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Abstract

The repugnant conclusion poses a conundrum in population ethics

that has evaded satisfactory solution for four decades. In this article, I

show that the repugnant conclusion can be avoided without sacrificing

key moral intuitions. This is achieved using non-Archimedean orders,

which admit the possibility of pairs of goods for which no amount of

one is better than a single unit of the other. I show that with minimal

assumptions, not only are such goods sensible, they are compulsory.

I show that utilitarianism and expected utility theory in their canon-

ical forms are not in general suitable in this setting, and using these

tools naively can lead to ethical errors that are arbitrarily serious.

Multi-dimensional lexicographic expected utility representations may

be required. I use fuzzy sets to show that there needn’t be a clear

boundary separating goods that are not Archimedean equivalent.
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1 Introduction

The repugnant conclusion is the idea that for any finite population of lives of

arbitrarily high quality, there is a larger population consisting of lives that

are barely worth living that is ethically preferable. It has been argued that

this conclusion follows if one accepts that a small reduction in the quality

of life for a given population may be ‘compensated’ by adding more people.

It is claimed that this reasoning can be applied recursively to make ethical

improvements at each step, ending with a larger population of lives that are

each barely worth living.[1, 2, 3]

Many attempts have been made to avoid the repugnant conclusion, but

they all appear to require accepting ethical positions that are often perceived

to be as counterintuitive or undesirable as the repugnant conclusion itself.

For a summary of such attempts and their issues, see [3]. This state of affairs

has inspired a number of ‘impossibility theorems’ that purport to prove there

is no theory of population ethics satisfying an intuitively desirable set of

axioms that includes avoiding the repugnant conclusion.[4, 5, 6, 7, 8]

In this article, I introduce an appropriate mathematical structure for

population ethics - ordered real vector spaces. I show that any totally ordered

real vector space of dimension > 1 is non-Archimedean. Roughly speaking,

this implies that there must be a pair of goods x, y such that y is better than

any number of x. In the literature, y is sometimes referred to as ‘superior’,

or ‘lexically superior’, to x. The conclusion is that not only are such goods

sensible, they are compulsory.

Next, I show that non-Archimedean total orders on real vector spaces
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cannot be represented on the real numbers, with the immediate consequence

that utilitarianism and expected-utility theory in their canonical forms are

not generally suitable in population ethics. Generalisations of the von Neu-

mann Morgenstern theorem that weaken the continuity/Archimedean axiom

lead to multi-dimensional lexicographic expected utility representations.

I demonstrate that the repugnant conclusion can be avoided with moral

intuitions intact using non-Archimedean orders. This result does not rely

on any particular interpretation of concepts that may not have a precise

defintion, such as life quality or a life barely worth living. The key inno-

vation compared to previous work is an appropriate handling of orders on

infinite sets. Finally, I use a fuzzy set construction to allow for the possibility

that there may not be a precise apparent border between non-Archimedean

equivalent goods.

2 The mathematics of population ethics

Definition 1. Partial/total order. Consider the following properties of a

binary relation ≥ on a set S that hold ∀x, y, z ∈ S,

x ≥ x Reflexive (2.1)

y ≥ x and x ≥ y ⇒ y = x Antisymmetric (2.2)

z ≥ y and y ≥ x ⇒ z ≥ x Transitive (2.3)

x ≥ y or y ≥ x Complete. (2.4)

3



The relation ≥ is called a partial order if it satisfies 2.1-2.3, and a total order

if it satisfies 2.1-2.4.

Let V be a real vector space, that may be finite- or infinite-dimensional.

Let Q be a basis for V . We will think of each element of Q as corresponding

to a life year with different levels of quality. For any n ≥ 0 and q ∈ Q, nq

will correspond to n life years of quality q.

Definition 2. Ordered real vector space. An ordered real vector space

is a pair (V,≥) where V is a real vector space and ≥ is a partial order on V ,

such that ∀x, y, z ∈ V, λ > 0,

y ≥ x ⇒ y + z ≥ x+ z (2.5)

y ≥ x ⇒ λy ≥ λx. (2.6)

(V,≥) will be called a totally ordered real vector space if ≥ is a total order.

This captures the idea for any two populations, adding some other pop-

ulation or λ-fold replication does not affect the ordering.

Note that the structure of an ordered real vector space would not be ex-

pedient in e.g. consumer choice theory. One can imagine a pair of goods x

and z (tea bags and milk) that complement each other, along with another

pair of goods y and z (orange juice and milk) that don’t, in a way that could

lead to violations of 2.5. In the population ethics setting, however, it is useful

for any inter-personal or inter-population complementarities to be subsumed

under quality of life. This can be achieved by e.g. interpreting a basis vector
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as a year of life of a given quality spent in a virtual reality machine that is

indistinguishable from reality. Then, for example, a year of life enhanced by

the company of one’s family needn’t require vectors representing the lives of

family members. In this way, any complementarities between lives can be

captured through an appropriate interpretation of the basis vectors. Further,

this interpretation maps any possible population with any profile of life qual-

ities onto an element of the vector space. Putting a total order on this space

can then allow any population ethics question in principle to be answered.

2.6 implies scale invariance. In the consumer choice setting, one can

imagine two goods y and x (cake and bread) such that one unit of y is

preferred to x, but there is some λ > 1 such that λ units of x is preferred

to λ units of y. In the population ethics setting, however, it is reasonable to

take it as axiomatic that if life quality q2 is better than life quality q1, then

λ life years of quality q2 is better than λ life years of quality q1.

Translation invariance 2.5 allows us to interpret a positive number of lives

as a gain, and a negative number of lives as a loss, relative to some status

quo. Informally speaking, for any prospective loss we wish to consider, we

may imagine a population large enough that such a loss is possible, and

assign it the element 0. This is possible because the ordering is preserved

by translations. More formally, we may consider the affine space that V is

associated to.

Finally, the antisymmetry property of partial orders 2.2 precludes indif-

ference between two distinct elements. This requirement can be relaxed.

Consider two distinct elements x, y such that y ≥ x and x ≥ y. We will

say that x ≃ y. Then 2.5 and 2.6 imply that ≃ is preserved by scaling and
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translation. x, y can be taken to be basis vectors, and the equivalence rela-

tion ≃ can be used to ‘collapse’ x and y into each other so that the order

is once again antisymmetric. Elements of an ordered real vector space may

therefore be thought of as canonical representatives of a class of vectors that

are equivalent under ≃.

Definition 3. Proper cone. A proper cone C in a real vector space V is a

subset C ⊆ V such that,

C + C ⊆ C (2.7)

λC ⊆ C ∀λ > 0 (2.8)

C ∩ −C = {0}. (2.9)

Here, addition and multiplication for subsets of a vector space are defined

by S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} and λS = {λs | s ∈ S}. Proper

cones must have their vertex at 0. Examples of non-proper and proper cones

in R3 are shown in Figure 1.
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Figure 1: Left: A non-proper cone in R3. Right: A proper cone in R3.

There is a 1− 1 correspondence between proper cones C in a real vector

space V , and ordered real vector spaces (V,≥), given by defining y ≥ x iff

(y − x) ∈ C. C will be called the positive cone of (V,≥), and elements in C

will be called positive.

Definition 4. Maximal proper cone. A proper cone C in a real vector

space V is called maximal if there is no proper cone C ′ ⊆ V such that C ⊂ C ′.

Definition 5. Archimedean equivalence. Two elements x, y ∈ V of an

ordered real vector space (V,≥) will be said to be Archimedean equivalent if

there exists n,m ∈ N such that

n|x| ≥ |y| (2.10)

m|y| ≥ |x|, (2.11)

where |x| := max(x,−x). I will use the notation y ≫ x if y ≥ x and x, y
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are not Archimedean equivalent. (V,≥) will be called Archimedean if all its

elements are Archimedean equivalent.

Proposition 1. Let x, y ∈ V be elements of an ordered real vector space

(V,≥). If y ≫ x, then ny ≫ x ∀n > 0.

Proof. From the definition 5 of Archimedean equivalence, we have |y| ≥

m|x| ∀m ∈ N. Assume that there exists n > 0,m ∈ N such that m|x| ≥ |ny|.

Then m
n
|x| ≥ |y|, which is a contradiction. □

This implies that if one unit of y is better than x and y is not Archimedean

equivalent to x, then any strictly positive number of units of y is better than

x.

Proposition 2. There is a 1 − 1 correspondence between maximal proper

cones in a real vector space V , and totally ordered real vector spaces (V,≥).

Proof. Let (V,≥) be an ordered real vector space, where ≥ is defined by

y ≥ x iff (y − x) ∈ C, and C is a maximal proper cone in V . Assume that x

and y are two elements that are not related, i.e. for which ≥ is not defined.

This implies that (y − x), (x − y) /∈ C. Then the convex hull of the set

C ∪ {λ(y − x) | λ > 0} is a proper cone with C as a proper subset, which

is a contradiction. Every totally ordered vector space on V has a maximal

proper cone C consisting of all elements ≥ 0. From 2, this total order is such

that y ≥ x iff (y − x) ∈ C. □

Proposition 3. Every totally ordered real vector space of dimension > 1 is

non-Archimedean.
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Proof. Every totally ordered real vector space (V,≥) of dimension > 1 with

proper cone C has a two-dimensional subspace V2 with an induced order given

by the maximal positive cone C2 = C∩V2. We can choose basis vectors e1, e2

for V2 such that C2 is of the form

{a1e1 + a2e2 | (a1 ≥ 0 and a2 ≥ 0) or (a1 ≤ 0 and a2 > 0)}. (2.12)

This positive cone can be visualised in the graph on the right hand side of

Figure 2. It is clear that there exists y ∈ V2 such that y ̸= 0 and (y−ne1) ≥

0 ∀n ∈ N (for example, y = e2). This implies that there is no totally ordered

real vector space of dimension > 1 that is Archimedean. □

Figure 2: Left: A non-maximal proper cone in R2. Right: A maximal
proper cone in R2. The zigzag line indicates that the strictly negative half-
line in the e1 direction is not included in the shaded cone.

Looking at the positive cone on the right hand side of Figure 2, it should
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be clear that if the vertical component of vector y is greater than or equal

to the vertical component of vector x, then y ≥ x. Therefore e2 is the

greatest unit vector in V2, and e1 is the least unit vector in V2 that is positive.

Moreover, while no two distinct vectors (populations) are equivalent to each

other, there are populations that are arbitrarily close in the sense that their

difference can be as near to zero as one desires. It is thus possible to choose a

basis of a totally ordered real vector space appropriately so that any pair of

basis vectors are as ‘near’ or ‘distant’ as required in terms of the quality of life

years that they represent. In the (e1, e2) basis, we have that (a1, a2) ≥ (b1, b2)

iff a2 > b2 or (a2 = b2 and a1 ≥ b1), which is just the reverse lexicographic

ordering. For any positive vector v that is not a scalar multiple of e1, v ≫ e1.

All other vectors excluding multiples of e1 are Archimedean equivalent to each

other.

Proposition 4. The lexicographic order on R2 cannot be represented on R.

Proof. Let ≥ denote the lexicographic order on R2. Assume there is a func-

tion u : R2 → R such that u(y) ≥ u(x) ⇔ y ≥ x. Consider the map

f : α → [u((α, 0)), u((α, 1))]. (2.13)

The Archimedean property of the real numbers can be used to show that ev-

ery non-empty interval in the real numbers contains a rational number. I will

use ϕ to denote a function that selects a rational number from a non-empty in-

terval given as its argument. The function ϕ◦f : R → Q is an injection, since

for α ̸= β we have that either u((α, 0)) > u((β, 1)), or u((β, 0)) > u((α, 1)).

10



This in turn implies that f(α)∩ f(β) = ∅, and ϕ(f(α)) ̸= ϕ(f(β)) for α ̸= β.

Then the cardinality of the rationals must be greater than or equal to the

cardinality of the reals, which is a contradiction. □

Proposition 4 has the immediate consequence that there does not exist

a real-valued function of the expected utility form that can represent an

ordering of probability measures over an ordered real vector space (V,≥) of

dimension > 1. This is because there doesn’t even exist a real-valued function

that can represent an ordering on the subset of such probability measures

that are degenerate on a single event (i.e. sure outcomes in V ). The axioms

of the von Neumann Morgenstern utility theorem are not satisfied.[9] Note

that this is not due to any ‘irrationality’ on our part regarding our evaluation

of uncertain outcomes. The failure occurs when only considering outcomes

that happen with probability 1, and is due to the fact there aren’t enough

real numbers to represent the order.

This has profound implications for the application of utilitarianism and

expected utility theory in population ethics, and any setting involving non-

Archimedean ordered real vector spaces or lexicographic orders. Any line

of reasoning that implicitly or explicitly attempts to represent such orders

using real numbers is unsound. If we proceeded ignoring the above, it would

be possible to come to ethical conclusions that are arbitrarily wrong. This

can occur, for example, by mistakenly taking two goods to be Archimedean

equivalent when they are not.

The conflict is with the continuity/Archimedean axiom of the von Neu-

mann Morgenstern utility theorem. If this axiom is weakened, an ordering
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of probability measures may be represented with multi-dimensional lexico-

graphic expected utilities.[10, 11] Let {ei}i∈I be a totally ordered basis for V

where any finite subset lexicographically orders the subspace that it spans.

Each dimension of V corresponds to a distinct Archimedean class. Let P,Q

be probability measures defined on a sigma algebra Σ over V . A lexicographic

expected utility representation consists of real-valued functions ui on V such

that P ≥ Q iff EP [u] ≥ EQ[u]. Here, EP [u] is the expectation with respect to

the measure P of the vector u whose components are ui. The comparison of

P and Q is accomplished using the lexicographic order ≥ on a finite dimen-

sional subspace of V , since EP [u],EQ[u] are elements of V that can be written

as finite linear combinations of basis vectors. Uncertain prospects are thus

ordered lexicographically according to expected utility within Archimedean

classes. For more detail on the conditions for such a representation to exist,

see Chapter 1-4 of [11].

Our only assumptions so far are the axioms for an ordered real vector

space 2. However, we are forced to conclude that there are pairs of goods

that are not Archimedean equivalent. Although non-Archimedean life qual-

ities have previously been suggested as a way of avoiding the repugnant

conclusion, it has been claimed that if such a pair of life qualities exists, then

other extremely counterintuitive results follow. In particular, that there nec-

essarily must exist a pair of quality levels that are only marginally different

from each other that are not Archimedean equivalent. I will next show that

this conclusion is false, after introducing some preliminaries on ordinal num-

bers.
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3 An informal introduction to ordinal num-

bers

Alice likes apples and oranges. She always prefers a larger number of ap-

ples/oranges to a smaller number. However, she likes apples more than or-

anges, to the extent that there is no number of oranges that she would prefer

to even a single apple.

Let us try to represent her preferences using numbers. We will assign the

number 1 to the bundle consisting of 1 orange, the number 2 to 2 oranges, etc.

Then the ≥ operator on the natural numbers represents Alice’s preferences

over oranges.

However, if we limit ourselves to the natural numbers, we immediately run

into a problem. The bundle consisting of a single apple cannot be assigned a

natural number in a way that respects Alice’s preferences. Whichever number

it is assigned, there is always a larger natural number available, which would

incorrectly imply that there is some number of oranges Alice would prefer to

one apple.

In a sense, we have ‘run out’ of numbers that we can use to order the

available bundles. This is a general issue encountered when naively attempt-

ing to define total orders on infinite sets. The theory of ordinal numbers was

constructed to handle this more than a century ago by Cantor, and developed

further by von Neumann and others.[12, 13] We give a brief whistlestop tour

of this theory here.

There is nothing stopping us from simply defining an abstract number,

which we will call ω, and extending the relation ≥ by assigning ω to be
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greater than any natural number. ω can then be used to represent the bundle

consisting of one apple for Alice.

We can take this further and consider bundles consisting of some number

of both apples and oranges. Remembering that Alice always prefers more

fruit to less, we may define a new element denoted by ω + 1 that is greater

than ω, corresponding to 1 apple and 1 orange. This can be repeated for

ω + 2, ω + 3 etc. For 2 apples, we symbolically assign the element ω2.

ω is called the first infinite ordinal number. An arithmetic of ordinal

numbers can be constructed recursively using disjoint unions of sets. A well-

ordered set is a totally-ordered set in in which every subset has a least el-

ement. Given two well-ordered sets X, Y , we may define X + Y as the set

obtained by taking their disjoint union, and assigning every element of Y to

be greater than every element of X, but otherwise preserving the ordering

within X and Y . For example,

{0, 1, 2}+ {0′, 1′} := {0, 1, 2, 0′, 1′}, (3.1)

where sets are written so that the elements increase from left to right. We can

map the set {0, 1, 2, 0′, 1′} onto {0, 1, 2, 3, 4} while preserving the ordering by
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0 → 0, (3.2)

1 → 1, (3.3)

2 → 2, (3.4)

0′ → 3, (3.5)

1′ → 4. (3.6)

We can go further and identify {0, 1, 2, 3, 4} as the ordinal number 5. This

is because every element of a well-ordering is uniquely determined by the set

of elements that it is larger than. Similarly, ω can be identified with the set

of natural numbers. In this scheme, ordinal numbers are simply canonical

representatives of a set of well-orderings that are all equivalent to each other,

with the different ordinal numbers providing labels for every possible distinct

well-ordered set. The ordinal number associated with a well-ordered set is

called its order type.

Note that the above addition operation is commutative for finite ordinal

numbers, i.e. X + Y = Y + X ∀X, Y < ω. This however, ceases to be the

case when considering infinite ordinals. For example,

2 + ω = {0′, 1′, 0, 1, 2...}. (3.7)

This ordering is equivalent to ω, since we can simply relabel as follows

15



0′ → 0, (3.8)

1′ → 1, (3.9)

0 → 2, (3.10)

1 → 3, (3.11)

... (3.12)

On the other hand,

ω + 2 = {0, 1, 2... ω, ω + 1}. (3.13)

This is not equivalent to ω, since there are two elements in ω + 2 that are

greater than all the natural numbers, as opposed to none in ω. Thus ω+2 ̸=

2 + ω.

Multiplication and exponentiation operations can also be defined for or-

dinal numbers, but I will not develop this here. I refer the reader to some of

the many excellent texts on set theory.[14, 15, 16]

4 Ordinal numbers and the repugnant con-

clusion

Results in [17, 18] imply that in any finite increasing sequence for which the

first and last elements are not Archimedean equivalent to each other, there
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must be a pair of successive elements that are not Archimedean equivalent.

This can used as an argument against the existence of goods that are not

Archimedean equivalent, based on the idea that one should be able to con-

struct such a sequence where each element is only marginally better than its

predecessor. This would then imply that there are a pair of life qualities that

are near-identical, but there is no number of the marginally worse life years

that is better than just one of the marginally better life years. The argu-

ment can be extended to infinite sequences, using transitivity of Archimedean

equivalence to obtain the result that in any sequence where every two suc-

cessive elements are Archimedean equivalent, all elements are Archimedean

equivalent.

The problem can be remedied by generalising to transfinite sequences. A

transfinite sequence is a collection of set elements indexed by ordinal numbers

(rather than the natural numbers). We may, for example, take an ordered

real vector space that is infinite dimensional, and construct an increasing

transfinite sequence of basis vectors e1, e2, . . . eω where every pair of successive

elements is Archimedean equivalent, but eω is not Archimedean equivalent to

any en for n ∈ N. This is possible because eω does not have a predecessor.

That is, there is no natural number that has ω as its successor, because one

can always find a larger natural number. Thus it is perfectly possible to

have basis vectors e1, eω such that eω can only be ‘reached’ from e1 by a

countably infinite number of marginal increments. If that is not enough,

there are ordinal numbers that are uncountable when considered as a set, so

one can construct an increasing transfinite sequence of basis vectors where

at least an uncountable number of increments is required to move from some
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basis element to another. If one wishes to have a set of basis vectors that

contains arbitrarily large ascending and descending chains, one can index

them using e.g. surreal numbers.

5 Uncertainty and vagueness

The above formalism may be viewed as a theoretical framework for popula-

tion ethics in circumstances of complete information, sharply demarcated

boundaries and ethical preferences that are sensitive to arbitrarily small

changes. However, these conditions may not exist in reality. For example, it

may not be clear what constitutes a life that is barely worth living, or to give

the concept a precise definition. One way of generalising to accommodate

uncertainty/vagueness is to allow the positive cone to be a fuzzy set.

Definition 6. Fuzzy set. A fuzzy set is map m : V → [0, 1], where V is a

set. m is called the membership function.

In the current setting, the value of the membership function may be

interpreted as a frequentist or Bayesian probability that a given element of

the ordered real vector space (V,≥) is in the positive cone, and therefore

greater than or equal to 0. That is, there really is a sharp boundary between

elements that are ≥ 0 and elements that are not, but we do not know exactly

where it lies. The uncertainty may originate at least partly from our inability

to detect differences below a certain threshold.

Alternatively, the membership function may be interpreted as the ‘degree’

to which a given vector is greater than or equal to zero. In this view, the
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‘positive cone’ need not have a sharp boundary, similar to the way there

is no sharp distinction between e.g. a sunny day and a cloudy day. This

interpretation is fundamentally distinct from a probabilistic interpretation,

in which there is uncertainty about the answer to a well defined question.

By contrast, fuzzy sets allow for the possibility of a question that is not well

defined, and answers with truth values ranging between 0 (false) and 1 (true).

With either interpretation, there is no longer a precise apparent border

between elements that are not Archimedean equivalent to each other. This

is consonant with the intuition that there is no clear dividing line between

life qualities that are qualitatively different. For example, we might hold the

position that one completely blissful life is better than any number of lives

that are barely worth living, without having a clear idea of where exactly the

boundary lies between lives that are Archimedean equivalent to the single

blissful life, and those that are not.

This induces a new preference relation ⪰ characterised by a decision rule

with threshold α ∈ [0, 1], defined by

y ⪰ x if m(y − x) ≥ α (5.1)

y ∼ x if m(y − x) < α, (5.2)

where y ∼ x ⇐⇒ (y ⪰ x and x ⪰ y). ⪰ may be non-transitive. For

example, m and α may be such that ⪰ restricted to a finite-dimensional

subspace is the lexicographic semiorder.[19] This can be understood as the

lexicographic ordering with imperfect discriminatory power, such that only
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differences above a certain threshold in a given dimension are detectable. In

this case, intransitivity of the strict preference ≻ can occur as in examples

given by Ng.[20] Intransitivity of indifference ∼ can also occur along the

lines of the example given in seminal work by Luce [21] of an individual who

strictly prefers a coffee with one sugar over a coffee with five sugars, but is

pairwise indifferent between a series of intermediate coffees that differ by tiny

increments in the quantity of sugar.

6 Conclusion

Applying informal logic to mathematical problems can lead to errors, partic-

ularly when dealing with infinities. It is also important to use appropriate

mathematical structures for the problem at hand. In this paper, I have in-

troduced ordered real vector spaces, transfinite sequences and fuzzy sets as

suitable mathematical tools in population ethics. I have shown that in this

setting, not only is the existence of non-Archimedean equivalent goods (i.e.

goods for which no amount of one is better than a single unit of the other.)

sensible, it is compulsory. I note that utilitarianism and expected utility

theory in their canonical form fail in this setting, as does any attempt to

use real numbers to represent orders in population ethics. This is because

non-Archimedean orders cannot generally be represented on Archimedean

fields. Generalisations of the von Neumann Morgenstern utility theorem

that weaken the continuity/Archimedean axiom lead to multi-dimensional

lexicographic expected utility representations. I show that counterintuitive

conclusions that have previously been thought to follow as a consequence
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of the existence of non-Archimedean equivalent goods, do not obtain. In

particular, there need not be pairs of goods that are near identical that

are non-Archimedean equivalent. This is demonstrated using an appropriate

handling of orders on infinite sets. Finally, I use a fuzzy set construction to

show that there needn’t be a sharp boundary between pairs of goods that

are non-Archimedean equivalent.

These results are general and do not rely on any particular interpreta-

tion of concepts that may not have a precise definition, such as life quality

or a life barely worth living. That is, they remain true regardless of any

such interpretation that is made. The main implication of this work is that

the repugnant conclusion can be avoided without contradicting key moral

intuitions.
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