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We introduce a new simple way of defining the forcing method that works well in the usual setting under FA,
the Foundation Axiom, and moreover works even under Aczel’s AFA, the Anti-Foundation Axiom. This new
way allows us to have an intuition about what happens in defining the forcing relation. The main tool is
H. Friedman’s method of defining the extensional membership relation ∈ by means of the intensional member-
ship relation ε.

Analogously to the usual forcing and the usual generic extension for FA-models, we can justify the existence
of generic filters and can obtain the Forcing Theorem and the Minimal Model Theorem with some modifica-
tions. These results are on the line of works to investigate whether model theory for AFA-set theory can be
developed in a similar way to that for FA-set theory.

Aczel pointed out that the quotient of transition systems by the largest bisimulation and transition relations
have the essentially same theory as the set theory with AFA. Therefore, we could hope that, by using our new
method, some open problems about transition systems turn out to be consistent or independent.
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1 Introduction

Whereas the Foundation Axiom, FA, is one of the axioms of ZFC, the standard set theory, there have been many
criticisms of this axiom and many authors have proposed alternative axioms, among which one of the most
mathematically integrated ones is Aczel’s Anti-Foundation Axiom AFA from [1]. Although in this paper we do
not enter into a philosophical argument whether FA is plausible or which axiom is appropriate, it is natural to ask
whether model theory for these alternative axioms can be developed in a similar way to that for FA.

Recently, developing model theory for AFA-models has become of interest. Indeed, in [9], Viale considered
Gödel operations and the constructible universe in this setting. In [5], Lazić and Roscoe conjectured that fun-
damental results for the forcing method, which are well known in the presence of FA, hold also in the presence
of AFA and, in [7], Tzouvaras “proved” these results.1) Unfortunately, an error in Tzouvaras’ work was found by
the author of the present paper (see [8]). Thus it was still open until the publication of the present paper whether
the forcing method can be used for constructing new models under AFA in the same manner as under FA. This
paper gives a positive answer to this question and extends Tzouvaras’ “answer” by eliminating AC from the
assumption, with a shorter and more conceptual proof.

∗ e-mail: sato@kurt.scitec.kobe-u.ac.jp
1) However, the author of the present paper noticed Tzouvaras’ paper only after submitting the first version of the present paper.
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296 K. Sato: Forcing under Anti-Foundation Axiom

As is well known, the forcing method is one of the most important and fundamental tools to construct new
models and to obtain consistency results in modern set theory. Moreover, as theory for the forcing method has
been developed and various applications have been invented, the forcing method itself has become of interest in
set theory, not only as a tool for consistency results.

Besides such various applications in set theory, the structure of forcing itself has become of interest, especially
from sheaf or topos theoretical viewpoints. Indeed, forcing is one of the origins of topos theory and there are many
topos theoretical investigations on forcing, e. g. [6, 2]. From sheaf theoretical viewpoints, V [G] looks like a stalk
of a sheaf V P, while, from the set theoretical viewpoint, V [G] = {valG(ȧ) | ȧ ∈ V P}. This expression of the
stalks (essentially, Minimal Model Theorem) seems to depend heavily on FA, because we use the ∈-induction to
prove this fact in the usual setting with FA. Now it is natural to ask whether or not FA is inevitable or unreplacable
for this expression of the stalks of V P and this point is the most difficult place, where Tzouvaras committed an
error. We will investigate how this expression depends on FA and show that this expression can be justified2) (but
will not be proved) even under AFA.

Not only this expression, but also the usual definition of the forcing uses FA (especially in defining the forcing
relation of atomic formulae) and for this reason the forcing method cannot apply directly to non-well-founded set
theory.

Because the forcing method includes the two key theorems, Forcing Theorem, which states that the truth of
the generic extensions can be approximated by means of the ground model, and Minimal Model Theorem, which
states that the generic extension is the smallest model having the generic filter and containing the ground model,
our purpose is to look for an analogous tool for new constructing models so that the corresponding results hold in
non-well-founded set theory. For this purpose, we introduce a new simple way of defining the forcing method that
works well in the usual setting under FA, and moreover works even under Aczel’s AFA. Besides the contribution
to non-well-founded set theory, it could also give us some new insight into the forcing method itself.

The key tool to avoid the assumption FA to define the forcing relation is a use of an intensional set theory
and an interpretation from the usual extensional set theory to the intensional set theory. This method is from
Friedman [3] and was originally introduced for the consistency proof of the axiom of extensionality (in other
words, equiconsistency proof of the intensional and extensional set theories). In Section 2, this method will be
explained.

In Section 3, we will define the forcing relation in this new way, and will prove that axioms of set theory
with AFA are forced. The discussion in this section is parallel with the usual forcing theory, but the use of the
interpretation from the intensional set theory makes the discussion simpler.

In Section 4, we will consider the method called generic extension. In contrast to generic extension under
FA, the Forcing Theorem and Minimal Model Theorem do not seem to hold in general universes which contain
the ground model as a transitive submodel. (Note that defining generic models does depend on the background
universe.) However we will see that these theorems do hold under certain assumptions. In Sections 5 and 6, we
will justify these assumptions. One of the justifications is known as “generic filter elimination” and will be done
in the same way as that of the forcing under FA. The other is specific to the forcing under AFA. Here justification
means establishing the consistency of the assumptions, which allows us to use the forcing method to construct
new models and to obtain consistency and independence results, and the conservativeness of the assumptions,
which allows us to use the forcing method to investigate the ground model V from the viewpoint of generic
extensions V [G].

Finally, in Section 7 we will investigate the relation between the usual forcing under FA and that under AFA.
As a result, we will see that, if we assume AC, generic extensions do not change the class of ordinals as un-
der FA and our generic models can be constructed by other well known methods, the usual generic extension
and Aczel’s construction, which have already been introduced. As a consequence, we obtain a positive solution
to the conjecture in [5]. Although it seems that our new method is less useful in the presence of AC, this result
means that generic extension works in a quite parallel way to with that in FA-set theory. In particular, the Forcing
Theorem and Minimal Model Theorem we will establish in this paper show a direct relationship between the
ground model and the generic models, and so these theorems have some practical use in finding and investigating
new AFA-models even under AC. Whereas the utility of our method will undoubtedly become clear as model
theory for AFA-models is developed, we will give one example which shows the utility.

2) The precise meaning of “justified” is explained below.
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Moreover, as Aczel pointed out that the quotient of transition systems by the largest bisimulation and transition
relations have the essentially same theory as the set theory with AFA (see [1, 5]), we could hope that, by using
our new method, some open problems about transition systems will turn out to be consistent or independent.

In this paper, we use ZF∈ as a base theory.

Definition 1.1 (Extensional set theory ZF∈) The language consists of two predicate symbols ∈,= of arity 2.
The axioms of ZF∈ are equality axioms and the following:

Extensionality Axiom: ∀x∀y(∀z(z ∈ x↔ z ∈ y) → x = y).
Empty Set Axiom: ∃x∀y(¬y ∈ x).
Pairing Axiom: ∀x∀y∃z(x ∈ z ∧ y ∈ z).
Union Axiom: ∀x∃y(∀u ∈ x)(∀v ∈ u)(v ∈ y).
Powerset Scheme: ∀x∃y∀u(∃v ∈ y)∀s(s ∈ v ↔ s ∈ x ∧ F (s, u, x)), where v does not occur in F .

Infinity Scheme: ∀x∃y(x ⊂ y ∧ (∀u ∈ y)(∃vF (u, v, x) → (∃v ∈ y)F (u, v, x))), where y does not occur in F .

Notice that the Powerset Scheme implies the Separation Scheme and the usual formulation of Powerset Axiom.
Indeed, putting F (s, u, x) ≡ G(s, x), i. e. letting u be a dummy variable, the scheme for F becomes

∀x∃y(∃v ∈ y)∀s(s ∈ v ↔ s ∈ x ∧G(s, x)),

which implies the Separation Scheme

∀x∃v∀s(s ∈ v ↔ s ∈ x ∧G(s, x)), where v does not occur in G.

Putting F (s, u, x) ≡ s ∈ u, the scheme becomes

∀x∃y∀u(∃v ∈ y)∀s(s ∈ v ↔ s ∈ x ∧ s ∈ u),

which means ∀x∃y∀u(u ∩ x ∈ y). Moreover, the Infinity Scheme obviously implies the usual formulation of
Infinity Axiom and the Collection Scheme (denoted by Coll):

Collection Scheme: ∀x∃y(∀u ∈ x)(∃vF (v, u, x) → (∃v ∈ y)F (v, u, x)), where y does not occur in F .

It is easy to see that all axioms of ZF∈ are provable in the usual axiom system ZF. In what follows, ZF−

stands for ZF − FA. Notice also that ZF− + Coll + SDC 
 ZF∈, where SDC stands for the Strong Dependent
Choice Scheme, defined as follows:

Strong Dependent Choice Scheme:

∀u∃vF (x, u, v) → ∀u∃f : function(dom(f) = ω ∧ f(0) = u ∧ (∀n ∈ ω)F (x, f(n), f(n+ 1))),

where f does not occur in F .

In fact, for

ZF− + Coll + SDC 
 ZF∈,

it suffices to show that the Infinity Scheme is deduced from ZF− + Coll + SDC. Given x and a formulaF (x, u, v),
consider the formula G(a, b, x) ≡ (∀u ∈ a)(∃vF (x, u, v) → (∃v ∈ b)F (x, u, v)). By Coll, ∀a∃bG(a, b, x).
Then by SDC, we have a function f on ω such that f(0) = u and that G(f(n), f(n+ 1), x) for all n ∈ ω.
Thus

⋃{f(n) | n ∈ ω} is required.

2 Intensional set theory ZFε

In this section, we will see that the extensional set theory ZF∈ and the corresponding intensional set theory ZFε

are interpretable to each other and hence that they are equiconsistent. Using this interpretation, we can construct
an extensional model (in other words, model of set theory with extensionality) from an intensional model (a model
of set theory without extensionality) automatically. We will use this method for defining forcing in the next
section.
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Definition 2.1 (Intensional set theory ZFε) The language consists of a unique predicate symbol ε of arity 2.
The axioms of ZFε are the following:

Empty Set Axiom: ∃x∀y(¬y ε x).
Pairing Axiom: ∀x∀y∃z(x ε z ∧ y ε z).
Union Axiom: ∀x∃y(∀u ε x)(∀v ε u)(v ε y).
Powerset Scheme: ∀x∃y∀u(∃v ε y)∀s(s ε v ↔ s ε x ∧ F (s, u, x)), where v does not occur in F .

Infinity Scheme: ∀x∃y((∀u ε x)(u ε y) ∧ (∀u ε y)(∃vF (u, v, x) → (∃v ε y)F (u, v, x))), where y does not
occur in F .

Similarly, the Powerset Scheme implies the Separation Scheme:

∀x∃v∀s(s ε v ↔ s ε x ∧G(s, x)), where v does not occur in G,

and the Infinity Scheme implies the Collection Scheme:

∀x∃y(∀u ε x)(∃vF (v, u, x) → (∃v ε y)F (v, u, x)), where y does not occur in F .

The main lemma of this section is the following:

Proposition 2.2 We can define ∈̇ and ∼ in ZFε such that

1. ZFε 
 ∀x∀y(x ∈̇ y ↔ (∃z ε y)(x ∼ z)),
2. ZFε 
 ∀x∀y(x ε y → x ∈̇ y),
3. ZFε 
 ∀x∀y(x ∼ y → (∀u ε x)(u ∈̇ y)), and

4. ZFε 
 ∀x∀y∀z(x ∼ x ∧ (x ∼ y ↔ y ∼ x) ∧ (x ∼ y ∧ y ∼ z → x ∼ z)).

The definitions of ∈̇ and ∼ and the proof of this proposition will be given later.

Definition 2.3 First, define the Leibniz equality
L=, by

x
L= y ≡ ∀z(x ε z → y ε z).

Lemma 2.4 L= is a congruence for all formulae in ZFε.

P r o o f. Suppose x
L= y and F (x). Then, by the Pairing Axiom and the Separation Axiom Scheme, we have a

such that x ε a and b such that ∀z(z ε b↔ z ε a ∧ F (z)), which means x ε b. Thus x
L= y implies y ε b and

so F (y). In particular, putting F (z) ≡ z
L= x, we have x

L= y → y
L= x and, putting F (z) ≡ z

L= w, we have

x
L= y ∧ x L= w → y

L= w.

Lemma 2.5 Every set is an (intensional) subset of some (intensionally) transitive set, i. e.

ZFε 
 ∀a∃b((∀x ε a)(x ε b) ∧ (∀x ε b)(∀y ε x)(y ε b)).

P r o o f. Given any u, by the Union Axiom and the Separation Axiom Scheme, we have v such that

∀x(x ε v ↔ (∃y ε u)(x ε y)).

Then by the Infinity Scheme with F (u, v, z) ≡ ∀x(x ε v ↔ (∃y ε u)(x ε y)), given any a, where z is a dummy
variable, we have c such that a ε c (more precisely (∀z ε {a})(u ε c), where {a} denotes a set such that a ε {a})
and (∀u ε c)(∃v ε c)(∀y(y ε v ↔ (∃x ε u)(y ε x))). Again by the Union Axiom and the Separation Axiom
Scheme, we have b such that ∀x(x ε b↔ (∃y ε c)(x ε y)) and this b is required. In fact, x ε a ε c implies x ε b
and if y ε x ε b, say (y ε)x ε u ε c, then there is v ε c such that ∀y′(y′ ε v ↔ (∃x′ ε u)(y′ ε x′)), in particu-
lar y ε v(ε c) and so y ε b.
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Definition 2.6 For every set u, define �u, D(u) and ∼ by

x �u y ≡ x
L= y ∨ (∃a ε u)(x ε a ∧ y ε a),

D(u) ≡ ∀x∀y(x �u y → (∀s ε x)(∃t ε y)(s �u t)),

x ∼ y ≡ ∃u(D(u) ∧ x �u y).

Obviously �u is reflexive and symmetric, and D(∅) holds. Then, since x �∅ x and x
L= x, we have x ∼ x.

In what follows, a ≈ {b, c} is an abbreviation for

∀x(x ε a↔ x
L= b ∨ x L= c).

Lemma 2.7 If R(x, y) is a reflexive and symmetric bisimulation, i. e.

∀x∀y∀s(s ε x ∧R(x, y) → (∃t ε y)R(s, t)),

then ∀x∀y(R(x, y) → x ∼ y).

P r o o f. Suppose R(a, b). By the Pairing Axiom we have c with a ε c, b ε c and hence an (intensionally)
transitive set A such that (∀x ε c)(x ε A), in particular a ε A and b ε A. By the Powerset Scheme we have B
such that ∀z(z ε B ↔ (∀s ε z)(s ε A)) and, by the Separation Scheme, we have C such that

∀z(z ε C ↔ z ε B ∧ (∃x ε A)(∃y ε A)(z ≈ {x, y})).

Thus, by Pairing Axiom, (∀x ε A)(∀y ε A)(∃z ε C)(z ≈ {x, y}).
By the Separation Scheme, we have U such that

∀z(z ε U ↔ z ε C ∧ (∀x ε z)(∀y ε z)(x ε A ∧ y ε A ∧R(x, y))).

Then we have

(∗) ∀x∀y(x �U y ↔ x
L= y ∨ (x, y ε A ∧R(x, y))).

Indeed, if x �U y and there is z ε U such that x ε z ∧ y ε z, then, by the definition of U , we have x ε A, y ε A
and R(x, y). Conversely if x, y ε A ∧R(x, y), then, by Pairing Axiom and Separation Scheme we have z such
that z ≈ {x, y} and so z ∈ U since R(x, y) implies R(y, x), R(x, x) and R(y, y), and z ∈ C.

It follows that a �U b and so it suffices to show thatD(U). Suppose x �U y, if x, y ε A andR(x, y), then, by
the assumption, for any s ε x, and so we have t ε y such thatR(s, t). SinceA is (intensionally) transitive, s, t ε A,

which means s �U t, by (∗). If x
L= y, then, for any s ε x, s ε y with s �U s. Thus we obtain D(U).

Lemma 2.8 ZFε 
 ∀x∀y(x ∼ y ↔ (∀s ε x)(∃t ε y)(s ∼ t) ∧ (∀t ε y)(∃s ε x)(s ∼ t)).

P r o o f. Suppose x ∼ y, say D(u) and x �u y. Since �u is symmetric, we have also y �u x. Then D(u)
implies (∀s ε x)(∃t ε y)(s �u t) and (∀t ε y)(∃s ε x)(s �u t), which again imply (∀s ε x)(∃t ε y)(s ∼ t)
and (∀t ε y)(∃s ε x)(s ∼ t).

For the converse, by the last lemma, it suffices to show thatR is a reflexive and symmetric bisimulation, where

R(x, y) ≡ (∀s ε x)(∃t ε y)(s ∼ t) ∧ (∀t ε y)(∃s ε x)(s ∼ t).

The reflexivity and the symmetry are obvious. Suppose R(x, y) and s ε x. Then, by the definition of R, we
have t ε y such that s ∼ t. As we have just shown,R(s, t). Thus R satisfies the hypothesis of the last lemma and
so R(x, y) → x ∼ y.
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Lemma 2.9 ZFε 
 ∀x∀y∀z(x ∼ x ∧ (x ∼ y ↔ y ∼ x) ∧ (x ∼ y ∧ y ∼ z → x ∼ z)).

P r o o f. As mentioned above, x ∼ x. If x ∼ y, say D(u) and x �u y, then y �u x, i. e. y ∼ x, since �u is
symmetric.

To show the transitivity, let R(x, z) ≡ ∃y(x ∼ y ∧ y ∼ z). Then, by Lemma 2.7, it suffices to show that R
is a bisimulation, since R is obviously reflexive and symmetric because so is ∼. Suppose R(x, z) and s ε x,
say x ∼ y and y ∼ z. Since x ∼ y, we have t ε y such that s ∼ t by the last lemma, and y ∼ z implies that there
is u ε z such that t ∼ u. Thus we have u ε z such that R(s, u).

Definition 2.10 Now we define ∈̇ as follows:

x ∈̇ y ≡ (∃u ε y)(x ∼ u).

We now prove Proposition 2.2.

P r o o f o f P r o p o s i t i o n 2.2 . Since 1. is immediate from the definition and 4. is the last lemma, it suf-
fices to show 2. and 3. To show 2., suppose x ε y. Then x ∼ x and x ε y, i. e. (∃u ε y)(x ∼ u). To show 3.,
suppose x ∼ y and u ε x. Then, by Lemma 2.8, we have v ε y such that u ∼ v, i. e. u ∈̇ y.

Lemma 2.11 ZFε can be interpreted in ZF∈.

P r o o f. Interpret ε in ZFε by ∈ in ZF∈. Then all axioms clearly hold.

Proposition 2.12 ZF∈ can be interpreted in ZFε.

P r o o f. Interpret x ∈ y and x = y in ZF∈ by x ∈̇ y and x ∼ y.
First, we claim that equality axioms,

∀x∀u∀v(v = u ∧ u ∈ x→ v ∈ x) and ∀x∀y∀u(x = y ∧ u ∈ x→ u ∈ y)

can be interpreted. Suppose v ∼ u and u ∈̇ x. Then there isw ε xwith u ∼ w and so v ∼ w, which means v ∈̇ x.
Suppose x ∼ y and u ∈̇ x, say w ε x with u ∼ w. Then, by x ∼ y, by Proposition 2.2, 3. we have w′ ε y
with w ∼ w′ and hence u ∼ w′, i. e. u ∈̇ y. Thus ∼ is congruent with all formulae from ZF∈.

Next we check the Extensionality Axiom. To show ∀z(z ∈̇ x↔ z ∈̇ y) → x ∼ y, it suffice to show that R
is a reflexive and symmetric bisimulation, where R(x, y) ≡ ∀z(z ∈̇ x↔ z ∈̇ y). Suppose R(x, y) and s ε x.
Then s ∈̇ x and so s ∈̇ y, say t ε y and s ∼ t. As we have just proved above, s ∼ t implies ∀z(z ∈̇ s↔ z ∈̇ t),
i. e. R(s, t).

By the Empty Axiom of ZFε, we have x such that s ε x does not hold for any s. If y ∈̇ x, then there is s ε x
such that y ∼ s, a contradiction. Thus ∀y¬(y ∈̇ x).

To show the interpretability of the Pairing Axiom, take z such that x ε z and y ε z for the given x, y by the
Pairing Axiom of ZFε. Then x ∈̇ z and y ∈̇ z.

To show the interpretability of the Union Axiom, take y such that (∀u ε x)(∀v ε u)(v ε y) for the given x.
Suppose u′ ∈̇ x and v′ ∈̇ u′. Then by the definition of ∈̇, there is u ε x such that u′ ∼ u and hence v′ ∈̇ u. Again
by the definition of ∈̇, there is v ε u such that v′ ∼ v. Now v ε u and u ε x imply v ε y, which implies v′ ∈̇ y.

To check that the Powerset Scheme can be interpreted, take y such that

∀u(∃v ε y)∀s(s ε v ↔ s ε x ∧ F̌ (s, u, x)),

where F̌ is translated from the given F . Thus, for any u, we can take v ε y such that

∀s(s ε v ↔ s ε x ∧ F̌ (s, u, x)).

To show ∀s′(s′ ∈̇ v ↔ s′ ∈̇ x ∧ F̌ (s′, u, x)), suppose s′ ∈̇ v, say s′ ∼ s and s ε v. Then s ε x and F̌ (s, u, x).
s ε x implies s′ ∈̇ x and F̌ (s, u, x) implies F̌ (s′, u, x) since ∼ is congruent with all formulae from ZF∈. For the
converse, suppose s′ ∈̇ x ∧ F̌ (s′, u, x). Then there is s ε x such that s′ ∼ s and hence F̌ (s, u, x), which im-
ply s ε v and hence s′ ∈̇ v.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 52, No. 3 (2006) 301

Finally to check the Infinity Scheme, for the given x take y such that

(∀u ε x)(u ε y) ∧ (∀u ε y)(∃vF̃ (u, v, x) → (∃v ε y)F̃ (u, v, x)),

where F̌ is translated from the given F . Then obviously ∀u(u ∈̇ x→ u ∈̇ y) and it remains to show that

(∀u ∈̇ y)(∃vF̃ (u, v, x) → (∃v ε y)F̃ (u, v, x)).

For u ∈̇ y, there is u′ ε y with u ∼ u′ and hence ∃vF̃ (u′, v, x) → (∃v ε y)F̃ (u′, v, x). By the congruency of ∼,
we have ∃vF̃ (u, v, x) → (∃v ε y)F̃ (u, v, x).

Corollary 2.13 Cons(ZF∈) ↔ Cons(ZFε).
Notice that the discussion in this section can be done in the intuitionistic logic. Thus we actually have

Cons(IZF∈) ↔ Cons(IZFε),

where IZF∈ and IZFε are theories in intuitionistic logic, corresponding to ZF∈ and ZFε respectively.

3 Forcing under AFAAFAAFA

In this section, we assume Aczel’s AFA, the anti-foundation axiom:

For any pointed graph (N,E, a), i. e. E ⊂ N ×N and a ∈ N , there exists uniquely
a decoration d : N −→ V , i. e. d(b) = {d(c) | 〈c, b〉 ∈ E} for any b ∈ N .

This means that any pointed graph represents exact one set. The key consequence of the unique existence of the
decoration is that two pointed graphs which are bisimilar to each other represent the same set and, in particular,
that two sets which are ∈-bisimilar to each other are in fact same set. Here, two sets a and b are ∈-bisimilar iff
there is a relation R such that aRb and that

∀x∀y∀z∃w(z ∈ xRy → zRw ∈ y) ∧ ∀x∀y∀w∃z(xRy � w → x � zRw).

It is well-known (see [1]) that there is the largest fixed point Φ(∞) of any set-continuous operator, where an
operator Φ is set-continuous iff Φ(X) =

⋃{Φ(x) | x ∈ V & x ⊂ X} for any class X . This holds also in our
system ZF∈:

Lemma 3.1 For a set-continuous operator Φ, there is the largest fixed point Φ(∞) and if Y ⊂ Φ(Y ),
then Y ⊂ Φ(∞) for any class Y .

P r o o f. Let Φ(∞) =
⋃{x ∈ V | x ⊂ Φ(x)}. To show Φ(∞) ⊂ Φ(Φ(∞)), take s ∈ Φ(∞). Then there is x

with x ⊂ Φ(x) such that s ∈ x. Since x ⊂ Φ(∞), we have

s ∈ x ⊂ Φ(x) ⊂ ⋃{Φ(y) | y ∈ V & y ⊂ Φ(∞)} = Φ(Φ(∞)).

Next suppose Y ⊂ Φ(Y ). To show Y ⊂ Φ(∞), take y ∈ Y . Then, since y ∈ Φ(Y ) there is y′ ⊂ Y such
that y ∈ Φ(y′). By Coll, for any x ⊂ Y there is x′ such that

(∀y ∈ x)(∃y′ ∈ x′)(y′ ⊂ Y & y ∈ Φ(y′)).

Let z = (
⋃
x′) ∩ Y . Then x ⊂ Φ(z). By the Infinity Scheme, we have a set w such that {{y}} ⊂ w and that

(∀x ∈ w ∩ P(Y ))(∃z ∈ w)(x ⊂ Φ(z)& z ⊂ Y ),

which implies
⋃

(w ∩ P(Y )) ⊂ Φ(
⋃

(w ∩ P(Y ))). Thus x ⊂ ⋃
(w ∩ P(Y )) ⊂ Φ(∞) which means Y ⊂ Φ(∞).

Now Φ(∞) ⊂ Φ(Φ(∞)) implies Φ(Φ(∞)) ⊂ Φ(Φ(Φ(∞))) and hence, by the fact we have just shown above,
Φ(Φ(∞)) ⊂ Φ(∞).
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Now we define two basic notions for forcing theory:

1. for a poset P, the largest fixed point V P of a set-continuous function ΦP, where ΦP(X) = P(X × P);
2. the check functionˇ: V −→ V P such that ǎ = {〈b̌, p〉 | p ∈ P & b ∈ a}. In fact, by the labeled anti foun-

dation axiom which is a consequence of AFA [1], this condition defines the check function .̌ Then, obvi-
ously, ran(̌ ) ⊂ P(ran(̌ ) × P) and hence ran(̌ ) ⊂ V P by the maximality of V P. Notice that FA also allows us
to define the check function.

According to the convention in set theory, we call an element of V P a P-name and to denote names we use dotted
symbols, e. g. ẋ.

Definition 3.2 (Forcing relation) For p ∈ P and ZFε + V (·)-formula ϕ with parameters ẋ1, . . . , ẋn ∈ V P,
define p � ϕ(ẋ1, . . . , ẋn) recursively:

p � ẋ1 ε ẋ2 ⇔ {q ∈ P | 〈ẋ1, q〉 ∈ ẋ2} is predense below p;
p � (ϕ ∧ ψ)(ẋ1, . . . , ẋn) ⇔ p � ϕ(ẋ1, . . . , ẋn) and p � ψ(ẋ1, . . . , ẋn);
p � (ϕ ∨ ψ)(ẋ1, . . . , ẋn) ⇔ {q ∈ P | q � ϕ(ẋ1, . . . , ẋn) or q � ψ(ẋ1, . . . , ẋn)} is dense below p;
p � (ϕ→ ψ)(ẋ1, . . . , ẋn) ⇔ for all q ≤ p, if q � ϕ(ẋ1, . . . , ẋn), then q � ψ(ẋ1, . . . , ẋn);

p � (¬ϕ)(ẋ1, . . . , ẋn) ⇔ there is no q ≤ p such that q � ϕ(ẋ1, . . . , ẋn);
p � ∃xϕ(x, ẋ1, . . . , ẋn) ⇔ {q ∈ P | q � ϕ(ẋ, ẋ1, . . . , ẋn) for some ẋ ∈ V P} is dense below p;
p � ∀xϕ(x, ẋ1, . . . , ẋn) ⇔ q � ϕ(ẋ, ẋ1, . . . , ẋn) for all q ≤ p, ẋ ∈ V P;

p � V (ẋ) ⇔ {q ∈ P | q � ẋ ∼ ǎ for some a ∈ V } is dense below p.

A ⊂ P is predense below p ∈ P iff (∀q ≤ p)(∃r ≤ q)(∃a ∈ A)(r ≤ a).
Extend the definition for ZF∈-formulae via the interpretation as in Proposition 2.12, i. e. define

p � F (ẋ1, . . . , ẋn)

by p � F̃ (ẋ1, . . . , ẋn), where F̃ is the interpreted formula from F .

The definition for atomic formulae is much easier than that of the usual forcing relation. The definitions for
connectives and quantifiers are called “sheaf semantics” with the dense topology and hence the forcing relation
respects the intuitionistic logic. In fact, it respects the classical logic:3)

Lemma 3.3 If ϕ1(�x ), . . . , ϕn(�x ) 
CL ψ(�x ) and if p � ϕi(�̇x ) for 1 ≤ i ≤ n, then p � ψ(�̇x ).

P r o o f. We can replace 
CL by 
LJ+LEM. By induction on the proof of ϕ1(�x ), . . . , ϕn(�x ) 
LJ+LEM ψ(�x ).
For all LJ-rules, this is obvious since the forcing relation is sheaf semantics over the dense topology. However

the reader can prove easily these by induction on the derivation using the next lemma.
We now prove this in the case where the last rule is LEM-rule. Suppose p �� (ϕ ∨ ¬ϕ)(�̇x ). Then

{q | q � ϕ(�̇x ) or q � ¬ϕ(�̇x )} is not dense below p,

i. e. there is r ≤ p such that for any s ≤ r, s �� ϕ(�̇x ) and s �� ¬ϕ(�̇x ). Then, by definition, r � ¬ϕ(�̇x ), a contra-
diction.

Lemma 3.4 If p � ϕ(ẋ1, . . . , ẋn) and q ≤ p, then q � ϕ(ẋ1, . . . , ẋn). If {q ∈ P | q � ϕ(ẋ1, . . . , ẋn)} is
dense below p, then p � ϕ(ẋ1, . . . , ẋn).

P r o o f. These properties hold for all sheaf semantics generally but the reader can prove these by induction
on ϕ easily.

Proposition 3.5 For any ZFε-axiom θ and p ∈ P, p � θ. As a consequence, p � θ for any ZF∈-axiom θ.

3) In the following, �CL denotes the derivability of classical logic and Γ �LJ+LEM ϕ means that the sequent Γ ⇒ ϕ in the Gentzen-style
sequent calculus LJ for intuitionistic logic with the law of excluded middle LEM as an axiom.
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P r o o f. In what follows, for a set a, define trcl(a) as the least transitive set X with a ∈ X .
Empty Axiom: Since

∅ ∈ P(V P × P) = V P

and there are no ẋ ∈ V P and p ∈ P such that p � ẋ ε ∅. Thus p � ∀y¬(y ε ∅).
Pairing Axiom: For ẋ, ẏ ∈ V P, define

ż = up(ẋ, ẏ) = {〈ẋ, p〉 | p ∈ P} ∪ {〈ẏ, p〉 | p ∈ P} ∈ V P.

Then obviously p � ẋ ε ż ∧ ẏ ε ż for all p ∈ P.

Union Axiom: For ẋ ∈ V P, define

ẏ = {〈ż, p〉 | (∃ẇ ∈ V P)(∃q ∈ P)(〈ż, q〉 ∈ ẇ ∧ 〈ẇ, p〉 ∈ ẋ)}.
Then ẏ ∈ V P. Suppose ȧ ∈ V P and r ≤ p with r � ȧ ε ẋ and suppose r′ ≤ r and r′ � ḃ ε ȧ. Then

{s ∈ P | 〈ȧ, s〉 ∈ ẋ} is predense below r

and {q ∈ P | 〈ḃ, q〉 ∈ ȧ} is predense below r′. Thus {s ∈ P | 〈ḃ, s〉 ∈ ẏ} is predense below r, i. e. r � ḃ ε ẏ, in
particular r′ � ḃ ε ẏ. Therefore r � ∀b(b ε ȧ→ b ε ẏ) and so p � (∀a ε ẋ)(∀b ε a)(b ε ẏ) for all p ∈ P.

Powerset Scheme: For ẋ ∈ V P, define

ẏ = {〈ż, p〉 ∈ V P × P | (∀q ∈ P)(q � (∀s ε ż)(s ε ẋ)
& (∃u̇ ∈ V P)(p � ∀s(s ε ż ↔ s ε ẋ ∧ F (s, u̇, ẋ))))}.

Then ẏ ∈ V P. Notice that ẏ is a set by virtue of the intensional membership relation ε. Suppose p ∈ P and u̇ ∈ V P

and let ż = {〈ṡ, q〉 | q � ṡ ε ẋ ∧ F (ṡ, u̇, ẋ)}. Then ż ∈ V P and obviously p � ∀s(s ε ż ↔ s ε ẋ ∧ F (s, u̇, ẋ))
and so 〈ż, p〉 ∈ ẏ, i. e. p � ż ε ẏ.

Infinity Scheme: By the Infinity Scheme, for any set X there is a set Y with X ⊂ Y such that, for all u̇ ∈ V P

and p ∈ P with 〈u̇, p〉 ∈ Y , if there is v̇ ∈ V P with p � F (v̇, u̇, ẋ), then there is v̇ ∈ V P with 〈v̇, p〉 ∈ Y and
with p � F (v̇, u̇, ẋ). We denote this relation by R(X,Y ) and Y = {〈v̇, q〉 | (∃p ≥ q)(〈v̇, p〉 ∈ Y )}. Then we
have ∀X∃ZR′(X,Z), where

R′(X,Z) ≡ ∃Y (R(X,Y ) ∧ Y = Z).

Again by the Infinity Scheme, for the given ẋ ∈ V P, we have W with {trcl(ẋ) × P} ⊂W such that

(∀X ∈W )(∃Z ∈ W )R′(X,Z).

Let W ′ = {Y ∈W | Y = Y }. Then {trcl(ẋ) × P} ⊂W ′ and

(∀X ∈W ′)(∃Z ∈W ′)R′(X,Z).

Define X ′ =
⋃
W ′. Then X ′ has the following closure properties: for any u̇ ∈ V P and p ∈ P with 〈u̇, p〉 ∈ X ′,

if there is v̇ ∈ V P such that p � F (v̇, u̇, ẋ), then there is v̇ ∈ V P with 〈v̇, p〉 ∈ X ′ such that p � F (v̇, u̇, ẋ),
and 〈u̇, q〉 ∈ X ′ for all q ≤ p.

Define ẏ = X ′ ∩ (V P × P). Then obviously ẏ ∈ V P.
Clearly, for all p ∈ P, p � ṡ ε ẋ implies the existence of q ∈ P such that 〈ṡ, q〉 ∈ ẋ and hence

〈ṡ, p〉 ∈ X ′ ∩ (V P × P) = ẏ

which means p � ṡ ε ẏ.
Suppose p � u̇ ε ẏ and q � ∃vF (v, u̇, ẋ) for q ≤ p. Then {p′ ∈ P | 〈u̇, p′〉 ∈ ẏ} is predense below p and so,

by the closure of X ′, {p′ ≤ p | 〈u̇, p′〉 ∈ ẏ} is dense below p. Since

D = {r ≤ q | r � F (v̇, u̇, ẋ) for some v̇ ∈ V P}
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is dense below q, we have

D′ = {r ≤ q | 〈u̇, r〉 ∈ ẏ& r � F (v̇, u̇, ẋ) for some v̇ ∈ V P}

is dense below q. For all r ∈ D′, since we have v̇ ∈ V P with 〈v̇, r〉 ∈ X ′ such that r � F (v̇, u̇, ẋ), we have

r � v̇ ε ẏ ∧ F (v̇, u̇, ẋ).

By the arbitrariness of r ∈ D′, we obtain q � (∃v ε ẏ)F (v, u̇, ẋ). Thus

p � (∃v)F (v, u̇, ẋ) → (∃v ε ẏ)F (v, u̇, ẋ).

Notice that, in the proof above, the formulae F in the axiom schemes can include the predicate V (·) and hence
that what we have proved just above is in fact stronger than the forced ZF∈-axioms.

Remark 3.6 As we notice in the part of the Powerset Axiom above, one of the most important advantages
of defining the forcing via the interpretation is that {ẋ | (∃p ∈ P)(p � ẋ ε ȧ)} does not become a proper class.
In usual, to avoid such a difficulty we use something like Scott’s trick, bounding the rank to make it form a set.
This trick looks irrelevant. By the interpretation in ZFε, we can avoid such an irrelevant trick.

Proposition 3.7 Assume AFA. Then, for any p ∈ P, p � AFA.

P r o o f. We prove p � AFA1 and p � AFA2, where AFA1 states the existence of decorations for all pointed
graphs and AFA2 states the uniqueness of them.

To show p � AFA2, suppose that q � “ȧ and ḃ are ∈-bisimilar”. Then, by Lemma 2.7 and Lemma 3.3, we
have q � ȧ ∼ ḃ, i. e. q � ȧ = ḃ.

Now we show p � AFA1. Suppose q � “(Ṅ , Ė, ċ) is a pointed graph”. Define a labeled graph (N0, E0, L0)
as follows (see Figure 1):4)

N0 = {ḃ, ḃ, 〈ḃ, p〉, 〈ḃ, p〉 | ḃ ∈ V P & (∃q ∈ P)(〈ḃ, q〉 ∈ Ṅ)& p ∈ P} ∪̇ P,

E0 = {(ḃ, ḃ), (ḃ, 〈ḃ, p〉), (p, 〈ḃ, p〉), (ḃ, 〈ḃ, p〉), (〈ḃ, p〉, 〈ḃ, p〉) | ḃ ∈ V P & p ∈ P}
∪ {(〈ḃ, p〉, ȧ) | p � 〈ḃ, ȧ〉 ∈ Ė},

dom(L0) = P and L0(p) = p.

ȧ

〈ḃ, p〉

ḃ 〈ḃ, p〉

ḃ p p

�
p�〈ḃ,ȧ〉∈Ė

�
�
��

�
���

�

��������
�

L0

Fig. 1

4) ∪̇ means disjoint union. Here, we may assume that {ḃ, ḃ, 〈ḃ, p〉, 〈ḃ, p〉 | ḃ ∈ V P & (∃q ∈ P)(〈ḃ, q〉 ∈ Ṅ)& p ∈ P} and P are disjoint.
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By the labeled anti-foundation axiom, which is a consequence of AFA (see [1]), we have a labeled decoration

d : N0 −→ V.

Then

d(ȧ) = {d(〈ḃ, p〉) | ḃ ∈ V P ∩N0 & p � 〈ḃ, ȧ〉 ∈ Ė}
= {{d(ḃ), d(〈ḃ, p〉)} | ḃ ∈ V P ∩N0 & p � 〈ḃ, ȧ〉 ∈ Ė}
= {{{d(ḃ)}, {d(ḃ), d(p)}} | ḃ ∈ V P ∩N0 & p � 〈ḃ, ȧ〉 ∈ Ė}
= {{{d(ḃ)}, {d(ḃ), L0(p)}} | ḃ ∈ V P ∩N0 & p � 〈ḃ, ȧ〉 ∈ Ė}
= {〈d(ḃ), p〉 | ḃ ∈ V P ∩N0 & p � 〈ḃ, ȧ〉 ∈ Ė}.

Since ran(d � V P) ⊂ P(ran(d � V P) × P), we have ran(d � V P) ⊂ V P, i. e. d(ȧ) ∈ V P for all ȧ ∈ V P ∩N0.

In what follows, the name d(ȧ) is denoted by
∗
a.

Define a new name ḋ = {〈op(ȧ,
∗
a), q〉 | ȧ ∈ V P ∩N0 & q ∈ P}, where

up(ḃ, ȧ) = {〈ḃ, p〉, 〈ȧ, p〉 | p ∈ P}, op(ḃ, ȧ) = up(up(ḃ, ḃ), up(ḃ, ȧ)).

We now claim that p � “ḋ is a decoration of (Ṅ , Ė, ċ)”. Because of p � AFA2, it suffices to show that

p � “ḋ is a bisimulation from (Ṅ , Ė, ċ) to (trcl(ḋ(ċ)),∈, ∗c)”.
To show

p � ∀x∀y∀z(x ε y ∧ 〈z, y〉 ε ḋ→ ∃w(〈w, x〉 ∈ ḋ ∧ 〈w, z〉 ∈ Ė)),

suppose q � ẋ ε ẏ ∧ 〈ż, ẏ〉 ε ḋ. Then q � op(ż, ẏ) ε ḋ, i. e. ẏ =
∗
z. By q � ẋ ε ẏ, ẋ =

∗
w for some ẇ with

{r ∈ P | r � 〈ẇ, ż〉 ∈ Ė} is predense below q.

Thus q � 〈ẇ, ż〉 ∈ Ė and q � 〈ẇ, ẋ〉 ∈ ḋ.
Conversely, to show

p � ∀x∀y∀w(〈w, x〉 ∈ Ė ∧ 〈x, y〉 ε ḋ→ ∃z(z ∈ y ∧ 〈w, z〉 ∈ ḋ)),

suppose

q � 〈ẇ, ẋ〉 ∈ Ė ∧ 〈ẋ, ẏ〉 ε ḋ.

Then q � 〈ẋ, ẏ〉 ε ḋ, i. e. ẏ =
∗
x. By q � 〈ẇ, ẋ〉 ∈ Ė, we have 〈 ∗w, q〉 ∈ ∗

x = ẏ and hence q � ∗
w ∈ ẏ with obvi-

ously q � 〈ẇ, ∗
w〉 ∈ ḋ.

Thus we have proved that p � AFA1 for all p ∈ P.

Remark 3.8 It is easy to deduce p � FA from FA: It suffices to show that p � ȧ ∈ WF for any p ∈ P

and ȧ ∈ V P, which is, by p � ZF∈, equivalent to p � ȧ ⊂ WF, by induction on ȧ, where WF denotes
the well-founded part of the universe. We prove that p � (∀x ε ȧ)(x ∈ WF). Suppose q ≤ p and q � ḃ ε ȧ.
Then rank(ḃ) < rank(ȧ), by the induction hypothesis, we have q � ḃ ∈ WF, which completes the proof.

If we assume AC in the ground model, then the Maximal Principle holds and AC is forced.

Lemma 3.9 Assume AC. For p ∈ P, any ZF∈-formula ϕ and ȧ1, . . . , ȧn ∈ V P, if p � ∃xϕ(x, ȧ1, . . . , ȧn),
then there is ḃ ∈ V P such that p � ϕ(ḃ, ȧ1, . . . , ȧn).

P r o o f. Assume p � ∃xϕ(x, ȧ1, . . . , ȧn). By Coll, there is a set X such that

(∀q ∈ P)((∃ẋ ∈ V P)(q � ϕ(ẋ, ȧ1, . . . , ȧn)) → (∃ẋ ∈ V P ∩X)(q � ϕ(ẋ, ȧ1, . . . , ȧn))).
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By Zorn’s Lemma we can choose maximal

W ⊂ {〈ẋ, q〉 ∈ (X ∩ V P) × P | q � ϕ(ẋ, ȧ1, . . . , ȧn)}

such that for any distinct 〈ẋ, q〉, 〈ẏ, r〉 ∈W there is no s ≤ q, r. ThenD = {q ∈ P | ∃ẋ(〈ẋ, q〉 ∈ W )} is predense
below p, since {q ∈ P | (∃ẋ ∈ V P ∩X)(q � ϕ(ẋ, ȧ1, . . . , ȧn))} is dense below p. Define

ḃ = {〈ż, s〉 | (∃〈ẋ, q〉 ∈W )(s ≤ q& s � ż ε ẋ)}.

Then obviously q � ḃ = ẋ for all 〈ẋ, q〉 ∈ W and hence q � ϕ(ḃ, ȧ1, . . . , ȧn). Since D is predense below p, we
have p � ϕ(ḃ, ȧ1, . . . , ȧn).

Proposition 3.10 Assume AC. Then, for p ∈ P, p � AC.

P r o o f. Suppose p � ∅ /∈ ẋ. Then, for any ẏ and q ≤ p with q � ẏ ε ẋ, q � ∃z(z ∈ ẏ) and, by the Maximal
Principle, there is ż ∈ V P such that q � ż ∈ ẏ. For ẏ and q ≤ p, choosing Φ(ẏ, q) ∈ V P such that if q � ẏ ε ẋ,
then q � Φ(ẏ, q) ∈ ẏ.

By Zorn’s Lemma, we can take a maximal

W ⊂ {〈ẏ, q〉 | q � ẏ ε ẋ}

such that for any distinct 〈ẏ1, q1〉, 〈ẏ2, q2〉 ∈W . Then there is no r ≤ q1, q2 with r � ẏ1 = ẏ2. Define ḟ ∈ V P as
follows:

ḟ = {〈op(ẏ,Φ(ẏ, q)), q〉 | 〈ẏ, q〉 ∈W}.

Then obviously p � “ḟ is a function on ẋ” and p � (∀y ε ẋ)(ḟ(y) ∈ y).

4 Generic extensions under AFAAFAAFA

We now begin to describe the fundamental theorem of forcing, which is about the generic model. However, to
treat a generic model, we need a certain assumption:

Assumption 4.1 (Assumption 1) We work in a model which contains V as a transitive submodel. Assume
that AFA holds there and that there is a P-generic filter G over V .

The justification (the consistency and, moreover, the conservativeness) of this assumption will be discussed in
the next section. Under this assumption, we define the generic model:

Definition 4.2 For a P-generic filter G, define the function val(·, G) on V P and a class V [G] as follows:

val(ȧ, G) = {val(ḃ, G) | (∃p ∈ G)(〈ḃ, p〉 ∈ ȧ)}, V [G] = {val(ȧ, G) | ȧ ∈ V P}.

By AFA, the former condition determines the function val(·, G) uniquely. Notice that val(ǎ, G) = a.

Here is a problem: is val(·, G) absolute for universes which have G and contain V as a transitive class? More
precisely, if V ∪ {G} ⊂W,W ′, then is valW (ȧ, G) = valW (ḃ, G) equivalent to valW

′
(ȧ, G) = valW

′
(ḃ, G)?

I. e., are the following two statements

W � “graph(ȧ, G) and graph(ḃ, G) are bisimilar”,

W ′ � “graph(ȧ, G) and graph(ḃ, G) are bisimilar”

equivalent, where Nodegraph(ȧ,G) = trcl(ȧ) ∩ V P and (ẋ, ẏ) ∈ Edgegraph(ȧ,G) iff (∃p ∈ G)(p � ẋ ∈ ẏ)? In ge-
neral, the answer seems to be no (though the author has not proved it yet), and then it seems hopeless to obtain
Forcing Theorem. This is what makes the forcing under AFA more difficult to deal with than under FA.

Problem 4.3 Does some analogous to the Minimal Model Theorem hold? If yes, then how should we define
the minimal (generic) model and in which sense the model is minimal?
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One of the most promising candidates for generic model is, of course, the quotient model V P/G:

Definition 4.4 For a P-generic filter G, the quotient model V P/G is the (2-valued) model defined as follows:

|V P/G| = V P/ ∼G,

ȧ ∼G ḃ⇔ (∃p ∈ G)(p � ȧ = ḃ),
V P/G � ȧ/G ∈ ḃ/G⇔ (∃p ∈ G)(p � ȧ ∈ ḃ),

where ȧ/G denotes the equivalence class of ȧ with respect to ∼G.

Theorem 4.5 (Forcing Theorem) Under the situation as above, V P/G � ϕ(ȧ1/G, . . . , ȧn/G) iff there
is p ∈ G such that p � ϕ(ȧ1, . . . , ȧn). Thus V P/G � ZF∈ + AFA.

P r o o f. The reader can prove these by induction on ϕ easily.

Let us turn to the problem that in which model (or under which assumption) we should consider the Forcing
Theorem and the Minimal Model Theorem. Now we assume that the universe we fixed as the outside of the
ground model V contains the quotient model V P/G “essentially”, more precisely:

Assumption 4.6 (Assumption 2) val(ȧ, G) = val(ḃ, G) iff there is p ∈ G such that p � ȧ = ḃ.

The justification of this assumption will also be discussed in a later section.

Remark 4.7 Under FA, Assumption 4.6 actually holds because of the coincidence of the greatest and least
fixed points for set-continuous maps: For a set-continuous map Φ, let Φ(∞) and Φ(∞) denote the greatest fixed
point Φ(∞) =

⋃{x | x ∈ V, x ⊂ Φ(x)} and the least fixed point Φ(∞) =
⋂{x | x ∈ V, x ⊃ Φ(x)} respectively.

For a filter G of P, define

FEQG = {〈ȧ, ḃ〉 | p � ȧ = ḃ for some p ∈ G}
and ΦG as follows:

ΦG(Y ) = {〈ȧ, ḃ〉 | for all 〈ċ, q〉 ∈ ȧ with q ∈ G, there is 〈ḋ, t〉 ∈ ḃ with t ∈ G such that 〈ċ, ḋ〉 ∈ Y and
for all 〈ḋ, t〉 ∈ ḃ with t ∈ G, there is 〈ċ, q〉 ∈ ȧ with q ∈ G such that 〈ċ, ḋ〉 ∈ Y }.

It is easy to see the set-continuity of ΦG and, under AFA2, val(ȧ, G) = val(ḃ, G) iff 〈ȧ, ḃ〉 ∈ ΦG
(∞).

Thus Assumption 4.6 can be formulated as FEQG = ΦG
(∞). One can show without AFA that for a P-generic

filter G, ΦG(FEQG) = FEQG, i. e. FEQG is a fixed point of ΦG.
Indeed, ΦG(FEQG) ⊃ FEQG is straightforward and, for the converse, if 〈ȧ, ḃ〉 /∈ FEQG, i.e. for any p ∈ G,

p ��P ȧ = ḃ, then, since p �P LEM, we have q ∈ G such that q �P ¬(ȧ = ḃ) and so

q �P (∃x ε ȧ)(x /∈ ḃ) ∨ (∃y ε ḃ)(y /∈ ȧ).

Now we may assume q �P (∃x ε ȧ)(x /∈ ḃ). Thus

{r ≤ q | r � ċ ε ȧ ∧ ċ /∈ ḃ for some ċ} is dense below q

and so r ∈ G and ċ such that r � ċ ε ȧ ∧ ċ /∈ ḃ. We may assume 〈ċ, s〉 ∈ ȧ for some s ≥ r. Since r � ¬(ċ ∈ ḃ),
for any 〈ḋ, t〉 ∈ ḃ and u ≤ t with u ≤ r, u �� ċ = ḋ. If additionally t ∈ G and 〈ċ, ḋ〉 ∈ FEQG, say v � ċ = ḋ

for v ∈ G, then we have u ≤ t, r, v with u ∈ G, a contradiction. Thus 〈ċ, ḋ〉 /∈ ΦG(FEQG).
Therefore, ΦG(∞) ⊂ FEQG ⊂ ΦG

(∞). This implies FEQG = ΦG
(∞) if ΦG(∞) = ΦG

(∞) holds, which is a
theorem of FA.

At last we now could reach the analogues of the key theorems for forcing under FA.

Theorem 4.8 (Forcing Theorem and Minimal Model Theorem) Under the assumptions above, the following
hold:

1. V [G] is the minimal model among the models having G and containing V as a transitive class.

2. V [G] � ϕ(val(ȧ1, G), . . . , val(ȧn, G)) iff there is p ∈ G such that p � ϕ(ȧ1, . . . , ȧn), for any formula ϕ.

www.mlq-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



308 K. Sato: Forcing under Anti-Foundation Axiom

P r o o f. For the latter claim, it suffices to show that

val(ȧ, G) �−→ ȧ/G

provides us an isomorphism V [G] ∼= V P/G by the last theorem. The well-definedness is immediate from As-
sumption 4.6.

Suppose val(ȧ, G) ∈ val(ḃ, G). Then we have ċ such that val(ȧ, G) = val(ċ, G) and 〈ċ, p〉 ∈ ḃ for some p ∈ G

and therefore we have q � ȧ = ċ for some q ∈ G and p � ċ ∈ ḃ. Since G is a filter, we have s ∈ G such
that s ≤ p, q and hence s � ȧ ∈ ḃ and so ȧ/G ∈ ḃ/G.

Conversely suppose ȧ/G ∈ ḃ/G. Then p � ȧ ∈ ḃ for some p ∈ G. Thus p � ∃x(ȧ = x ∧ x ε ḃ), i. e.

{q ≤ p | q � ȧ = ċ ∧ ċ ε ḃ for some ċ} is dense below p.

Therefore we have q ∈ G such that q � ȧ = ċ ∧ ċ ε ḃ for some ċ. Then

val(ȧ, G) = val(ċ, G) ∈ val(ḃ, G).

We have completed the proof of the latter. For the former, it is obvious that for any model M of ZF∈ + AFA
with G ∈M , V ⊂M contains V [G] because of the absoluteness of decorations, and hence it remains to show
that V [G] ∼= V P/G itself is a model of ZF∈+AFA. However, this is immediate from the latter (Forcing Theorem)
and Propositions 3.5 and 3.7.

5 The generic filter elimination

In this section, we try to justify Assumption 4.1 we needed in the previous section. The method we employ here
is an analogue to one of the usual methods which we use under FA. As usual, we will have the conservativeness
of Assumption 4.1 over the original theory.

Recall that, for a unary formula U(x), the relativization to U is the syntactical transformation ϕ �−→ ϕU ,
defined as follows:

(x ∈ y)U ≡ x ∈ y, (x = y)U ≡ x = y,

(ϕ�ψ)U ≡ ϕU �ψU (where � ≡ ∧,∨,→), (¬ϕ)U ≡ ¬(ϕU ),
(∃xϕ)U ≡ ∃x(U(x) ∧ ϕU ), (∀xϕ)U ≡ ∀x(U(x) → ϕU ).

According to the convention,U � ϕ denotes ϕU .

Lemma 5.1 For any p ∈ P and ZF∈-formula ϕ, p � V � ϕ(ǎ1, . . . , ǎn) iff ϕ(a1, . . . , an).

P r o o f. We prove this by induction on ϕ. Notice that p � ǎ ε b̌ iff a ∈ b.
(1) ǎ1 = ǎ2: Define

R(a, b) ≡ (∃p ∈ P)(p � V � ǎ ∼ b̌).

Then R is an ∈-bisimulation. In fact, if c ∈ a and R(a, b), then p � č ε ǎ and, by Lemma 2.8, Lemma 3.3 and
Proposition 3.5, p � ∃x(x ε b̌ ∧ č ∼ x), which means that there are q ≤ p and ẋ such that q � ẋ ε b̌ ∧ č ∼ ẋ.
Since q � ẋ ε b̌, ẋ = ď for some d ∈ b and so q � ď ∼ č which implies R(c, d). The symmetry is obvious. Then,
by AFA2 (which is also a consequence of FA), R(a1, a2) implies a1 = a2. Thus p � ǎ = b̌ implies a = b and the
converse is obvious.

(2) ǎ1 ∈ ǎ2: Suppose p � V � ǎ1 ∈ ǎ2, i. e. p � ∃x(x ε ǎ2 ∧ ǎ1 ∼ x). Then there are q ≤ p and ẋ such
that q � ẋ ε ǎ2 ∧ ǎ1 ∼ ẋ. Since q � ẋ ε ǎ2, ẋ = b̌ for some b ∈ a2 and q � b̌ ∼ ǎ1 which implies b = a1 by (1).
Thus a1 = b ∈ a2. The converse is obvious.

(3) Connectives: We know that the forcing relation respects the classical logic and so ∧- and ¬-cases would
suffice. The ∧-case is immediate from the definition. For the ¬-case, if ¬ϕ(a1, . . . , an), then, by the induction
hypothesis, q �� V � ϕ(ǎ1, . . . , ǎn) for all q ≤ p and hence

p � ¬(V � ϕ(ǎ1, . . . , ǎn)),

i. e. p � V � ¬ϕ(ǎ1, . . . , ǎn). If p � V � ¬ϕ(ǎ1, . . . , ǎn), then p �� V � ϕ(ǎ1, . . . , ǎn) and so, by the induction
hypothesis, we have ¬ϕ(a1, . . . , an).
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(4) Quantifiers: Similarly the ∃-case would suffice.
Suppose p � V � ∃xϕ(x, ǎ1, . . . , ǎn), i. e.

p � ∃x(V (x) ∧ V � ϕ(x, ǎ1, . . . , ǎn)).

Then there are q ≤ p and ẋ such that q � V (ẋ) and q � V � ϕ(ẋ, ǎ1, . . . , ǎn). Again there are r ≤ q and a ∈ V
such that r � ǎ = ẋ and hence r � V � ϕ(ǎ, ǎ1, . . . , ǎn) which implies ϕ(a, a1, . . . , an) by the induction hypo-
thesis. Thus p � V � ∃xϕ(x, ǎ1, . . . , ǎn) implies ∃xϕ(x, a1, . . . , an).

For the converse, if ∃xϕ(x, a1, . . . , an), say ϕ(a, a1, . . . , an), then by the induction hypothesis,

p � V � ϕ(ǎ, ǎ1, . . . , ǎn).

Since p � V (ǎ), by Lemma 3.3, we have p � ∃x(V (x) ∧ V � ϕ(x, ǎ1, . . . , ǎn)).

Lemma 5.2 For any p ∈ P, p � “V is a transitive class”.

P r o o f. What we must show is that p � ∀x∀y(y ∈ x ∧ V (x) → V (y)) for all p ∈ P. Suppose q � ẏ ∈ ẋ
and q � V (ẋ). Then D = {r ≤ q | ∃a(r � ẋ = ǎ)} is dense below q and for any r ∈ D, say r � ẋ = ǎ,
r � ẏ ∈ ǎ, i. e. r � ∃z(z ε ǎ ∧ ẏ = z). ThusD′(r) = {s ≤ r | (∃ż ∈ V P)(s � ż ε ǎ ∧ ẏ = ż)} is dense below r
for all r ∈ D. For s ∈ D(r), say s � ż ε ǎ ∧ ẏ = ż, then ż = b̌ for some b ∈ a and hence s � ẏ = b̌. There-
fore r � V (ẏ) for all r ∈ D and hence q � V (ẏ) by Lemma 3.4.

We now introduce the canonical name G∼ for the generic filter as follows:

G∼ = {〈p̌, p〉 | p ∈ P}.

Lemma 5.3 For any p ∈ P,

p � “G∼ is a P̌-generic filter over V ”.

If additionally P is not atomic, then p � G∼ � P̌.

P r o o f. First we check that p � G∼ ⊂ P̌ and p � G∼ �= ∅. To show these, it suffices to show that

p � ∀x(x ε G∼ → x ∈ P̌) and p � p̌ ∈ G∼ .

The latter is obvious and, for the former, suppose p � ẋ ε G∼ . Then ẋ = q̌ for some q ∈ P and so p � ẋ ∈ P̌.

To show the upward closure p � ∀x∀y(y ∈ P̌ ∧ x ∈ G∼ ∧ x ≤̌ y → y ∈ G∼ ), it suffices to show

p � ∀x∀y(y ε P̌ ∧ x ε G∼ ∧ x ≤̌ y → y ∈ G∼ ).

Suppose

p � ẏ ε P̌ ∧ ẋ ε G∼ ∧ ẋ ≤̌ ẏ.

Then ẏ = q̌ for some q ∈ P and ẋ = ř with {r} is predense below p. Since p � V � ř ≤̌ q̌, we have r ≤ q by
Lemma 5.1, and so {q} is also predense below p. Thus p � q̌ ε G∼ and hence p � ẏ ∈ G∼ .

To show the filterness p � ∀x∀y(x ∈ G∼ ∧ y ∈ G∼ → (∃z ∈ G∼ )(z ≤̌ x ∧ z ≤̌ y)), it suffices to show

p � ∀x∀y(x ε G∼ ∧ y ε G∼ → (∃z ∈ G∼ )(z ≤̌ x ∧ z ≤̌ y)).

Suppose p � q̌ ε G∼ and p � ř ε G∼ , i. e. both {q} and {r} are predense below p. Then

D = {s ≤ p | s ≤ q& s ≤ r}
is dense below p. For all s ∈ D, s � š ≤̌ q̌ ∧ š ≤̌ ř ∧ š ε G∼ , and therefore p � (∃z ∈ G∼ )(z ≤̌ q̌ ∧ z ≤̌ ř).
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Finally we claim the genericity

p � ∀D(“V (D) ∧D ⊂ P̌ ∧D is dense” → D ∩G∼ �= ∅).

Suppose p � “V (Ḋ) ∧ Ḋ ⊂ P̌ ∧ Ḋ is dense”. Then D′ = {q ≤ p | q � Ḋ = Ě for some E} is dense below p.
For q ∈ D′, say q � Ḋ = Ě, then q � “Ě ⊂ P̌ ∧ Ě is dense” which is equivalent to

q � “V � Ě ⊂ P̌ ∧ Ě is dense”.

Thus, by Lemma 5.1, we have that E ⊂ P is dense. Since, for all r ∈ E, r � ř ε G∼ ∧ ř ε Ě, we have

q � ∃x(x ∈ G∼ ∧ x ∈ Ě),

i. e. q � ∃x(x ∈ G∼ ∧ x ∈ Ḋ). By the arbitrariness of q ∈ D′, we have p � ∃x(x ∈ G∼ ∧ x ∈ Ḋ).

Therefore, if we assume that we work in the forcing relations, then, by the previous two lemmata, Assump-
tion 4.1 is satisfied and, by Lemma 5.1, this assumption does not change the theory of the ground model V .

The well known alternative way to justify the existence of a generic filter is by the reflection principle, which
asserts that, for any finite sentences, there is a countable transitive model to which the sentences are absolute.
However, to obtain such a countable transitive model, we need to assume AC and the countability is inevitable to
construct generic filters in general.

6 The quotient model V P/GV P/GV P/G

Now let us turn to Assumption 4.6. Since we have established the conservativeness of Assumption 4.1 in the last
section, what we must do is to establish that of Assumption 4.6 under Assumption 4.1. As mentioned above,
Assumption 4.6 requires the fixed universe as the outside of V contains essentially V P/G and so it is natural to
consider whether V P/G itself satisfies Assumption 4.6. If so, then the conservativeness of Assumption 4.6 is
obtained.

Lemma 6.1 V V P/G = {x ∈ |V P/G| | V P/G � V (x)} is isomorphic to V via a �−→ ǎ/G.

P r o o f. It is obvious that ǎ/G ∈ V V P/G for all a ∈ V since p � V (ǎ) for all p ∈ P. Conversely suppose
that ȧ/G ∈ |V P/G| satisfies V P/G � V (ȧ/G). Then there is p ∈ G such that p � V (ȧ) and hence

{q ≤ p | q � ȧ = b̌ for some b ∈ V } is dense below p,

which implies that there are q ∈ G and b ∈ V such that q � b̌ = ȧ. Thus ȧ/G = b̌/G for some b ∈ V .
Then

ǎ/G = b̌/G iff there is p ∈ G such that p � ǎ = b̌ iff a = b by Lemma 5.1.

Similarly

V P/G � ǎ/G ∈ b̌/G iff there is p ∈ G such that p � ǎ ∈ b̌ iff a ∈ b by Lemma 5.1.

In what follows, we identify V with V V P/G via a �−→ ǎ/G.

Lemma 6.2 V P/G � p̌/G ∈ G∼/G iff p ∈ G, for all p ∈ V .

P r o o f. Suppose p̌/G ∈ G∼ /G, say q � p̌ ∈ G∼ and q ∈ G. Thus we have ẋ such that r � p̌ = ẋ ∧ ẋ ε G∼ for

some G � r ≤ q and ẋ ∈ V P. Then ẋ = š such that {s} is predense below r, in particular s ∈ G. Since

r � p̌ = š,

we have p = s ∈ G by Lemma 5.1.
Conversely, since p � p̌ ∈ G∼ , p ∈ G implies p̌/G ∈ G∼/G.
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Proposition 6.3 In V P/G, for any ȧ1, . . . , ȧn ∈ (V P)V , the Forcing Theorem holds:

ϕ(val(ȧ1, G∼/G), . . . , val(ȧn, G∼/G)) iff, for some p ∈ G, p �V ϕ(ȧ1, . . . , ȧn).

P r o o f. Now we have V P/G � ϕ(ȧ1/G, . . . , ȧn/G) iff there is p ∈ G such that p � ϕ(ȧ1, . . . , ȧn) iff there
is p such that

V P/G � p̌/G ∈ G∼/G and p̌/G �V ϕ(ˇ̇a1/G, . . . , ˇ̇an/G).

Since V P/G � G∼ /G ⊂ P̌ /G ⊂ V , by Lemma 6.1, these are equivalent to the statement which is completely

in V P/G:

V P/G � (∃z ∈ G∼/G)(z �V ϕ(ˇ̇a1/G, . . . , ˇ̇an/G)).

Therefore, we have the following equivalence defined in V P/G:

V P/G � ϕ(ȧ1/G, . . . , ȧn/G) ↔ (∃z ∈ G∼/G)(z �V ϕ(ˇ̇a1/G, . . . , ˇ̇an/G)).

Notice that, by Lemma 6.1, if ȧ/G ∈ |V P/G| with V P/G � ȧ/G ∈ (V P)V , then ȧ/G = (ˇ̇c)/G for some ċ ∈ V P.
Thus it suffices to show the following lemma.

Lemma 6.4 V P/G � val((ˇ̇a)/G,G∼/G) = ȧ/G.

P r o o f. Using the previous lemmata, we have the following equations which hold in V P/G:

valV
P/G((ˇ̇a)/G,G∼/G) = {valV

P/G(ḃ/G,G∼/G) | V P/G � (∃z ∈ G∼/G)(〈ḃ/G, z〉 ∈ ˇ̇a/G)}
= {valV

P/G(ḃ/G,G∼/G) | V P/G � ḃ/G ∈ (V P)V

∧ (∃z ∈ G∼/G)(〈ḃ/G, z〉 ∈ ˇ̇a/G)}
= {valV

P/G((ˇ̇c)/G,G∼/G) | V P/G � (∃z ∈ G∼/G)(V � (〈ˇ̇c/G, z〉 ∈ ˇ̇a/G))}
= {valV

P/G((ˇ̇c)/G,G∼/G) | (∃r ∈ V )(V P/G � ř/G ∈ G∼/G

&V � 〈ˇ̇c/G, ř/G〉 ∈ ˇ̇a/G)}
= {valV

P/G((ˇ̇c)/G,G∼/G) | (∃r ∈ G)(〈ċ, r〉 ∈ ȧ)}

and

ȧ/G = {ḃ/G | (∃p ∈ G)(p � ḃ ∈ ȧ)}
= {ḃ/G | (∃p ∈ G)({q ∈ P | (∃ċ ∈ V P)(q � ḃ = ċ ε ȧ)} is dense below p)}
= {ḃ/G | (∃q ∈ G)(∃ċ ∈ V P)(q � ḃ = ċ ε ȧ)}
= {ċ/G | (∃q ∈ G)({r ∈ P | 〈ċ, r〉 ∈ ȧ} is predense below q)}
= {ċ/G | (∃r ∈ G)(〈ċ, r〉 ∈ ȧ)}.

Thus, by AFA2 in V P/G, we have V P/G � val((ˇ̇a)/G,G∼/G) = ȧ/G.

Corollary 6.5 In V P/G, for any ȧ, ḃ ∈ (V P)V ,

val(ȧ, G∼/G) = val(ḃ, G∼ /G) iff there is p ∈ G∼/G such that p � ȧ = ḃ.

I. e., V P/G satisfies Assumption 4.6.

We have proved the consistency of Assumption 4.6 from that of Assumption 4.1. Moreover, Lemma 6.1 means
that the conservativeness of Assumption 4.6 over the original theory follows from that of Assumption 4.1.
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7 The relation to forcing under FAFAFA

As we remarked in several places in the previous sections, the way we have defined the forcing under AFA and
obtained some results on it is applicable to the forcing under FA with small modifications, and that this way
makes the definition (of forcing relation for atomic formulae) and the proofs quite simpler than those of the usual
formulation.

Now it is natural to investigate the relation between the well-founded part of the generic extension (by forcing
under AFA) and the generic extension (by forcing under FA) of the well-founded part of the ground model.

In this section, we assume P ∈ WF. Note that it is not relevant to the exact poset P, but the isomorphic type
of P. Thus, under AC, this assumption makes no change. Even in the absence of AC, this is a natural assumption
for our purpose of this section.

In what follows, Acz denotes Aczel’s model of AFA, i. e.

{(G,E, a) | E ⊂ G×G, a ∈ G}/ ≡,

where (G,E, a) ≡ (G′, E′, a′) iff there is an (E,E′)-bisimulation R (in other words, a bisimulation R from E
to E′) such that aRa′. Here is a key lemma:

Lemma 7.1 Assume V � ZF∈ + AFA + AC. Then V ∼= AczWFV

.

P r o o f. Define Φ : V −→ AczWFV

as follows: Letting a ∈ V , then, by AC, we have a cardinal κ and a
bijection f : trcl(a) ∼= κ. Define a pointed graph (κ,R, f(a)), where

R = {〈f(b), f(c)〉 ∈ κ× κ | b, c ∈ trcl(a)& b ∈ c}.

Put Φ(a) = (κ,R, f(a))/ ≡, the equivalent class of (κ,R, f(a)). This does not depend on the choice of κ, f .

Conversely define Ψ : AczWFV −→ V as follows: suppose a ∈ AczWFV

, say a is the equivalence class of a
pointed graph (G,E, g) and put Ψ(a) = d(g), where d is the unique decoration of the graph (G,E). This does
not depend on the choice of (G,E, g).

It is obvious that Φ and Ψ are mutually inverse.

For a class M, define M[G] as follows:

M[G] = {val(ȧ, G) | ȧ ∈ V P ∩ M}.

Corresponding to the fact that FA is forced in the usual forcing, we can easily obtain:

Lemma 7.2 WFV [G] is a transitive submodel of WFV [G]. Therefore WFV ⊂ WFV [G] and G ∈ WFV [G].

P r o o f. By induction on rank(ȧ) for ȧ ∈ WF ∩ V P. To show p � ȧ ∈ WF for all p ∈ P, it suffices to show

p � ∀x(x ε ȧ→ x ∈ WF).

Suppose q ≤ p and q � ḃ ε ȧ. Then ḃ ∈ WF ∩ V P with rank(ḃ) < rank(ȧ) and hence q � ḃ ∈ WF by the in-
duction hypothesis.

Suppose x ∈ val(ẏ, G) with ẏ ∈ WFV ∩ V P. Then there are ẋ and p ∈ G with x = val(ẋ, G) and 〈ẋ, p〉 ∈ ẏ.
ẏ ∈ WFV implies ẋ ∈ WFV and hence x ∈ WFV [G].

Lemma 7.3 WFV ∩ V P is the least fixed point of ΦP. I. e., ȧ ∈ WFV ∩ V P iff ȧ is a P-name in the usual
sense (under FA). As a consequence, WFV [G] is a generic extension of WFV in the usual sense.

P r o o f. Since P(V P × P) = V P, ȧ ∈ V P ∩ WFV iff ȧ is a relation and, for any 〈x, p〉 ∈ ȧ, x ∈ V P ∩ WFV

and p ∈ P. This equivalence determines the class of P-names in the usual sense in the universe satisfying FA.

Theorem 7.4 Assume AC in the ground model V . Let G be a generic filter of P. Then WFV [G] = WFV [G].
As a consequence, ONV [G] = ONV .
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P r o o f. By Lemma 7.2, it suffices to show that WFV [G] ⊂ WFV [G]. Suppose val(ẋ, G) ∈ WFV [G]. In V ,
using AC take a set N ∈ WFV and a bijection ϕ : trcl(ẋ) ∩ V P −→ N . Also define

Ẽ = {〈ϕ(ẏ), ϕ(ż), p〉 | 〈ẏ, p〉 ∈ ż& ẏ, ż ∈ trcl(ẋ) ∩ V P} ∈ WFV .

Let

ẼG = {〈ϕ(ẏ), ϕ(ż)〉 | (∃p ∈ G)(〈ẏ, p〉 ∈ ż)& ẏ, ż ∈ trcl(ẋ) ∩ V P}.

Then ẼG = {〈ϕ(ẏ), ϕ(ż)〉 | (∃p ∈ G)(〈ϕ(ẏ), ϕ(ż), p〉 ∈ Ẽ)} ∈ WFV [G] by the last lemma. Since

WFV [G] � “val(ẋ, G) is the transitive collapse of (N, ẼG)”,

WFV [G] � “(N, ẼG) is well-founded graph” and by the transitivity of WFV [G] in WFV [G], we also have

WFV [G] � “(N, ẼG) is well-founded graph”.

Thus, there exists x ∈ WFV [G] such that WFV [G] � “x is the transitive collapse of (N, ẼG)”, and so, by the ab-
soluteness of collapsing, WFV [G] � “x is the transitive collapse of (N, ẼG)”. By the uniqueness of collapsing,

val(ẋ, G) = x ∈ WFV [G].

Thus ONV [G] = ONWFV [G]
= ONWFV [G] = ONWFV

= ONV .

Corollary 7.5 Assume AC. Then V [G] ∼= AczWFV [G].

P r o o f. By Proposition 3.10, Lemma 7.1 and the theorem, V [G] ∼= AczWFV [G] ∼= AczWFV [G].

This corollary means that our generic model and the generic model defined in [5, Appendix] coincide.
By Theorem 4.8, we have Forcing Theorem and Minimal Model Theorem for their generic model under Assump-
tions 4.6, in particular, when the outside universe in which we are working is V P/G, while the conjecture there [5]
claims that Forcing Theorem does hold without Assumption 4.6, i. e. in any outside universe W satisfying As-
sumption 4.1 with V ⊂W (which implies WFV ⊂ WFW , by the absoluteness of wellfoundedness under AFA,
established essentially in [9, Lemma 8]). However, by the usual Forcing Theorem, the generic models are absolute

under FA, i. e. (WFV [G])V P/G ∼= (WFV [G])W , which implies Forcing Theorem for Acz(WFV [G])W

. Thus we
have obtained a positive answer to the conjecture.

Another meaning of this corollary is that, assuming AC, we can construct V [G] by methods which have
already been introduced, usual generic extension for FA-models and Aczel’s construction, and so the new method
we have just introduced looks useless for constructing new models at least under AC. Is it actually useless? No,
even under AC. In fact, the Forcing Theorem and Minimal Model Theorem show the direct relation between
the ground model and the generic models and so these theorems will have some practical value in investigating
AFA-models even under AC.

As mentioned in Section 1, we give one example which shows the utility of such a direct relation: In [9], the
Gödel operations under AFA and constructible universe JX1 for AFA are considered and so it is easy to define the
relatively constructible universes JX1 [x] and JX1(x) for any set x. For a set x, consider the consistency of the
statement “∃y(y /∈ JX1 [x])”, or “there is a set which is not constructible in x”. Our forcing method immediately
shows the consistency, in the exactly same way as in the presence of FA, i. e. taking a non-atomic poset P and
considering (JX1 [x])[G] for a P-generic filter G over JX1 [x]. Note that this discussion does not require AC.
On the other hand, without our forcing method, one needs to take a copy of the structure (trcl(x),∈) in the well-
founded part, to extend it by the usual forcing method and to recover the non-well-founded part, a cumbersome
procedure! Moreover, this procedure cannot be done without AC, because there is no guarantee that a copy
of (trcl(x),∈) exists in the well-founded part.

This is only one example. As the forcing method is an inevitable part of model theory for FA-models, our
forcing method will undoubtedly become an inevitable part of AFA-model theory.
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