{AB' Y +{A'By—(A'B')=(A) +(B).

the same
iables that take only 0 and 1 as valugs, averages are :
z;) ;rv;g;bilities; i.e., (AB) = P(AB), and similarly for the other pairs.

Thus we obtain the “Bell inequality”’:
" P(AB)+P(AB')+P(A'B)— P(A'B' )< P(A)+ P(B).

From (2), the lefthand side equals 1.1, and from (1), the.r?ghthand ;lde
equals 1 in violation of the inequality. Thus the supposition that tlire
are factors determining the observed values leads to the Bell inequality,
ich is i i i data in (1) and (2).
which is inconsistent with the _ ]
In addition to determinism, we should point out that the preced
ing demonstration involves an assumption about the measuremcfnt prot:
cedure. In representing the measurement outcomes as funcmor;stge
certain determining factors x, we Suppose Ath;at thf ;futigé@syc; i
i i ing; say A, is not afiec
measurement of a variable in one Wi . .
of the variables (B or B') is measured in the other wing. If ther;e were
interference of this sort between the measurengent perfﬁrm&d }::V:?z
i btained in the other wing, we shou
wing and the outcome 0 N
represent the A-outcome at x not by A(x) but by A(x,B) or i{x,Bﬁ
In that case, however, the preceding argument would not go t rioug t
For similar reasons, we have to assume that the factor x (or 1t.s rel eva.}(rlle
part) that determines the outcome of a measurement oc?ulrlng in (zhe
wing is not influenced by the measurement being carned. out 12
other wing. In the guantum mechanical experiment Qescgbsfha 0;;;
. i S be reasonably certain that the s
we can arrange things so as to ‘ ~ "
i i mitted pair are spacelike-sep
measurements of the particles in an ¢ :
rated: i.e., so that no subluminal influences betwpen the two vylngi ca:in
creaté the unwanted interference. Were only a simgle system invo vzn;
however, there could be difficulties in preventmg. qne mee;)siurera o
from interfering with the outcome of the other. (This is a problem
i Sengupta.)
the arrangement in Home and . '
These no-interference assumptions, .}}owever, do not blgm Otie_'
force of the argument against undecidability. Tt;lat .argudmfnt is icrzl o
i i ical systems producing data-as
elling provided there are physica |
ind (ig) in arrangements for which we can be reasonabl};lf sgrettg;; Stf:;:
i i tisfied according to the bes
no-interference assumptions are sa cord DSt p e
i i i d, the derivation of the Bell ineq
available. Against this background, . : !
ity shows that no deterministic account of the f:iata 1§ poss;lble;alizﬁin i
contrary to the undecidability claim, the question of whether
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seeming processes can be modeled deterministically is sometimes de-
cidable. The Bell theorem shows that its decidability is not so much a
question of the general logic of randomness as one concerning the
specific character of the experimental data. Thus the issue is more
particular and less universal than one might have supposed.
It is easy to see, however, how one could be misled here. If we
only attend to the sequence of outcomes in the measurement of one
single variable, like the successive time intervals between drips in a
leaky faucet then (in principle at least), however random-looking the
sequence, one can always generate it as the output of a deterministic
mechanism for we can always find a function from the integers to the
output sequence and then suppose that the integers code for the out-
come-determining factors. We can try to rule out such trivializations
by adding requirements of computability and then bring to bear the
technical construal of random sequences in terms of computational
complexity (or perhaps some other account—e.g., that of time-com-
plexity). Under such construals, as discussed in the preceding section,
randomness may be undecidable for even a single sequence, Neverthe-
less, the Bell theorem shows that if we broaden our outlook to more
complex experimental situations that involve several stochastic varia-
bles (four is the minimum number for the Bell theorem; see Fine) then,
depending on the particular circumstances, deterministic modeling can
entail constraints that the data simply fail to satisfy:

VII

THE PRAGMATICS OF CHOICE

What Shaw says about decidability is a polemic as much as an argu-
ment. Shaw argues that goodness of fit is undecidable because he wants
it.to be undecidable; he wants the methodology of chaos theory to be
a live option to the traditiona! Landau model. If Shaw is a little over-
zealous in his invocation of Godel undecidability, perhaps this is un-
derstandable. The name of Godel carries weight.

Yet undecidability here is of humbler origins. At issue is the. tra-
ditional curve plotter’s problem with a stochastic twist: given a plot of
data points, which of the infinitely many curves that can fit those data
points is best? The twist for stochastic data is that the very notion of
a data point may be ambiguous. Is a cluster of nearby data points to
be treated as a single point scattered by the coarse-graining of our
measurement and representation scheme? If so, then any curve that
passes through the cluster is a good fit. Or is a cluster of nearby data
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points to be treated as a series of individual points all of which must
fit the curve? In so far as there is no conclusive answer to these ques-
tions, there is no conclusive test for best curve.

Although all parties agree that models shpuld be :testabie, part of
the issue between Landau modeling and chaotic modeling concerns thc;
very conception of a test. By traditional standards, the Ch?.Oth mode
of the dripping faucet is only weakly testable. Confirmation rests on
the general fit of the Réssler attractor and the entropy 0r{1easu_re. The
traditional standard employed, however, equates .testablhtyn with pre-
dictive optimality, conceived of as point bY point matching. Shaw
wants to loosen the grip of this traditional view. Thus Ef‘,ha‘w suggests
that for scattered data of the sort.one gets fro'm the dripping fauf:et,
pattern matching rather than exact reproduction of the data pon'nts
constitutes the right sort of test. Clearly if we knew we were dealing
with inherently random elements, then patt;em match.mg would‘ be
suitable, since there would then be no guestion of trying to‘ achieve
point by point matching of the two data :@tre'ams. The polemic about
true randomness being undecidable-in—pm%mple seek§ to reshape the
conception of testability in terms of criteria appropriate for random
DTOC?;;ZSl-me of argument goes something like t%lis: If we kne\y vye were
dealing with random elements, we would not insist on predictive ogn
timality as our standard of what counts as a best fit. So lo.ng as we ( 0
not insist on matching predictions with the data on a point by point
basis, however, chaotic models pass goodness -of f}f tests very wlell.
They generate a close fit to the *“‘shape” and “spread”’ of the datap ;)t,
as close a fit as can be produced by any Landau model. They a sg
match the positive entropy measure exhibitffd by the da'ta, a rpatch that
is beyond the reach of Landau models w1thout'spec1al nglse tergls.
Moreover, the argument continues, randomness is not dec1dab1-e. -or
all we know, in the case of data like that obtained fr(.)m the dripping
faucet, we are dealing with random elements. Hence, it conclu@es, we
should not insist on point by point matching, and should move instead

tching and other more suitable criteria.
° paé’féxiariapointgreveals the flaw. For even in cases whf:re we-agree
that one can not decide whether the data represent genuine random-
ness, it does not follow that we should assimilate our standards oﬁ
testability to those of truly random processes. We cou}d equally we :
go the other way! That is, undecidability leave.s us with a choice o
whether to treat the data set as though it contdined r.andom features,
or to treat it deterministically. It leaves us w.ith E'l chﬂmce of whether tc;
insist on point by point matching as the basic criterion of goodness 0




fit for our models or to move to pattern matching and other criteria.
Undecidability alone does not tilt the balance one way or the other.
So the polemic misfires. Nevertheless, Shaw’s discussion of test-
ability for models of the dripping faucet data points to something
important; namely, the pragmatic equivalence between judgments of
randomness and standards of goodness of fit. It suggests-that there is
no point in treating the modeling situation as though it involves two
separate issues, an ontological one about “true randomness” and an
epistemological one concerning goodness of fit. There is no point in
supposing that we can separately decide about “true randomness” and
then fix on appropriate standards of testability. From a practical point
of view, the issues and the decisions are linked.
The quantum theory can teach us a lesson about these decisions.
‘The history of the quantum theory records 2 series of premature con-
gratulations over alleged “proofs” of the impossiblity of a more de-
terministic substratum out of which to concoct a rival theoretical ap-
proach “(the varicus “no-hidden-variables” arguments). The Bell
theorem finally moved the discussion beyond the level of seif-congrat-
ulation by making it clear that the question of adequacy of ‘a model
needs to be relativized to a specific family -of -constraints for which
there-are reasenably clear formulations and experimental tests (the no-
interference conditions discussed in section VI). In‘chaos theory, the
question of “true randomness” is just the question -of whether there
are “hidden variables” in the faucet. The polemic about decidability
shows that this question is tantamount to fixing on standards of good-
ness of fit. The lesson to learn from the quantum theory is:that here
too goodness: of fit needs to be made relative toa specific family of
relationships that can be judged reasonably well from the data. For
modeling scattered data, the appropriate relationships are qualitative
ones:* the patterns and shape of the plot, and associated measures like
the spread and entropy measure. (A related move is contained in
Dembski, who suggests that relativization to specifiable families of
patterns might be a useful alternative to the current, intractable treat-
ments of randomness itself.) In general, one would expect the relation-
ships in the family to depend on the context of application; available
background information, and on the uses one anticipates -for the
model. Clearly these involve judgments of practice as much as of
principle, and this way of proceeding would make plain the extent to
which the issue of goodness of fit relies on pragiatic judgments.

Other desiderata for choosing among competing models empha-
size this pragmatic lesson as well, For example, Shaw’s approach and
the Landau approach will generate “types” of curves that will aiways
differ in certain systematic ways. Broadly, the difference amounts to
this: chaos theory gives us relatively simple models with a loose fit to
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~ models (without special

x models

while the Landau approaich gti\i'ezsrsp(r:::;ii;ﬁ;ngl{g Nben
curately, -at le i
e ﬂlﬁf;‘ra positi):/e entropy measure, while Landau
noise terms) do not. This megns that.the r-a‘{e
loss of accuracy of a particular Landau model will remamdfagvi
Y or time, whereas chaotic models tend to losg predict1y
et incre’asing rate. In principle, then, for any given chaotic
aCCUraCY:l‘t anexists a more exact Landau model. However; Landalu
e tfere interesting degree of accuracy have to be enormously
gy Tiln although one may talk programmatically about the
Cofnplex- f o re accurate Landau models, in practice one does not
iy ko mgow t+o find them. In these circumstances, the fact that
acwauyhknowdoes the job of pattern matching with models that f:ur}e]l
ChaO; stirsgirzr than those of the Landau appmach. would seem to-weig
m’: favor, at least from a pragmatic pqlnt of view, L
e SA th,er value for assessing models is scope. The Ross; er aW Lo
i '2? le model .of -a very complex pattffm of behavm;r., . : o
i E; xpect that the same attractor might be found in
s pof aperiodic flow besides the dripping faucet. Thus ‘ge
oty del to have broad scope, unifying VariOI.}S phenomen;a 3;
€XP;€CF th? m(t)hem to the same pattern. Because of this, we feel that ‘1'
i ower. We would seem to have done good explanator %
- ex?lanamrylg say .of many. diverse aperiodic systems that they ; )
w{;lfilﬁ(aiif}:vé;;&zr like the R@ssler attractor. By clczntéa_st, ai;lgp;f);)szez ?t
s dau model of the drippi .
Wilfl?;llggyaf;‘;? ?;)ifgzﬁz ii;lzr;u model would be applicable to other
is

i f one
aperiodic systems. Indeed it is unlikely that a Landgu modei .0

dripping faucet would be applicable to a:noth.er drlpgmgriivggei; z;ril(():;
i in size, shape, materials, v150051t.y,. and su neion

it m (:unt, just to revised initial conditions but a‘lso' to )

Do fa I(fn ndamental equations. Lack of scope and unifying Ii?gwg()

ferifmgsifteous ureason to question whether Landau models- wou

ma 4

adequate explanatory v?'ork.
The general point is that

implicity; scope,
atures such as simplicity,
giound judgments of choice. These features are context

pragmatic. We think this is as it should be.

the data,
that can fit ;
specific, chaotic mode

goodness of fit has to work together with

and explanatory power in order to
dependent and

VIII
COMPETING PARADIGMS

d chaotic models
i ween Landau models an
e +ween Ptolemy’s and Co-
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In some ways, th .
is like the choice during the Renaissance be




pernicus’ models.of planetary motion, Ptolemaic methods gave rise to
endless compoundings of deferents and epicycles upon orbits, much
like the complex coupled periodic motions of the Landau models,
Copernicus’, and then Kepler’s, models offered greater simplicity, if
not necessarily greater accuracy (at least in terms of line-of-sight data).
Although, in a sense, the Ptolemaic models could not be refuted (they
could always be adjusted to save the phenomena) still that did not
prevent their overthrow,

Shaw’s argument for chaos in the dripping faucet challenges the
picture of turbulence presented in the Landau model. It also challenges
the very notion that the evaluation of scientific models proceeds by the
simple comparison of two data streams. In choosing models, one can-
not expect to sort the data into “signal” and “noise” by means of
routine manipulations. The task of deciding how much of the data to
model, and what aspects of it require modeling, is a task that calls for
good scientific judgment, Carrying it out is not routine (or “‘decida-
ble”). In particular there may always be innovations in the offing, such
as chaos theory, that compel us to reconsider where we have drawn the

order and chaos about which there is nothing more to be said.

Today there are those who see chaos theory opening up. a new
scientific renaissance, promising to be as revolutionary as Copernicus’
theory was in his time. However the issue is decided, applicability will
feature as a central factor. In this regard, it is worth noting that the
approach typified by the Landay model has been virtually barren of

NOTES
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1. Though we will usually speak of randomness, it may sometiines seem that one
could speak equally well of unpredictability. The two concepts are not 16 be
equated, although the task of sorting them out is beyond the Scope of this paper.
{See-Stone; 1989),

Page number references in the text are to-Shaw 1984,

3. Specifically, Shaw considers the function X=rx(l - )+ z for values of the param-
eter rihat yield periodic vatiation in ¥, and where Z is the added noise term (55).
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aid to provide
Kellert for further discussion of how chaos theory can be s

c . . - .

N f:iemiﬁc understanding of a qualitative nature
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