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In this paper, global dynamics and bifurcations of a two-dimensional discrete-time Lotka-Volterra model have been studied in the
closed first quadrant R?. It is proved that the discrete model has three boundary equilibria and one unique positive equilibrium
under certain parametric conditions. We have investigated the local stability of boundary equilibria O(0,0), A((«; — 1)/a;,0),
B(0, (ay—1)/as) and the unique positive equilibrium C(((er; —1)etg—ax, (0, —1)) /(s —0t, 5 ), (05 (0t — 1) +ets (1—ex; ) /(s 05—, ) ), by
the method of linearization. It is proved that the discrete model undergoes a period-doubling bifurcation in a small neighborhood
of boundary equilibria A((a; —1)/ex3, 0), B(0, (ety — 1)/et) and a Neimark-Sacker bifurcation in a small neighborhood of the unique
positive equilibrium C(((«; — 1)ag — ay (g — 1))/ (05005 — 3 05), (at5(ety — 1) + a5(1 — @)/ (3005 — @, &5)). Further it is shown that
every positive solution of the discrete model is bounded and the set [0, & /&3] x [0, &t; /4] is an invariant rectangle. It is proved that
ifa; < 1and o, < 1, then equilibrium O(0, 0) of the discrete model is a global attractor. Finally it is proved that the unique positive
equilibrium C(((a; — atg — oty (o0, — 1))/ (05006 — dyx5), (045 (ety — 1) + a5 (1 — &)) /(5005 — &y x5)) is a global attractor. Some numerical

simulations are presented to illustrate theoretical results.

1. Introduction

In this paper, we study the global dynamics and bifurcations
analysis of a two-dimensional discrete-time Lotka-Volterra
model in the closed first quadrant R?, which was proposed
by Waltman [1]. In this model, if two populations are growing
logistically without affecting each other, then their growth
can be represented by the following system of two logistic

equations:
d_x =rx (1 - i)
dar ! k,

dy y)
7 _ 1-=,
dt r2y< k,

wherer,, r,, k;, k,and theinitial conditions x,, y, are pos-
itive real numbers. Now, assume that the carrying capacity is
a shared resource-each population competes for the resource
and thereby interferes with the other. Then the presence of
each reduces the intrinsic rate of growth of the other. We

refer the reader to [1-5] for detailed discussion on the above
assumption. This phenomena can be represented as follows:

dx x

7 (i)
dy y )
7 — 1- £ — ,
dt r2y< Ko

where (;, (, are positive constants. It is convenient to change
the nondimensional variables by measuring x in units of k;, y
in units of k,, and time in units of 1/r,. Then system (2) takes
the following form:

dx
dt

d
d—f =ry(l-y-Ax),

2)

=x(1-x-\A,y)
(3)

where A; = k;(; fori = 1,2 and r = r,/r,. It is clear that for all
parametric values, system (3) has three boundary equilibria
0(0,0), A(1,0), B(0,1) and a unique positive equilibrium
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point C((1 — A,)/(1 = A;4,),(1 = A,)/(1 = A,4,)) if A, <
1, A, < 1, A;A, < 1. According to continuous dynamical
systems theory, it is easy to show that equilibrium O(0, 0)
is a source but never sink and saddle; equilibrium A(1,0)
is a sink if A, > 1 and saddle if A, < 1, but it is never
source; B(0,1) is a sink if A; > 1 and saddle if A, < 1,
but it is never source, and the unique positive equilibrium
point C((1 — A,)/(1 = A;A,), (1 = A,)/(1 — Ay Ay)) is locally
asymptotically stable.

A discrete dynamical system is defined as a system whose
state evolves over state space in discrete-time steps according
to a fixed rule. These systems are represented by a system of
difference equations. This is a well-known fact that difference
equations existed before differential equations and have
played a fundamental role in the development of the latter.
During the last fifty years the theory of difference equations
received attention of both mathematicians and users of
mathematics and developed greatly, because of its internal
mathematical beauty and applicability in almost all branches
of modern science such as ecology, population dynam-
ics, queuing problems, statistical problems, stochastic time
series, number theory, geometry, neural networks, quanta
in radiation, genetics in biology, economics, psychology,
sociology, physics, engineering, economics, combinatorial
analysis, probability theory, electrical networks, and resource
management [6, 7]. Dynamics of a discrete dynamical system
is studied by analyzing the behavior of the solution of the
system of difference equations representing the system under
study. Analyzing the behavior of solutions of a higher-order
nonlinear difference equation is very interesting and attracted
many researchers in recent times. Behavior of solutions
means studying the equilibrium point, boundedness and
persistence, existence and uniqueness of positive equilibrium
point, local and global stability, periodicity nature of such
difference equations or systems of difference equations (see
[8-16] and references cited therein).

Discrete dynamical systems described by difference equa-
tions are more appropriate for population dynamics as
compared to continuous ones. Biologists believe that the
equilibrium point and its stability analysis is important to
understand the population dynamics [17, 18]. Therefore, in
this paper, we study the behavior of the following discrete-
time Lotka-Volterra model, which is obtained by discretiza-
tion of continuous-time model (3) followed by forward
Euler’s method. Using forward Euler’s method, continuous-
time model (3) takes the following form:

Xny1 — Xn
h

Ynt1 = Vn
% =Y = YV Vne1 — rAanyn'

=X T X Xpe1 T Alxnyn

(4)

After some simplification, the above system becomes

_ XXy = 00X Vn

ntl =
1+a3x,

(5)
Xy Yy = KXy Yy

Vo1 = 1+agy,
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where o, = 1 +h o, = hA, a5 = h,ap = 1+
kr, a5 = krd,, o = kr. It is also noted that the parameters
Q. &, 03, & &, & and the initial conditions x,, y, are
positive real numbers.

The rest of the paper is organized as follows: In Section 2,
we study the existence of equilibria of the discrete model.
Section 3 deals with the study of local stability of three bound-
ary equilibria and the unique positive equilibrium. Section 4
deals with the study of bifurcations analysis of boundary
equilibria and the unique positive equilibrium. Section 5
discusses the boundedness character and the construction of
invariant rectangle of the discrete model. Section 6 discusses
the global behavior of O(0,0) and the unique positive equi-
librium, whereas Section 7 is about numerical simulation to
verify the obtained theoretical results. In the last section a
brief conclusion is given.

2. Existence of Equilibria

In this section, we will study the existence of equilibria of the
discrete model (5) in the closed first quadrant R2. The results
about the existence of equilibria are summarized as follows.

Lemma 1. Under certain parametric conditions, system (5)
has at least three boundary equilibria and one unique positive
equilibrium in the closed first quadrant R*. More precisely,

(i) system (5) has a unique boundary equilibrium O(0, 0)
ifa; <1, ay <1, oz < 405, & < ay(0y—1)/(x; -
1) and a5 > a5(aty — 1)/(et; — 1);

(ii) system (5) has two boundary equilibrium O(0,0),
Al = /a3, 0) if a; > 1, a4y < 1, o305 < 005,
ag < oy(ay—1)/(ot; — 1) and a5 > az(ay — 1)/ (et — 1);

(iii) system (5) has three boundary equilibrium O(0,0),
A((a; — 1)/a3,0), B(0, (ot — 1)/oxg) if y > 1, ety >
L, o305 < 0yat5, O < (g — 1)/(; — 1) and ag >
0‘3(054 - 1)/(“1 - 1)

(iv) system (5) has three boundary equilibrium O(0,0),
A((a; — 1)/a5,0), B(O, (et — 1)/axg) and one interior
equilibrium C(((e; — Dag — oy(ety — 1))/ (o305 —
nas), (oo — 1) + as(1 = o))/ (o0 — aya5)) if
a > 1, 0> 1, a0 > o0, o > ay(ay—1)/(a;—1)
and a5 < os(ay — 1)/(e; — 1). Additionally if «; >
L ooy > 1, az05 >y, &g > oty(et,—1)/(t) —1) and
as < oz(ay —1)/(et; — 1), then C(((a; — Dexg — axy(0ty —
)/ (az04 — ayaxs), (a5(ay — 1) + as5(1 — o)) /(5005 —
a,05)) is the unique positive equilibrium of system (5).

Proof. In order to find equilibria of system (5) in the interior
of R?, we need to solve the following algebraic equations:
X — QXY
o1+ o3x
(6)
_ %)y — KXy
l+agy

If x = 0, y = 0, then (6) are identically satisfied, and hence
for all parametric values O(0,0) is the unique equilibrium
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of this system. If y = 0 then the second equation of (6)
is identically satisfied, and from the first equation we get
x = (g — 1)/at5. Thus if «; > 1, then A((oy — 1)/ex5,0)
is one boundary equilibrium point of system (5). If x = 0,
then first equation of (6) is identically satisfied, and from the
second equation we get y = (o, — 1)/«s. Thusif oty > 1, then
B(0, (g — 1)/exg) is again a boundary equilibrium of system
(5).

On the other hand, we consider the existence of unique
positive equilibrium of system (5) in the interior of R*. For
this assume that if x # 0 and y # 0, then system (6) takes the
following form:

o — &Yy

1+asx

1=
7)

l+oagy

0y — 05X

Solving system (7) for x and y, one gets (x, y) = (((e; —1)og—
ooy — 1))/ (505 — y0s5), (at5(0y — 1) + a5 (1 — o))/ (o006 —
a,05)). Henceif o > 1, oy > 1, az05 > oty005, 0tg > oty (ty —
1)/(e; — 1) and a5 < a3(ety — 1)/(et; — 1), then

C<(0c1—l)oc6—oc2((x4—1)

>

A3 — K5

(8)
o (o= 1) + a5 (1 - )
A3& — X5
is the unique positive equilibrium of system (5). O

Remark 2. The discrete model (5) has three boundary equi-
libria O(0,0), A((«; — 1)/a5,0), B(0, (e, — 1)/«xs) and one
interior equilibrium C(((et; — 1)ag — a0ty — 1))/ (0305 —
), (e, — 1) + as(1 — o))/ (o0 — oy005)) if & >
L oay, > 1, az05 > 005, &6 > oty — 1)/(a; — 1) and
as < o5y — 1)/(ot; — 1), whereoy =1+ h, oy = hA|, a5 =
h, ay = 1+kr, as = krd,, o5 = kr. Now, using the values
«;, i = 1,...,6, the equilibria of continuous-time model
(3), 0(0,0), A(1,0), B(0,1),and C((1 - A,)/(1 = A,A,), (1 -
A,)/(1-A;A,)) can be recovered with the same conditions on
the parameters A; < 1, A, < 1.

3. Local Stability

The Jacobian matrix Jix.y) of linearized system of (5) about
equilibrium (x, y) is

%Xy KX
| (+ax)?  ltagx 9
ey = sy’ ag—oasx |- )

L+agy (1+agy)

3.1. Local Stability of Boundary Equilibria. Hereafter we will
study the topological classification of the boundary equilibria.
The results regarding the local stability of the boundary
equilibria are summarized as follows.

Theorem 3. For equilibrium point O(0, 0), the following state-
ments hold:

(i) The equilibrium point O(0, 0) of system (5) is a sink if
o <landay < 1;

(ii) The equilibrium point O(0,0) of system (5) is a source
ifa, > land oy > 1;

(iii) The equilibrium point O(0,0) of system (5) is a saddle
ifa, >landay < 1;

(iv) The equilibrium point O(0,0) of system (5) is nonhy-
perbolicifa; =1 oray = 1.

Theorem 4. For equilibrium point A((e; — 1)/a3,0), the
following statements hold:

(i) The equilibrium A((«; —1)/as,0) of system (5) is a sink
ifoy > 1and as < az(oy + 1)/ (o) — 1);

(ii) The equilibrium A((a; —1)/a5, 0) of system (5) is never
source;

(iii) The equilibrium A((«; — 1)/as,0) of system (5) is a
saddle if a; > 1 and a5 > o3(aty + 1)/ (ot — 1);

(iv) The equilibrium A((e; — 1)/a5,0) of system (5) is
nonhyperbolic if a5 = a5(aty + 1)/(at; — 1).

Theorem 5. For equilibrium point B(0,(ay, — 1)/«g), the
following statements hold:

(i) The equilibrium B(0, (ay — 1)/ &xg) of system (5) is a sink
ifoy, > 1and «, < () + Dog/(oty — 1);

(ii) The equilibrium B(0, («y — 1)/atg) of system (5) is never
source;

(iii) The equilibrium B(0, (e, — 1)/atg) of system (5) is a
saddle ifay > 1 and a, > () + 1)otg/(ety — 1);

(iv) The equilibrium B(0,(ay — 1)/ag) of system (5) is
nonhyperbolic if a, = (a; + 1)oxg/(ety, — 1).

Now in the following we will study the local stability of the
unique positive equilibrium C(((«; —1)ag—ety (o, —1))/ (30—
o, 05 ), (o3 (ay— 1) +os (11— ) /(o306 —x, t5)) by using Remark
1.3.1of [7].

3.2. Local Stability of the Unique Positive Equilibrium

Theorem 6. For the unique positive equilibrium C(((et; —
Dag—a,(0y—1))/(az05—0y005), (a5 (0t — 1)+ (1-ax;)) /(5005 —
a,as5)) of system (5), the following statements hold:

(i) The unique positive equilibrium point C(((a; — 1)og —
oy, — 1))/(az05 — a5), (a3(ey — 1) + ag(l —
o))/ (as0g — aya5)) of system (5) is locally asymptoti-
cally stable if

O < (aya5 — ayo3005 — 005 + 0 030 )
(10)
(—ayas + o0 + o0 — 0 50 ) 5



(ii) The unique positive equilibrium point C(((«; — 1)og —
o,y — 1))/ (a0 — 0y005), (a5 (g — 1) + at5(1 — «y))/
(az005 — 0y t5)) of system (5) is unstable if

0 > (a5 — 03005 — 005 + 0 050 )
(11)
(—ay0s + o000 + 050 — 0 sl )
where

2 2
O = 20050605 + 03 g (0 + oty + 1)

+ 0‘620‘3“5 (1-ap)+ 0‘32“60‘2 (1-ay)
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+ 0422045 ((; +1) oy + ) — 2)
+ oc_,focz% (2+a (o) +1))
+ o0 (2+ay (g +1))

+ 050505 (3 + (0 +2) ay +2a;)
(12)

Proof. (i) The

]C(((‘xl_l)aﬁ_“z (g =1)) /(g 05—ty 005), (05 (ot = 1) +es (1=t )) / (a3t =ty cx5)) of
linearized system of (5) about C(((«; — L)etg — oty (et — 1))/

(o305 — ayaxs), (a3 (aty = 1) + as(1 = &) /(305 — 0,05)) is

Jacobian matrix

]C(((al —Dag—ay (o, —1))/ (azog—azex5), (03 (g = 1) +ars (1-arp ) / (g o6~y cx5))

A3 — K5

X)X (“1 - 1) - 0‘22 (0‘4 - 1)

The characteristic

Jo(Coi 1)t 1) (3 55—ty 005) oty g =1+ (1-0) (oyrg—cp05)) ADOULE

C (0‘1 - 1)“6_“2(“4_ 1)
A30%g — K5

K306 — Ky s

13
0030t — 0005 — 0ttty + 0505 QA3 — 00l — Ayl + 00t (13)
azots (o = 1) — o5 (o — 1) A3 — X X5
Q300 — s — Oglls Oty + Oglls O 0g0y — (s — Olglls Oty + OgOls
polynomial of is
2
X PA) =1 -Q1+Q,, (15)
(14)
where

(x3((x4—1)+oc5(1—(x1)>

Q,=A+B-C-D,

O =E-F+G+H+I-]J-K+L+M-N+O-P+Q+R,

o
A= 30 )
Q00 — 00300 — 00l + 0 030
o0,
B= 3% ’
—00 (s + 5000 + Qs 0tg — Ot s Ot
o,
205
C = 5
Q00 — 00300 — 0L 0ls + 0 030
o0
D= 205 ’
=0, 0 + 0300 0 + Ols O — O s Ol
2
E Xy K305
- b
(@03 = 000300 — A0 + 0 03085) (— 0 + 300,00 + A5 — O X5 0t
202
F= o) K30405
- b
(@0 — @y — a5 + 0y a0 (—pas + 00 + st — o A0t
2 2
a0, o
G = 3 5

b
(s — A — a0 + 0 a3 0) (—pas + 00 + st — O Al )
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(xloczz(xg
H =
b
(@05 = 000300 — A0 + 0 03085) (—0s + 300,00 + A5 — O X508
2. 2
I o, o0
- bl
(@05 = 000300 — A5 + 0 03085) (—0p 0 + 03000 + A5l — ) — 0 A5 )
2. 2
B o000
- bl
(a0 — @y — a0 + 0y 5 0) (—pas + 00 + st — O st
K- 306, 003005 0
- b
(a5 — a0 — a0 + 0y 50 (—p0s + 00 + 50 — O a5 )
L= 00 0305 0
- b
(aas — a0 — ay0s + 0y 0506 (—p0s + 00 + 50 — 0 050
M= Oy O30y X5 g
- bl
(@03 — 000300 — A5 + 0 03085) (— 0 + 300,00 + A5 — O X5 0t
N = O Xy K30y 05 O
- bl
(@05 — 000300 — A0 + 0 03085) (— 0 + 300,00 + A5 — O X5 0t
2
0= X 05 K
- b
(@03 — 000300 — A5 + 0 03085) (— 00 + 300,00 + A5 — O, X508
5 2
b 0 0 0= Ot
- bl
(@03 — 000300 — A5 + 0 03085) (—0s + 030000 + A5 — O X5 0t
B alzcxzaé%
- b
(a0 — @y — a5 + 0y a5 0) (—pas + a0 + st — o s )
2 2
R = X3 K
(a0 — a0 — a0 + 0y a3 0) (—pas + 00 + st — O Als )
(16)
Assume that © < (a0 — A, 0304 — K05 + & X30) (005 +
050006 + 050 — & K50l ), and using Remark 1.3.1 of [7] one
gets
||+ || <A+B+C+D+E+F+G+H+I1+]J+K+L+M+N+O+P+Q+R,
Q) 17)

1.

< <
(003 — 000300y — Q05 + 0 03 0) (06005 + QL3 00X + A5t — 08 L5 )

Therefore C(((et; — )otg — oty (g — 1)) /(0305 — 0ty 5), (x5 (0ty —
1) + a5(1 — a)))/(az05 — atyx5)) of system (5) is locally
asymptotically stable.

(ii) Similarly it is easy to show that C(((«; — 1)etg — t, (ot —
D)/ (005 — 0y05), (05 (g — 1) + at5(1 — ))) /(03066 — tyx5))
of system (5) is unstable if @ > (x5 — A,00305 — X005 +
003006 ) (— 0 05 + 03000 + KgOlg — Xy 50 ).

Hereafter we will compute the necessary and sufficient
condition(s) for the unique positive equilibrium C(((«; —

Dag — ay(ay — 1))/ (o505 — ay0x5), (a3(0ty — 1) + at5(1 — &)/
(a0 —ay05)) of system (5) to be locally asymptotically stable,
repeller, saddle, and nonhyperbolic, respectively.

Theorem 7. Forequilibrium C(((o;—1)otg—0t, (0ty—1))/(otz065—
a,0s), (as(ety — 1) + a5 (1 — )/ (o305 — 0y 05)) of system (5),
the following statements hold:

(i) Equilibrium C(((o; — Dag — ay(ay — 1))/ (az05 —

oyas), (a3 (0oy — 1) +as(1-ay)) /(o005 —y5) ) of system
(5) is locally asymptotically stable if and only if
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(o305 — oyx5) (et (et (o) + ty) + 0y (1= ) + x5 (0t (1 — o)) — 2015))
(a0t — cyas + oyt (o — 1)) (o360, — et + atgars (1 - arp))

(18)
<1 (o306 — “2“5)2 - (“2“6 (@, = 1) - “; (g~ 1)) (“3“5 (2 —1) - (xé - 1)) <2
(@306 — a5 + a0, (g — 1)) (@360 — a5 + agas (1 - ) .
(ii) Equilibrium C(((o; — 1)ag — oy (oty — 1)) /(a0 — y015),
(050 — 1) + a5 (1 — &p)) /(5006 — Xy x5)) Of system (5)
is a repeller if and only if
(0‘3“6 - “20‘5)2 - (“20‘6 ("‘1 - 1) - 06% (“4 - 1)) (0‘3“5 (0‘4 - 1) - océ (“1 - 1))
(@306 — 0005 + 005 (g = 1)) (3600 — 0y005 + a5 (1 - ;) ’
(3065 — 015 (a5 (ot (o + ) + oy (1= aty)) + s (ot (1 - 0y) = 201,)) (19)
(o305 — cp5 + ayars (0t — 1)) (o360, — 0t + etgars (1 arp))
1 (o305 — “20‘5)2 - (“20‘6 (@ —1) - "é (g — 1)) (0‘3“5 (ag—1) - “§ (o) — 1))
(o306 — a5 + a0t (o — 1)) (o060, — oyars + atgars (1= oty )
(iii) Equilibrium C(((a; — L)ag — oy (g — 1)) /(o300 — 0y x5),
(a5(ay — 1) + a5(1 — oy)) /(305 — Ay 0x5)) of system (5)
is a saddle if and only if
< (a0 — ayais) (a3 (ot (o + o) + 0y (1 - o)) + s (ot (1 - @) = 2a1,)) )2
(a5 — oyas + oo (g — 1)) (ezagety — dpaxs + atgars (1 - arp))
cal 1o (a6 — 0‘20‘5)2 - (“20‘6 (@ = 1) - “5 (ay - )) (0‘3“5 CAESVE “§ G 1)) 50
(0506 — 005 + 05 (0 = 1)) (@360 — 005 + agais (1 - o)) ) 20)
20
(oz006 — apts) (ot (et (0 +axy) + 0 (1 — o)) + a5 (a6 (1 — o1y) — 201))
(506 — a5 + o (o — 1)) (3060 — a0t + agets (1 - )
>l - (az06 — “2“5)2 - (“2“6 (@ -1) - “3 (g~ )) (“30‘5 (@ —1) - 0‘2 G 1))
(0505 — 0005 + 05 (g — 1)) (@600 — 005 + agais (1 - o))
(iv) Equilibrium C(((o; — 1)ag — ay(ety — 1)) /(3006 — Xy 015),
(o500 — 1) + 05 (1 — oy)) /(5006 — Xy x5)) Of system (5)
is nonhyperbolic if and only if
(o306 — x5 (ot (et (0 +axy) + 0 (1 — o)) + a5 (a6 (1 — oty) — 201))
(o505 — cps + eyars (0t — 1)) (3060, — 0t + atgars (1 - oy )
(21)

(a0 — 0‘20‘5)2 - (0‘20‘6 (@ =1) - oc% (g~ 1)) (0‘3“5 (ag—1) - “é () ~ 1))

— 1 _
(o305 — s + Ay (o — 1)) (30504 — s + Agts (1 — )
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Proof. (i) More precisely the characteristic equation of  is given by
Je((a - 1)etg ety (1)) (st -85, ey g 1) i (1-0)) g -aya)) ADOUL

C((“l—l)‘xs—“z(%_l)) M —priq=0, (23)
K30 — Xy
(22)

a3(a4—1)+a5(1—a1)>

A30g — X5 where

_ (a0 — ayax5) (a5 (ot (o + ) + oy (1= aty)) + s (5 (1 - ) = 20,))

T (e - cas + aas (@ - 1)) (@ — s +agas (1-ay))

2 (24)
3 (@306 — ya5)" — (“2“6 (@, —1) - 0‘% (g — 1)) (“3“5 (@ —1) - “g G 1))

B (o306 — apets + ayats (g — 1)) (g0, — oyars + atgars (1= oty )

Then, it follows from Theorem 1.1.1 of [12] that the unique  of system (1) is locally asymptotically stable if and only
positive equilibrium if

>

c () = 1) ot — oy (¢, — 1)
K306 — K5

(x3((x4—1)+0¢5(1—o¢1))

K305 — Ky s

(a0 — o005 (a5 (g (0 + o) + 0y (1)) + s (o (1 - ) — 20,))

(a0 — o5 + ayats (0t — 1)) (300600, — 0t + atgais (1 - arp))

(26)
2
<1- (“3“6 - “2“5) - (“2“6 (“1 - 1) - 0‘% (0‘4 - 1)) (“30‘5 (0‘4 - 1) - “é (“1 - 1)) <2

(0505 — oy05 + a0 (0 = 1)) (a0 — oy0t5 + s (1 - o)) .

Similarly, one can prove (ii), (iii), and (iv). O other is neither 1 nor —1 when the parameters of the
discrete model (5) are located in the following set:

4. Bifurcations Analysis Fp(as- 1)/ 0)
In this section, we will study the bifurcation analysis of o, (o, +1) (28)
discrete model (5) about the equilibria O(0,0), A((«; — = {(0‘1»“2,0‘3,0‘4, s, ) o5 = ﬁ}
1)/a5,0), B(0,(ay — 1)/atg) and C(((e¢; — Dag — ay(ay — !
D)/ (ez06 — ayoxs), (a3 (ay — 1) + a5(1 — o))/ (3005 — 0y x5)). Therefore, A((o; — 1)/3,0) can undergo flip or
From theoretical results obtained in Section 3, we conclude period-doubling bifurcation when all parameters of
the following: the discrete model (5) vary in a small neighbor-

hood of Fy (4, -1)/a,0- When the parameters are in
F j((a,-1)/a;,0)> @ center manifold of the discrete model
(5) is y = 0, and thus (5) restricted to this central
manifold is

(i) If condition (iv), that is, &, = 1, of Theorem 3 holds,
then one of the eigenvalues of 5, ), about O(0, 0) is
1 and so fold bifurcation may occur when parameters
vary in a small neighborhood of &; = 1. The condition

(iv) of Theorem 3 can be rewritten as the following set: XX

Xntl = (29)

1+o5x,
Fo) = {(or1, 2, 03, 04, 05, 066) - oy = 1} (27) ) _
This shows that the predator becomes extension and

(ii) From Theorem 4, we can see that one of the eigenval- prey undergoes period-doubling bifurcation to chaos
ues of J4((q,-1)/ay,0) @bOUt A((a; — 1)/at3,0) is -1 and on choosing bifurcation parameter «s.



(iii) From Theorem 5, it is easy to verify that one of the
eigenvalues of Jp( (,-1)/a,) about B(0, (o — 1)/ex)
is =1 and the other is neither 1 nor —1 when the
parameters of the discrete model (5) are located in the
following set:

Fp(0,ay-1)/ctg)
(o + 1>%} (30)

= (“1’“2’“3’“4’“5’“6) 0y =
o, -1

Therefore, B(0,(a; — 1)/ag) undergoes period-
doubling bifurcation when all parameters of the
discrete model (5) vary in a small neighborhood
of Fp(a,-1)/ag)- When the parameters are in
Fy(0,(a,-1)/)> @ center manifold of the discrete model
(5) is x = 0, and thus (5) restricted to this central
manifold is

“4yn

l+agy, (31)

Yn+1 =

A=p2—4q,

Complexity

This shows that the prey becomes extension and
predator undergoes period-doubling bifurcation to
chaos on choosing bifurcation parameter «,.

Now Dbefore studying the bifurcation analysis of the
discrete model (5) about the unique positive equilibrium
point C(((; — Dag — ay(axg — 1))/(z05 — ay0x5),
(a5l — 1) + as(1 = a)))/(z05 — ay5)), first we
will prove that there exist different topological types
of this equilibrium point. Recall that eigenvalues of

_ < (a0 — oyat5) (a5 (g (0 + o) + oy (1 - ) +as (o (1 - o)) — 20,)) )2
(306 — a5 + a0 (g — 1)) (@360 — a5 + s (1 - )

]C(((ocl—1)ocs—ocz((x4—1))/(tx30c5—0c21x5),(0c3(oc4—1)+¢x5(l—oc1))/(¢x30c5—0c21x5)) about
C (“1 - 1)“6_0‘2(0‘4_ 1)
K306 — K '
(32)
o (o = 1) +as (1 - )
K306 — Ky s
are
-p+ VA
A, = PEVE (33)
’ 2
where
(34)

_4 < (0‘3“6 - 0‘2“5)2 - (0‘2“6 (“1 - 1) - 06% (0‘4 - 1)) (“30‘5 (0‘4 - 1) - 04§ (0‘1 - 1)) > ‘

(506 — a5 + o (o — 1)) (300608, — a0t + agets (1 - )

Hereafter we state the topological classification about C(((«; -
Dag—a,(0y—1))/ (az05—0y05), (a5(0y— 1)+ (1—a;)) /(5005 —
a,a5)) of system (5) as follows.

Theorem 8. For C(((«; — 1)ag — oy (ety — 1))/ (o505 — atyx5),
(a3(ag — 1) + a5(1 — «))) /(30 — xy05)) of system (5), the
following topological classification holds:

CR “2“5)2 - (“2“6 (& —1) - “; (o — 1)) (“3“5 (ag—1) - “; (o) - 1))

(i) C(((o = Dorg =y (g — 1))/ (3005 — 0ty 5), (ot3 (0t — 1) +
as(1 —a)))/(es05 — y005)) is a locally asymptotically
stable focus if A < 0 and

A < 0and

: (35)
(305 — apats + ayats (ot — 1)) (g0, — oyars + s (1 otp))
(i) C(((x; — Daxg — ay(axy — 1))/ (03005 — ty5), (x5 (0ty —
1)+ as(1 — o))/ (305 — y05)) is an unstable focus if
(“3“6 - 0‘20‘5)2 - (0‘20‘6 (“1 - 1) - 0‘% (0‘4 - 1)) (“30‘5 (0‘4 - 1) - “g (“1 - 1)) S 1 (36)

(a0 — a5 + a0 (0 — 1)) (@500 — 005 + 05 (1 - axy))
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A < 0and

9
(iii) C(((er; = Dag — ay(ay — 1))/ (5005 — xyxs), (X5 (g —
1) + a5(1 — ) /(506 — ay0x5)) is nonhyperbolic if
CR “2“5)2 - (“2% (2 —1) - “; (o — 1)) (“3“5 (ag—1) - “é (o) - 1)) —1 (37)

(305 — apets + ayats (g — 1)) (o060, — oyars + s (1 otp))

We can  see that the  eigenvalues  of

]C(((oﬁ_1)0‘6_“2(064_1))/(0‘3“6_0‘2“5>’(“3(“4_1>+0¢5(1_0¢1))/(“3“5‘“2“5))

PJC =

are a pair of complex conjugates with modulus 1 when
parameters of model (5) are located in the following set:

(“3“6 - 0‘20‘5)2 - (“2“6 (0‘1 - 1) - 0‘% (“4 - 1)) (“3“5 (0‘4 - 1) - 0€§ (“1 - 1))

(o, 0y, 03, 00y, 5, 006) : A < 0,

Therefore, C(((oy — Dag — (g — 1)/(o50 — yx5),
(a5(ay — 1) + as(l — «)))/(z05 — a,05)) undergoes
Neimark-Sacker  bifurcation when all  parameters
of model (5) vary in a small neighborhood of

NC(((O‘l —Datg =0 (0t =1)) /(3 005 = 05 065) (003 (etg = 1)+t (106 )) /(3 0 — 065 045)) *
Hereafter we will study the Neimark-Sacker bifurcation
of model (5) about

(306 — a5 + o (o — 1)) (30605 — a0t + agats (1 - )

(38)

It is easy to verify that OF(«;, &y, a3, oty &5, %) [0, < 0,
then by implicit function theorem we obtain that «; =
o, (0, a5, oy, s, ) such that F(oy (065, &y, g, 0 ), 6y, O,
ay, a5, 05) = 0, and therefore we can choose «; as a bi-
furcation parameter.

Now consider parameter «; in a small neighborhood of
a; thatis, a; = ) +¢, where € < 1; then system (5) becomes

_ (0‘; + 6) Xn = 00X Vn
n+l =

X

C((“l_l)“s_‘xz(%_l)) 1 +asx, (41)
K30 — Apts (39) _ Oy Yy — Ks Xy Yy
o (- 1)+ (l—oc)) " ltagy,
3 (0 5 1
A306 — 05 ' The characteristic equation of
]C(((ocf +e—1)ag—a, (o —1))/ (o305~ 05), (0t (g —1)+ats (1-ax) —€)) /(a3 05—ty 5))
For given parameters o), «,, &3, oy, &, O, let about
1> 2> 3> 4> 5> 6>
C((“f +te—1)ag—ay(a,—1)
5 A3l — K5
F(ay, 06, a3, 0y, 005, ) = (3006 — o, 015) . (42)
, oy (o, — 1)+ a5 (1—ay —€)
- (“2“6 (“1 - 1) - (“4 - 1)) K306 — Oy 05
. (043065 (g —1) — o3 (o, - 1)) (400 of system (41) is
= (o305 — 005 + oya3 (g — 1)) A= ple)A+q(e) =0, (43)
(a0 — apas + agas (1 - ). where
pe) = (a0 — aya5) (a5 (o (0] + €+ ) + ay (1 - ) + s (a (1 — o) —€) —2a,))
((of +€) azos — o005 + s (g — 1 ) (a0, — a5 + argars (1 - ar - €)) ’ (44)
44
g = R 0‘2“5)2 - (“20‘6 (af +e-1)~ 0‘% (o — 1)) (“30‘5 (ag=1) - ‘xé (af +e~ 1))

((‘Xik +€) 305 — s + s (g — 1)) (3050 — s + s (1 - o - €))
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The roots of characteristic equation of

]C(((txl* +e—1)ag—a, (o —1))/(az 5= 05), (03 (g —1)+ois (1-axf —€)) /(o3 05—ty 5))
about

>

C (af +e-1)ag—ay(a,—1)
K306 — K5
(45)

o (ay— 1)+ a5 (1 - o) —€)
K30 — KOs

p©*n49(e) - p*(©)

Complexity

are

12 > ,
(46)
_ (o306 — 015 (et (ot (0] +€+ary) + oy (1 —ay)) + x5 (o5 (1 — ) —€) — 20)) N ©
2((af +€) azog — o5 + ay0rs (0 — 1)) (300500, — 0005 + 0gais (1 —atf —€)) 2
where
2 * *
I'(e) = 4(“30‘6 —aa5)" — (0‘2“6 (af +e-1)~ 0‘% A 1)) (0‘3“5 (ag—1) - “g (o] +e- 1))
(o +€) azrg — oyas + a0t (g — 1)) (e300, — 05 + agars (1 — o —€)) (47)
B ( (o306 — 015 (ot (ot (0] +€+ary) + oy (1 —ay)) + x5 (o5 (1 — ) —€) — 20)) )2
(o] +€) azerg — oyas + eyt (g — 1)) (o360, — x5 + tgais (1 — oy —€))
Moreover |A,,| = /q(e) and (d|A | ,|/de)|., # 0. Addition- Vps1 = My Uy, + Moy, + Myt ¥y, + My, Vo
ally, we required that when e = 0, AT, # 1,m = 1,2,3,4, 5
which corresponds to p(0) # —2,0, 1, 2. Since p(0)* —4¢(0) < +o ((]un| +[val) ) ’
0 and g(0) = 1, then g(0)> < 4 and hence g(0) # 2. (49)
Thus, we only require that g,(0) # 0,1, which holds true by 1.
computation. N .
Letu, = x,—x",v, = y,— y"; then C(((ot; - 1)otg —0t, (et — = 061——062)/2,
1)/ (o500 — 005, (063 (aty — 1) + a5 (1 — ap)) /(3065 — otyx5)) of (1 +a5x*)
system (5) transforms into O(0, 0). By calculation, we obtain o
My, = _1 2 %
(@) ()~ + ) () o)
" L+ as (u, +x7) my; = _%,
. (1 +o5x*)
-x (48) a
- x * 4= 2’
() mas (X" (vt y) L (1+a5x7)
Vi1 = 1+ o (V + *) -V N (50)
s\VntY &y
2 1+agy*’
where x™ = ((a; — Dag — oy (oty — 1)) /(03046 — yi5) and y* = o — asx
(a5(oty — 1) + o5 (1 —xp)) /(o005 — yx5). Hereafter when e = 0, m,, = 5
normal form of system (48) is studied. Expanding (48) up to (1+asy*)
second-order about (u,, v,)) = (0, 0) by Taylor series, we get o
T (ray)”
Uyt = MUy + LV, + 30, + U, g (ory — asx™)
24 — 3
+o((Jug) + va)?) (1+agy*)



Complexity 1
Now, let
_ (o306 — 015 (ot (et (0] +aty) + 05 (1= o)) + a5 (a6 (1 — o) — 201))
2 (af aas — a5 + a0 (0 — 1)) (0000 — 005 + agats (1 - ) (51)
1
( = E V r (O)a
and invertible matrix T is defined by (49) gives
m 0
T = ( 2 ) (52)
n-my (X,m) i (n -4 ) <X> R (F (X"’Y")) (54)
Using the following translation Y, ¢ n Y, G(X,Y,))
u m 0 X
Vi n-my —¢/\Y, where
2 2
F(X,,Y,) =1, X, +1,X,Y, +o((|X,] +[Y,])).
2 2 2
G(X,,Y,) =1y Xo + 1, X,Y, + LYy +0((1X,] +]v,])7),
Ly = myymys +my (n—my,),
li, = —(myy
(55)
L= (n—my,) myy (n—my;)
21 = T myy | M3 + m—_mza —m24(17—m11) >
12
My (’7 - mu)
Ly = —my, | ————F —myy |+ my (n—my,),
my,
by = (.
In addition, Gxnx,,xn 0.0 Gxnann 00 GXnYnYn (0,0)
Fx,x, |00 = 2o = Gvy3, o0 = O
56
FX,,Y,, 00 Lz (56)
Fyy, ©00) ~ 0,
’ To guarantee the supercritical Neimark-Sacker bifur-
Fy x x =Fyxy =Fyyy cation for (54), we require the following discriminatory
nSnnl(0,0) nntnl(0,0) nntnl(0,0) quantity, that is, ¥ < 0 (see [19-23]):
=Fyyy, ©00) = 0,
_ —\ =2
Gx,x, 00 2L, (1 - 2)&) A 1 ) )
¥ =-Re T | = 5 Il = 7l
1-A 2 57)
GX,,Yn 00 bs (
G100 = 2w +Re (A1),
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where

Toy = % [FXan ~Fyy, +2Gxy,
+1 (GXan -Gyy, + ZFXnYn)] |(0,0) ’

T = 4_11 [Fxnxn +Fyy, +1 (GXan + GYnYn)”(O’O)’

1
Ty = 3 [FX,,X,1 -Fyy +2Gx v, (58)
ti (GXan - GYnYn - 2FXnYn)] |(0,0) i
1
T = 16 [Fxnxnxn +Fxyy +Gx xyv, +Gyyy,
+1 (Gxnxnx,1 +Gx vy, —Fxxy, — FY,‘Y,‘Y")]'(O,O) .
A calculation reveals
1
Tox = 1 [y + Ly +1(ly =Ly +1)]
1
™= 5 (L + 1 (b +1y3)]
(59)
1
Ty = 1 [y + 1y +1(ly = by = 1,)],
7, =0.

Based on this analysis and Neimark-Sacker bifurcation The-
orem discussed in [19, 20], we reach the following Theorem.

Theorem 9. If ¥ # 0, then discrete model (5) undergoes a
Neimark-Sacker bifurcation about

C<(oc1—l)oc6—oc2((x4—1)

>

K30 — K U5
(60)
as (o — 1)+<x5(1—oc1)>
K3l — K5
as the parameters (&, q,, 03, &y, &5, &) g0 through
NC(((rxl—l)aﬁ—rxz(rx4—1))/(rx3a6—oczo<5),(a3(a4—1)+rx5(l—ocl))/(oc3a6—oc2a5))' Ad-

ditionally, attracting (resp., repelling) invariant closed curve
bifurcates from the unique positive equilibrium C(((x; — 1)otg —
o, (0 —1))/(azog—0y05), (05 (0t — 1) +ats (1-0ry)) /(g0 —0ty 0t5))
if ¥ <0 (resp, ¥ > 0).

5. Boundedness and Construction of
Invariant Rectangle

In this section we will study boundedness character and
construction of invariant rectangle of positive solution of the
discrete model (5).

Theorem 10. For every positive solution {(x,, y,)}.~, of the
discrete model (5), the following holds:

(i) Every positive solution of the discrete model (5) is
bounded.

(ii) The set [0, 0t; /3] % [0, &y /6] is an invariant rectangle.

Complexity

Proof. (i) Let {(x,, y,)}me, be any positive solution of the
discrete model (5). From (5), we have

_ XXy — XX Vn

X =
i 1+ a5x,
X1 Xy x;
1+asx, o
(61)
_ Oy Yy — Ks Xy Yy
Y1 =

1+ a5y,

o o
< Tadn %
1+agy, o

Hence, for every solution {(x,, y,))} of the discrete model (5),
one has

(62)

(ii) For any positive solution {(x,, y,)}-, of the discrete
model (5) with initial conditions x, € [0,«,;/a;] and y, €
[0, ety /], we have from (5)

_ Xy — X X0 )

0<x
! 1+ a3x,

o X o
X0 %4
1+o3xy, oy 63)
Xy Yo — %5Xp Vo

1+agy,

o o
Kb %
1+agy, o

0<y =

Hence, x; € [0,&;/a5] and y, € [0, a4/c]. Similarly, one
can show that if x; € [0,«,/a;] and y, € [0, a4/c4], then
X1 € 10,0, /as] and yy ;€ [0, oy /exg].

6. Global Stability

Now in the following we will investigate global dynamics of
the discrete model (5) about O(0, 0) and the unique positive
equilibrium C(((et; = 1)otg —ty (g — 1))/ (o306 — 0ty 5), (05 (0ty —
1) +as(1 — o))/ (a0 — y05)).

Theorem 11. If«; < 1 and o, < 1, then equilibrium O(0, 0) of
the discrete model (5) is globally asymptotically stable.

Proof. According to the conclusion (i) in Lemma 1, discrete
model (5) has a unique equilibrium O(0,0) in the first
quadrant R* and is a sink by Theorem 3. Moreover every



Complexity

positive solution of the discrete model (5) in the first quadrant
R? satisfies

o X ox,+1-«
0<x., S#:xn(l_w)
1+oa;x, 1+oa3x,
< X,
(64)
o4 Y, t1-«
0<)’n+131 4Yn :)’n<1_ 6Vn 4)
T X6 Vn 1+ X6 Vn
<V
which leads to lim, , . x, = 0 and lim, , ¥, = 0. Hence

the boundary equilibrium O(0, 0) of the discrete model (5) is
globally asymptotically stable in the first quadrant R>. [

Hereafter we use Theorem 1.16 of [14] to determine the
global dynamics of the discrete model (5) about C(((«; —
Dag—o(ay—1)) /(o= 05), (a3 (ay—1)+as (1-a;)) /(o065 —
o05)).

Theorem 12. The unique positive equilibrium point C(((et; —
Dag—a,(0y—1))/ (az05—0y05), (a5(0y— 1)+ (1—a;)) /(5005 —
a,a5)) of the discrete model (5) is a global attractor.

Proof. Let f(x,y) = (o;x — a,xy)/(1 + a3x) and g(x, y) =
(ayy — asxy)/(1 + agy). Then, it is easy to see that f(x, y) is
nondecreasing in x and nonincreasing in y for every (x, y) €
[0, t; /3] % [0, g/ cxg]. Moreover, g(x, y) is nonincreasing in
x and nondecreasing in y for each (x,y) € [0,0,/a3] %
[0,0t4/0g]. Let (my, M;,m,, M,) be a positive solution of
system

my = f(ml’MZ)’
M, = f(Ml’mZ) >
(65)
my = !](Ml’mz) >
M,=g (ml’ Mz)
Then, one has
o oymy — am M,
b 1+ azm,;
(66)
M. = oM, —a,Mm,
=L 213
1+a;M,
- aym, — asM;m,
2 1+ agm,
(67)
M. = oy M, — asmy M,
=2 5172
1+ agM,
From (66), one has
1+oa3my = o —a,M,,
(68)

1+a;M, =a; —a,m,.
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From (67), one has
1+agm, = ay —asM,,
(69)
1+agM, = o, — asm,.
On subtracting (68), one gets
o (my = My) = oy (my = M) (70)
Similarly, subtracting (69) one gets
ag (my — My) = a; (my — M;). (71)

From (70) and (71) one gets (ag03 — ayt,)(m; — M;) = 0.
Hence, m; = M, and similarly one has m, = M,. Hence,
from Theorem 1.16 of [14] the equilibrium C(((a; — 1)t —
o, (0 —1)) /(A= 005), (05 (0t —1)+ats (1-xy)) /(g0 —0ty 045))
of the discrete model (5) is a global attractor.

Corollary 13. Under the conditions (10) and (18), the unique
positive equilibrium point

I (“1 - 1)“6_“2(“4_ 1)
K306 — K5

>

(72)

043(0c4—1)+045(1—(x1))

K305 — K s

of the discrete model (5) is globally asymptotically stable.

7. Numerical Simulations

In the following we present numerical simulations that
represent different types of qualitative behavior of the discrete
model (5).

Example 1. If &) = 2, a, = 0.0007, o3 = 0.23, oty =7, a5 =
0.3, ag = 0.4, then discrete model (5) with initial values x, =
0.007, y, = 0.0009 can be written as

2x, —0.0007x,,y,

X =
s 1+0.23x,
(73)
o= 7y, —0.3x,y,
i 1+04y,

Inthiscaseoa; =2 > 1, o =7 > 1, 305 = 0.092 >
a0 = 0.00021, g = 0.4 > ay(ay — 1)/(a; — 1) = 0.0042,
a; = 03 < o5(xy — 1)/ (a;; — 1) = 1.38. This shows
the correctness of the conditions for the unique positive
equilibrium. A straightforward computation shows that con-
dition (10) of Theorem 6, that is, ® = 0.07435317508000001
< (oo — 000 — 0 + 0 0a06) (—0n0s + o0 +
asog — ayasg) = 0.0957613829600004, under which the
unique positive equilibrium point is locally asymptotically
stable, holds. Moreover for these arbitrary chosen values of
parameters, the necessary and sufficient condition, under
which the unique positive equilibrium point is locally
asymptotically stable, is also satisfied; that is, [(az0s —
a,0ts) (o (g (o + o) + (1 — ) + ag(ag(1 — o) — 2a5))/
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FIGURE 1: Plots for system (73).

(@030 — 0ty 05 + 0,05 (00 — 1)) (05 o000y — 0ty s + g0t (1 - )| =
0.6702268987306942 < 1 — ((az0tg — 0tyt5)” — (atyote(ct; — 1) —
ocg(a4—l))(0c3a5(oc4—l)—oc§(ocl—1)))/(041oc3oc6—oc2a5+0c2a3(oc4—
D)(azo5004 — aty0ts + s (1 — &) = 0.9138643327940412 <
2. This verifies the condition for which the unique positive
equilibrium is locally asymptotically stable. Also 0 < x, <
o, /a; = 8.695652173913043, 0 < y, < ay/ag = 17.5, and
hence the parametric conditions under which every positive
solution is bounded hold true. Moreover, in Figure 1 the
plot of x,, is shown in Figure 1(a), the plot of y, is shown
in Figure 1(b), and attractor of system (73) is shown in
Figure 1(c).

Example 2. If «; = 8, a, = 0.00007, a3 = 3.23, oy, =
7, a5 = 1.3, ag = 3.4, then discrete model (5) with initial
values x, = 0.007, y, = 0.08 can be written as

8x,, —0.00007x,,y,

X =
s 1+3.23x,
(74)
s = 7y, —13x,y,
s 1+3.4y,

Inthiscasea; =8 > 1, oy = 7 > 1, oz, = 10982 >
a5 = 0.000091, g = 3.4 > oy, — )f(y = 1) =
0.00006, oz = 1.3 < oz, — 1)/(;; — 1) = 2.76857.
This shows the correctness of the conditions of the unique
positive equilibrium point. A straightforward computation
shows that condition (10) of Theorem 6, that is, ® =

4035.5030151773317 < (0ty 03— 0ty 05 00, — 0y Ols + 0y O3 08 ) (— 0t 05 +
0500, 0 + Ols O — O 050 ) = 4035.5030151773317, holds. More-
over the necessary and sufficient condition under which
the unique positive equilibrium point of the system is
locally asymptotically stable is also satisfied; that is, |(oz 0 —
a,0is) (o (g (o + o) + (1 — ) + ag(axg(1 — o) — 2a))/
(o500 — Ay 0ts + 005 (00g — 1)) (50050 — ty 005 + gts (1 — ;)|
= 0.36407043421653185 < 1— ((0r; 0t — ayts) > — (0t 0t (¢, — 1) —
oc%(oc4—1))(oc3a5(¢x4—1)—¢x§((x1—1)))/(ocloc3¢x6—oc20c5+oc2a3(oc4—
D)(az050 — 005 + ag05(1 — «;)) = 0.9701211132646083 <
2. This verifies the condition for which the unique positive
equilibrium is locally asymptotically stable. Also 0 < x, <
o /ey = 2.476780185758514, 0 < y, < a4lag =
2.058823529411765, and hence the parametric conditions
under which every positive solution is bounded hold true.
Moreover, in Figure 2 the plot of x,, is shown in Figure 2(a),
the plot of y, is shown in Figure 2(b), and attractor of system
(74) is shown in Figure 2(c).

Example 3. Ifa; = 15, a, = 0.057, a3 = 6.23, oy =7, o5 =
1.3, ag = 3.4, then discrete model (5) with initial values x, =
0.008, y, = 0.009 can be written as

15x, — 0.057x,y,
Xpp1 = —F——————

s 1+6.23x,
(75)

_ 7y, —1.3x,y,

IS T 34y
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FIGURE 2: Plots for system (74).
In this case &y = 15 > 1, ¢ = 7 > 1, aya =  that the discrete model (5) has three boundary equilibria
21.182 > a5 = 0.0741, g = 3.4 > oy(ay — 1)/(e) — 0(0,0), A((e; — 1)/e3,0), B(0, (g — 1)/etg) and the unique
1 = 0.0244286, a; = 13 < oa5(ay — 1)/(x; — 1) =  positive equilibrium

2.67. This shows the correctness of the conditions of the
unique positive equilibrium point. A computation shows that
condition (10) of Theorem 6, that is, ® = 9280.610848888002
< (@013 — 0y 00, — 00t + 04 0006 ) (— 0, 0l + 03 0 Ol + Cls Ot —
aos0) = 27236.10716427601, holds. Moreover for these
arbitrary chosen values of parameters the necessary and suffi-
cient condition, under which the unique positive equilibrium
point is locally asymptotically stable, is also satisfied; that is,
[(oz 05—ty 05) (0t (et (0 +ty )0ty (1—aty) ) +ots (o (1—0y ) —20x,))/
(a0 — 005 + 05 (0ty — 1)) (03005004 — 0 05 + 05 (1 — )|
= 0.30727881013351915 < 1 — ((atz0r — atyts ) — (0,00 (0t — 1) —
o (o= 1)) (a3 065 (0t — 1) =2 (et — 1))/ 0ty 0ty 06—ty 05+t 0t (0, —
D)(azo505 — 0ty05 + g5 (1 — ;) = 0.9862925899775977 <
2. This verifies the condition for which the unique positive
equilibrium is locally asymptotically stable. Also 0 < x, <
afa;, = 2.407704654895666, 0 < y, < aufag =
2.058823529411765, and hence the parametric conditions
under which every positive solution is bounded hold true.
Moreover, in Figure 3 the plot of x,, is shown in Figure 3(a),
the plot of y,, is shown in Figure 3(b), and attractor of system
(75) is shown in Figure 3(c).

8. Conclusion

This work is related to the global dynamics and bifurca-
tions analysis of a two-dimensional discrete-time Lotka-
Volterra model in the closed first quadrant R*. We proved

>

C (“1 - 1)0‘6_0‘2(0‘4_ 1)
K306 — K5
(76)

a3(a4—1)+a5(1—a1))

K306 — Ky s

under certain parametric conditions. The method of lin-
earization is used to prove the local asymptotic stability of
these equilibria, and conclusions are presented in Table 1.
We proved that boundary equilibrium O(0, 0) undergoes fold
bifurcation when parameters vary in a small neighborhood
of «; = 1 and both A((«; — 1)/a5,0) and B(0, (&, — 1)/exg)
undergo period-doubling bifurcation when parameters of the
discrete model (5) are, respectively, located in the following
sets:

Fag-1)/a,0)

= L% (ag+1)
= (051,“2;063, (278 (XS’(XS) T0 = —_ ,
o 1
(77)

Fp0,(ay-1)/ag)

o +1)a
= {(“1’“2’“3’“4’“9“6) 0 = w]’
o, —1

We have also shown that C(((a; — 1)ag — oty (g — 1)) /(o500 —
a,0s), (as(ay — 1) + as5(1 — o))/ (a3 — ay0x5)) undergoes
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FIGURE 3: Plots for system (75).
Neimark-Sacker bifurcation when parameters of the discrete
model (5) are located in the following set:
2 2 2
(305 — y0t5)" — (“2“6 (a = 1) =y (s = 1)) (“30‘5 (0 = 1) — a5 (o = 1))
N¢ = 1 (o), 05, 05, 004, 05,06 ) : A < 0,
(a0 — oyas + oo (o — 1)) (ezag0ty — s + etgars (1 - arp))
(78)

It is proved that every positive solution of the discrete model
(5) is bounded and the set [0,«a;/a;] % [0,04/cts] is an
invariant rectangle. The most interesting aspect in the theory
of dynamical systems is to predict the global dynamics about
equilibria. In this paper, we proved thatif ¢; < 1 and e, < 1,
then equilibrium O(0, 0) of the discrete model (5) is globally
asymptotically stable. Furthermore, we have investigated the
global stability of the unique positive equilibrium point

C((ocl—l)oc6—oc2(oc4—1)

K306 — K5

>

(79)

(x3(¢x4—1)+(x5(1—(x1))

K305 — Ky s

of the discrete model (5). Some numerical examples are
provided to support our theoretical results. These examples

provide experimental verifications of the theoretical discus-
sions.
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