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ABSTRACT. Karni and Saffa [8] prove that the Becker-DeGroot-Marschak mecha- 
nism reveals a decision maker's true certainty equivalent of a lottery if and only if he 
satisfies the independence axiom. Segal [17] claims that this mechanism may reveal a 
violation of the reduction of compound lotteries axiom. This paper empirically tests 
these two interpretations. Our results show that the second interpretation fits better with 
the collected data. Moreover, we show by means of some nonexpected utility examples 
that these results are consistent with a wide range of functionals. 
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1. I N T R O D U C T I O N  

The Becker-DeGroot-Marschak (henceforth BDM) mechanism [1] 
provides an economic incentive for decision makers to reveal their true 
(subjective) value of assets. According to this mechanism, after the 
decision maker states his selling price of an asset, he is presented with 
a random 'offer price'. If this price exceeds his selling price, he sells 
the asset for this offer price. Otherwise, he keeps the asset. As is 
explained in the next section, it is the decision maker's optimal 
strategy to announce his true price of the asset. 

Several experiments show that when the assets are lotteries, it may 
happen that although a subject prefers lottery X to lottery Y, he will 
set a higher selling price on Y than on X. 1 It turns out, however, that 
the claim that the BDM mechanism necessarily reveals decision mak- 
ers' true values of lotteries depends on the assumption that they are 
expected utility maximizers. Although many experiments have shown 
that people often violate expected utility, it is not clear which axioms 
of this theory are violated. Karni and Safra [8] claim that the in- 
dependence axiom is violated, while Segal [17] offers an alternative 
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interpretation of the mechanism, according to which decision makers 
do not obey the reduction of compound lotteries axiom. In this paper 
we try to check the validity of these two interpretations of the 
mechanism. Safra, Segal, and Spivak [15] prove several implications of 
the first interpretation of the mechanism, the one analyzing it as a 
violation of the independence axiom. To check one of these predic- 
tions, we conducted an experiment. Our results do not support this 
prediction. Moreover, we show that our results conform with the 
second interpretation, modeling the mechanism as a violation of the 
reduction of compound lotteries axiom. 

The paper i s  organized as follows: in Section 2 we present the 
mechanism and the two interpretations. Section 3 contains the experi- 
ment.  In Section 4 we show that several nonexpected utility models 
may agree with the theoretical implications of the second interpreta- 
tion of the mechanism. Section 5 concludes the paper with a brief 

summary. 

2. THE MECHANISM 

Let  L be the set of lotteries with outcomes in the [ - M ,  M] segment. 
The lottery X = (x I , Pl ; • • • ; x , ,  p , )  E L yields x i dollars with prob- 
ability pi, i = 1 , . . . ,  n. The cumulative distribution function of X is 
denoted by F x . On L there exists a complete and transitive preference 
relation ~ .  Say that X >  Y if X~: Y but not Y ~ X ,  and X - Y  if 
X ~ Y and Y ~ X. The function V: L--~ IR represents the preference 
relation ~ if V(X)>i V(Y)CC, X~z Y. We assume throughout that the 
preference relation ~ is continuous (in the topology of weak conver- 
gence), and satisfies the first-order stochastic dominance axiom. That 
is, [VxFx(x)<~Fy(x ) and there exists y such that Fx(Y)< 
Fy(y)]  ~ X > Y. Under these conditions there exists a representation 
V of the relation ~ .  

The certainty equivalent of a lottery X, denoted CE(X), is defined 
as the number x that makes the decision maker indifferent between X 
and the degenerate lottery gx = (x, 1) in which x is received with 
probability equal to 1. The existence and uniqueness of CE(X) follow 
by the continuity and first-order stochastic dominance axioms. By the 
transitivity axiom it follows that the ordering of lotteries by the 



THE BECKER-DEGROOT-MARSCHAK MECHANISM 85 

preference relation 2 is the same as their ordering by their certainty 
equivalents. In other words, C E ( X )  is a representation function of 2 .  
Becker, DeGroot,  and Marschak [1] suggested the following mecha- 
nism to derive the decision maker's certainty equivalent of a lottery X. 
Let him hold a ticket for this lottery, and ask him to announce the 
price for which he is willing to sell this ticket. Denote this price by s x . 

Next, draw at random an 'offer price' out of the [a, b] interval. If the 
offer price exceeds the selling price s x or is equal to it, the decision 
maker sells his lottery ticket for the offer price. If the offer price is less 
than the selling price, the decision maker keeps the ticket and plays 
the lottery. 

This mechanism seems to force the decision maker to reveal his true 
certainty equivalent of the lottery X. Suppose that s x > C E ( X ) .  If the 
offer price is between the certainty equivalent and the selling price, the 
decision maker will have to play the lottery X, although he would 
rather have sold it. If the offer price is higher than S x ,  the decision 
maker sells his ticket regardless of whether he said s x or C E ( X ) ,  and if 
the offer price is less than the certainty equivalent of X, he keeps it 
either way. Similarly, he cannot gain by declaring a selling price below 
his certainty equivalent. In particular, if the offer price is between the 
selling price and the certainty equivalent, he will be forced to sell the 
ticket against his will. It thus appears to follow that the decision 
maker's optimal strategy is to announce his true certainty equivalent of 
the lottery. 

Let X and Y be two lotteries suchtha t  X >  Y. Since C E ( X ) >  

C E ( Y ) ,  a transitive decision maker will set s x > s r . Famous experi- 
ments by Lichtenstein and Slovic [9] and Grether and Plott [6] show 
that people do not always conform with this. They found, among other 
things, that most subjects prefer the lottery (4, 35. ~ , - 1 , ~ 6 )  to the 
lottery (16, 11. 25 ~,, -1 .5,  5~), but many of them set a higher selling price 
on the second. This preference reversal phenomenon seems to indicate 
that people have non-transitive preferences. Grether and Plott's results 
are different from former experiments, because they were the first to 
explicitly use the BDM mechanism to obtain the selling prices. 

Two recent studies suggest that the assumption that the BDM 
mechanism provides an incentive to state the true certainty equivalents 
of lotteries depends on the assumption that decision makers are 
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expected utility maximizers. Karni and Safra [8] claim that the above 
interpretation of the way a person responds to the mechanism assumes 
the independence axiom, and Segal [17] suggests an interpretation of 
the response to the mechanism where the reduction of compound 
lotteries axiom is violated, but compound independence holds. 2 Let L z 

be the set of two-stage lotteries. The lottery A = (X~, q l ; . - .  ; 
Xm, qm)~ L2 yields a ticket for lottery X i = (x;,, P",',-.- ; xin~, P,i) 
with probability qi, i =  1 , . . . ,  m. By the reduction of compound 
lotteries axiom, the compound lottery A is as attractive as the simple 
reduced lottery R ( A )  = (x'1, qlP~l ; .  . . ;xlnl ,  qlP~n, ; . . .  ; X l ,  qmP'~ ; 
• "" ; x n ~ ,  q,~Pn~)" The compound independence axiom assumes that 
the two-stage lottery (X, p; Z, 1 - p )  is preferred to the two-stage 
lottery (Y, p; Z, 1 - p )  if and only if X is preferred to Y. In particular, 
since X ~ 6cE(x ) , it follows that the lottery A = 
( X ~ ,  ql  ; . . .  ; X m ,  qm) ~ L z  satisfies A ~ ( C E ( X 1 ) ,  ql  ; . ' .  ; C E ( X m ) ,  
qm). Note that the right-hand side of this last equivalence is a simple 
lotteD'. For a more detailed discussion of these axioms, see [18] and 
[10]. 

Let X = (4, 35. ~ , - 1 ,  1 )  and let a =0  and b =9.99. If the decision 
maker announces the selling price s x , then he will participate in the 
following two-stage lottery. With probability s x / l O  the offer price is 
less than the selling price, and the decision maker will have to play the 
lottery. The offer price equals each of the numbers S x ,  s x + 

0 . 0 1 , . . . ,  9.99 with probability 1/1000, and in each of these cases he 
wins the offer price. The decision maker thus faces the two-stage 
lottery A, where 

(( 1 
A =  4 ,~-~; -1 ,  ' 1 -0  ' 6~x '  1000; 

1 1)  
~ S x + 0 " 0 1 '  1 0 0 0  ; " " ' ; ~ 9 . 9 9 '  1 0 0 0  " 

The decision maker has to find the optimal selling price s x that will 
maximize his value of the lottery A. By the compound independence 
axiom, 

( ( a s  
A~ CE 4 , ~ ; - 1 , ~  y6;Sx, 160o; 

1 1__1_) 
s x +  0.01, 1000; " " " ;9"99' 1000 " 
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It follows from the first-order stochastic dominance axiom that the 
decision maker 's optimal strategy is to set s x = C E ( X ) .  However, as 
pointed out by Karni and Safra [8], if the decision maker does not 
satisfy the compound independence axiom, there is no reason to 
assume that s x = C E ( X )  maximizes his value of the lottery 

35s x s x . 1 
R ( A )  = 4, 360 ; - 1 ,  3-60' s x '  1000 ; 

1 1 )  
s x + 0.01, 1000 ; " " ' ; 9.99, . 

Karni and Safra actually prove that the decision maker's optimal 
strategy is to announce s x = C E ( X )  for all lotteries X if and only if he 
is an expected utility maximizer. Moreover, they show by means of a 
nonexpected utility example that the decision maker may display a 
preference reversal, preferring the lottery (4, 35. ~ ,  - 1 ,  1 )  to the lottery 
(16, 11. 25 ~ , - 1 . 5 ,  ~ ) ,  but setting s x < s  r .  In the sequel we refer to this 
interpretation of the mechanism as interpretation 1. 

A different interpretation of the mechanism is suggested in Segal 
[17]. Let (a,  b) be the uniform distribution on the [a, b] interval. 
According to this interpretation, when he sets the selling price s x ,  the 
decision maker perceives the mechanism as the two-stage lottery 

SX. S~O0) C E ( X ) ,  - ~ ,  ( S x ,  9.99), 1 - . 

If the decision maker satisfies the compound independence axiom, but 
not the reduction axiom, then it is possible to find nonexpected utility 
preferences such that X >  Y but s x < s r ,  displaying a preference 
reversal. We refer to this interpretation as interpretation 2. 

Although the BDM mechanism does not reveal a nonexpected utility 
maximizer's true certainty equivalent of a lottery, it may still be useful 
in revealing some information about his preferences. However, this 
depends on the correct interpretation of the mechanism. Safra, Segal, 
and Spivak [14] shows that under interpretation 1, there is a strong 
connection between the conditions implying the Allais paradox and the 
preference reversal phenomenon. It turns out that both are connected 
to Machina's [12] hypothesis II. The same authors [15, Proposition 2] 
also prove that the optimal selling price and the certainty equivalent of 
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a lottery are always on the same side of its expected value. In other 
words, if the decision maker is risk averse, then s x <. E [ X ] ,  and if he is 
risk loving, then s x >1 E [ X ] .  This is the case for all preference rela- 
tions, provided interpretation 1 is valid. Different results are obtained 
from interpretation 2. The claim that the selling price and the certainty 
equivalent of a lottery must be on the same side of its expected value is 
not obtained under this interpretation (see Section 4 below). 3 Of 
course, this does not mean that they have to be on opposite sides of 
the expected value of the lottery. This observation enables us to 
discriminate between the two interpretations. Our empirical results 
show that about one third of our subjects set selling prices and 
certainty equivalents on opposite sides of the expected values of 
lotteries. Although this does not prove the validity of interpretation 2, 
it does at least indicate that interpretation 1 is not necessarily the only 
possible one. 

3. T H E  E X P E R I M E N T  

An experiment was conducted to examine the empirical validity of 
Proposition 2 in [15] that the certainty equivalent and the selling price 
of a lottery are on the same side of its expected value. Undergraduate 
students in introductory economics classes at the University of Califor- 
nia, Los Angeles served as volunteer subjects during one of their 
tutorial sessions. 

Subjects were randomly divided into two groups of 75 and 74, 
respectively. Each group was asked certainty equivalents and selling 
prices for one of two different sets of lotteries. (Two sets of lotteries 
were needed so no one subject had too many questions to answer.) In 
the first part of the session, subjects read instructions indicating they 
were going to be asked a series of hypothetical questions involving 
chances of getting different monetary amounts. They were asked to 
respond to the questions based on their own opinions about these 
monetary decisions. The instructions for the certainty equivalent elici- 
tation were: 

The quest ions in this section require you to state the amount  of money  which makes  you 
indifferent be tween a ticket to a lottery and a fixed monetary  amount .  You are to write 
in the blank in each quest ion the dollar and cents amount  which makes  you like the 
lottery just  as much  as you 'd  like the cash amount .  
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In this part of the experiment, certainty equivalents were elicited for 
14 lotteries, shown in Table I. All lotteries had two outcomes, with the 
smaller outcome always being $0. Group A got the first 7 lotteries, 
A A - A G ;  and Group B got the last 7 lotteries, BA-BG.  The first 
lottery, AA,  has a 0.65 probability of receiving $4.25, and a 0.35 
probability of getting $0, etc. 

Next, the BDM mechanism was explained verbally to the subjects. 
Then they read written instructions, and worked on sample selling 
price problems with feedback from the experimenter. For example, in 
one of the sample Becker-DeGroot-Marschak questions, the lottery 
was (0, 0.75; 8, 0.25) and the range [a, b] was equal to [0, 10]. Finally, 
subjects used the BDM mechanism and wrote down their selling prices 
for different lotteries with different ranges for the random offer price. 
The 55 questions of this part are presented in Table I. These questions 
are constructed by taking the 14 lotteries from the first part of the 
experiment and linking them up with 3 to 5 different ranges for the 

TABLE I 

Lotteries and monetary scales used in experiment 

Lottery X = (0, 1 - p; x, p) Upper Bound of Monetary Scale 

Label x p E[X] $10 $20 $40 $75 $100 
(= px) 

Group A 

A A  4.25 0.65 2.76 ~/ ~/ ~ V V 
AB 8.00 0.35 2.80 ~/ ~/ V ~/ ~/ 
AC 18.00 0.15 2.70 V V ',/ ",/ 
AD 34.00 0.08 2.72 ~/ ~,/ V 
AE 13.00 0.90 11.70 V V V V 
AF 18.00 0.65 11.70 V V V ~/ 
AG 33.00 0.35 11.55 V ~/ ~/ 

Group B 

BA 6.50 0.90 5.85 ~/ V V V V 
BB 9.00 0.65 5.85 V ~/ V ~/ V 
BC 17.00 0.35 5.95 V ~/ V ~/ 
BD 39.00 0.15 5.85 ~/ V V 
BE 18.00 0.90 16.20 V x/ V V 
BF 25.00 0.65 16.25 V V V 
BG 46.00 0.35 16.10 V V 



90 L. ROBIN KELLER ET AL. 

monetary scale. The lower bound of the range is always 0, and the 
upper bound can take the value $10, $20, $40, $75, and $100. The 
number of ranges a lottery is linked with depends on the meaningful- 
ness of each potential range for the lottery. For example, lottery AC 
has a maximum outcome of $18. It was not linked with the monetary 
scale with upper bound of $10, because even according to interpreta- 
tion 1, a subject might legitimately wish to state a minimum selling 
price higher than the upper bound of this monetary scale. This design 
allows comparison of a subject's certainty equivalent for a lottery with 
the minimum selling price and the lottery's expected value. 4 

Let CE, SP, and E V  be the certainty equivalent, selling price, and 
the expected value of a lottery, respectively. By Proposition 2 in Safra, 
Segal, and Spivak [15] CE > E V  ~ SP >i EV, CV < E V  ~ SP <~ EV, 

and CE = E V  ~ SP = EV. We therefore counted the number of times 
responses agreeing with these predictions occurs among all answers. 
Overall, as shown in Table II, only 68.5% of possible comparisons 
obeyed this proposition. For 31.1% of possible comparisons, both CE 

and SP were greater than EV. For 31.8% of comparisons, CE and SP 

were less than EV, and all were equal for 3.1% for the comparisons. 
All other cases disagree with Proposition 2 of [15]. For 30.3% of the 
possible comparisons, CE and SP were strictly on opposite sides of EV. 

Note that we have aggregated the data over all monetary ranges, so a 
single lottery is counted a few times for a subject, since it appears with 
3 to 5 different monetary ranges. As the certainty equivalent and the 
price were not uniformly on the same side of the expected value, our 
results do not support Proposition 2 in [15], which resulted from 
interpretation 1 of the BDM mechanism. As we show in the next 
section, our results are consistent with interpretation 2, which does not 
imply such an ordering. 

TABLE II 

Number (and percentage) of comparisons by category 

C E  > E V  C E  = E V  C E  < E V  

S P  > E V  1275 (31.1%) 46 (1.1%) 890 (21.7%) 
S P  = E V  72 (1.8%) 127 (3.1%) 28 (0.7%) 
S P  < E V  353 (8.6%) 4 (0.1%) 1302 (31.8%) 
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4. NUMERICAL EXAMPLES 

Interpretation 1 of the BDM mechanism predicts that the selling price 
and the certainty equivalent of a lottery are on the same side of its 
expected value. This prediction is not implied by interpretation 2. In 
this section we will demonstrate this by examples. 

According to interpretation 2, if the decision maker announces a 
selling price s of a lottery X, then he faces the lottery 

s -a  b - s  Ys= ( CE(X), ~-~_ a; CE( (s, b ), ~_ a)) (1) 

where {s, b)  is the uniform distribution on [s, b]. The decision maker 
wants to maximize, with respect to s, the value of V(Y,). Denote the 
optimal value of s by s*. To prove that Proposition 2 of Safra, Segal, 
and Spivak [15] may not be satisfied under interpretation 2, we show 
that for some lottery X, s * <  CE(X) and s * >  CE(X) can occur for 
both risk averse and risk loving preferences. We demonstrate it for 
three types of non-expected utility functionals; anticipated utility (AU) 
[13], quadratic utility (Q) [4], and weighted utility (WU) [2] function- 
als. All of them are axiomatic extensions of expected utility theory, 
and all are based on weakening the independence axiom. This ax- 
iomatization feature distinguishes them from the class of Fr6chet 
differentiable functionals, introduced by Machina [12], where the 
independence axiom is completely abandoned. Also, all of the above 
three theories are transitive, unlike, for example, regret theory [11]. 
Here we would like to keep expected utility as our benchmark model, 
therefore we adopt only guarded departures from it. Secondly, even 
though we just consider these three classes of functionals, they are 
general enough. All the other known classes of transitive utility 
functionals based on axiomatizations either are subclasses of them or 
have substantial overlap with one of them. Weighted utility, and under 
some trivial conditions, quadratic utility functionals, are Fr6chet dif- 
ferentiable. However, anticipated utility is not Fr6chet differentiable 
[3]. The three functionals' forms are given by: 

4.1. Anticipated Utility 

AU(X)= f MMu(x)df(Fx(x)) (2) 
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where u is strictly increasing and continuous, and f : [ 0 ,  1]---> [0, 1] is 
strictly increasing, onto, and continuous. This functional represents 
risk aversion (seeking) if and only if u and f are both concave (convex). 
For this, and other properties of the functional, see [3] and [16]. 

4.2. Weighted Utility 

w u ( x )  = 
;M_ M w(x)v(x) dFx(x ) 

;M_ M w(x) dFx(x ) 
(3)  

where v: [ - M ,  M]---> ~ is increasing and w: [ - M ,  M ] - + ~ + +  is non- 
vanishing. This functional satisfies the betweenness axiom, that is, if 
F ~  G, then for every a E [0, 1], F ~  aF + ( 1 -  a)G ~ G (see [2] and 
[5]). Also let h(x, s)= w(x)[v(x)-  v(s)]. By [2], WU represents risk 
aversion (seeking) if h(x, s) is concave (convex) in x for every s. 

4.3. Quadratic Utility 

y) dFx(I )dFx(Y ) (4) 

where q~(x, y) is symmetric, nondecreasing in both arguments, and for 
x > y, q~(x, x) > ¢ (y ,  y). For an axiomatization of this functional see 
[4]. This functional represents risk aversion (seeking) if both 02~O/OX 2 
a n d  ozqg/Oy 2 are non-positive (non-negative). Next, we show that all 
three families of functionals are consistent with the certainty equiva- 
lent and the selling price being on the same or on opposite sides of the 
expected value of a lottery. According to the second interpretation, 
the decision maker wants to maximize, with respect to the selling price 
s, the value of the lottery Ys (see (1)). We obtain 

AU(Y~) = 
+ u(CE((S ,  b > ) ) [ a  - 

u(CE((s ,  b)))f(~_aa) 
+ u(CE(X))[1 - f ( ~  )] 

if CE( (s, b ) ) >i CE(X) 

if CE((s, b ) ) < CE(X) 

where for every lottery Z, CE(Z) = u-I[AU(Z)]. It is always optimal 
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for the decision maker  to set s such that CE( (s, b )) >i CE(X) .  Indeed,  

if CE( (s*, b ) ) < CE(X) ,  then 

( C E ( X ) - a  C E ( X ) - a )  
c e ( x ) ,  - - s  , ( c e ( x ) ,  b ), 1 a > 

( s , -o 
( C E ( X ) , I ) >  C e ( X ) , - ~ _ - a ; ( S * , b } , l  b - a /  

In that  case s* is not the optimal selling price, as CE(X)  is bet ter  for 
the decision maker .  

Consider  now the following four examples.  In all of them the lottery 
X is (4.25, 0.65; 0, 0.35) with the expected value $2.76 and the range 
[a, b] = [0, 10]. The optimal selling prices were found by using the 
MathCad software: 

Case 

Risk Order of 
attitude EV, CE, s* u(x) f(p) CE(X) s*x 

averse s* > EV > CE x pO2 $0.81 $3.05 
averse EV > s* > CE x p0.6 $1.99 $2.57 
seeking CE > s* > EV x p~ $3.73 $3.54 
seeking CE > EV > s* x 0.35p 4° + 0.65p $3.28 $2.62 

Consider  now the lotteries X ( t ) = 6 x +  tg with E [ g ] = 0  (hence 

EV(X(t ) )  = x). Suppose that the function V(Ys) has a unique maxi- 
mum.  Then s* is a continuous function of t. Therefore ,  if for t = 0, i .e.,  

when X(t )  -- a x , the solution of the maximization problem 

s - a . ( s , b )  ' b - s )  m~axV X, b _ a , 

is above (below) x, then it will also be above (below) x for a 
sufficiently small t. For the weighted utility and quadratic functional we 
therefore  present  examples based on degenerate  lotteries of the form 

6 x . By this we do not claim that interpretation 2 is valid even in the 
case when the lottery is degenerate.  All we do is prove that because of 
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continuity, Proposition 2 of [15] does not hold even for non-degenerate 
lotteries under this interpretation. If the decision maker is using a 
weighted utility functional, then he wants to maximize 

w v ( L )  = 

(s - a) w(CE(X))  v (CE(X))  + (b - s) w(CE( ( s, b } )) v(CE( ( s, b ) )) 
(s - a) w ( C E ( X ) )  + (s - a) w(CE(  (s, b ) )) 

where for every lottery Z,  C E ( Z )  = v - I [WU(Z)] .  Suppose now that 
X = 6 x, a = 0 and b - 10. The following four examples show that here,  

too,  all four cases are possible. 

Case 

Risk Order of 
attitude E V  and s* x w(x) v(x) s x 

averse s* > EV $0.37 e o.lx ¢o $0.46 
averse E V  ;> s* $5.00 e -°3x ~ $4.96 

seeking s* > E V  $1.00 e °Ax ~0 $1.21 
seeking EV > s* $4.00 e °'2x ~ $3.93 

If the decision maker is using a quadratic utility functional, then he 

wants to maximize 

( s - a ~  2 s - a  b - s  

 _s2 

where a satisfies ~o(~, a)  = Q ( X )  and/3 satisfies ~(/3, /3)  = Q((s ,  10)). 
Let  

1 [eaX qpla,b(X, Y) = ~ + e ay + e(a-b)Xe b" + ebxe (a-b)s] 

2 1 yb x a - b y b  x b y a - b ]  
q~a,b(X, Y) = -~ [x ~ + + + 

Suppose, again, that X =  6 x , a = 0, and b = 10, and consider the 

following four examples: 
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Case 

Risk Order of 
attitude E V  and s* x ~(x, y) s} 

averse s* > E V  $1.99 1 - q~-3.-L.s $2.05 
averse E V  > s* $0.50 ~.01 $0.48 
seeking s* > E V  $6.99 p 26. 2 $7.03 
seeking E V  > s * $4.10 q~ 10.2,1 $3.80 

5. CONCLUDING REMARKS 

In this paper we tested some of the implications of the Becker-  
DeGroot -Marschak  mechanism. Although it is now clear that this 
mechanism does not necessarily reveal subjects' true certainty equiva- 
lents of lotteries if decision makers do not maximize expected utility, 
the mechanism may still be used to get some information about their 
preferences. Such an analysis was offered by Safra, Segal, and Spivak 
[15], but their results crucially depend on Karni and Safra's [8] specific 
interpretation of the mechanism as a two-stage lottery. It turns out that 
an alternative two-stage interpretation of the mechanism, suggested by 
Segal [17], yields different predictions from those of Safra, Segal and 
Spivak [15]. More specifically, the two interpretations differ in the 
prediction that the certainty equivalent of a lottery and its selling price 
should be on the same side of the lottery's expected value. Our 
experiment shows that although many subjects often behave that way, 
there is nevertheless a substantial proportion of responses with the 
certainty equivalent and the selling price on different sides of a 
lottery's expected value. This kind of behavior is consistent with 
Segal's interpretation [17], where the reduction of compound lotteries 
axiom is rejected, but not with Safra e t  al .  [15], where the reduction 
axiom is used and the independence axiom is relaxed. It should be 
noted that many empirical results indicating nonexpected utility be- 
havior can be modeled as violations of the reduction of compound 
lotteries axiom (see [18]). Our results may thus conform with other 
violations of expected utility theory. 
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N O T E S  

1 This is known as the preference reversal phenomenon. See next section for references. 
Holt [7] suggests that the preference reversal phenomenon may result from the fact 

that subjects play for real only a few of their choices. This argument was checked and 
rejected by Starmer and Sugden [19]. 
3 Nevertheless, the strong connection between the Allais paradox and the preference 
reversal phenomenon prevails under this interpretation as well (see Wang [20]). 
4 Group A got 28 questions and Group B got 27 questions. To counteract possible order 
effects, subjects were randomly assigned to one of two random orderings of the 
questions and data from the two distinct orders have been pooled. 
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