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The new iterative method has been used to obtain the approximate solutions of time fractional damped Burger and time fractional
Sharma-Tasso-Olver equations. Results obtained by the proposed method for different fractional-order derivatives are compared
with those obtained by the fractional reduced differential transform method (FRDTM). The 2nd-order approximate solutions by
the new iterative method are in good agreement with the exact solution as compared to the 5th-order solution by the FRDTM.

1. Introduction

Most of the problems arising in the physical and biological
area of science are nonlinear in nature, and it is not always
possible to find the exact solution of such problems. These
problems become more complicated when they involve frac-
tional derivatives and are modelled through mathematical
tools from fractional calculus. Fractional partial differential
equations (FPDEs) are tremendous instrument and are
widely used to describe many significant phenomena and
dynamic processes such as engineering, rheology, acoustic,
electrical networks, and viscoelasticity [1–6]. Generally,
partial differential equations (PDEs) are hard to tackle, and
their fractional-order types are more complicated [7, 8].
Therefore, several analytical and approximate methods can
be used for finding their approximate solutions such as
Adomian decomposition [9], homotopy analysis [10], tau
method [11], residual power series method [12], and optimal
homotopy asymptotic method [13]. Though the study of
FPDEs has been obstructed due to the absence of proficient
and accurate techniques, the derivation of approximate solu-
tion of FPDEs remains a hotspot and demands to attempt
some dexterous and solid plans which are of interest.
Daftardar-Gejji and Jafari proposed an iterative method
called the new iterative method (NIM) for finding the

approximate solution of differential equations [14]. NIM
does not require the need for calculation of tedious Adomian
polynomials in nonlinear terms like ADM, the need for
determination of a Lagrange multiplier in its algorithm like
VIM, and the need for discretization like numerical methods.
The proposed method handles linear and nonlinear equa-
tions in an easy and straightforward way. Recently, the
method has been extended for differential equations of the
fractional order [15–17].

In the present study, we have implemented NIM for find-
ing the approximate solution of the following fractional-
order damped Burger equation.

Dα
t u x, t + u x, t Dxu x, t −D2

xu x, t + λu x, t = 0,
 t > 0, 0 < α ≤ 1

1
Second, consider the fractional-order Sharma-Tasso-

Olver equation of the following form.

Dα
t u x, t + aDxu

3 x, t + 3
2 aD

2
xu

2 x, t + aD3
xu x, t = 0,

 t > 0, 0 < α ≤ 1,
2
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where α is the parameter describing the order of fractional
derivatives, u x, t is the function of x and t, and a, λ are con-
stants. The fractional derivatives are described in the Caputo
sense. NIM converges rapidly to the exact solution compared
to FRDTM, and only at the 2nd iteration does the proposed
method yield very encouraging results. The accuracy of the
proposed method can further be increased by taking
higher-order approximations.

2. Definitions

In this section, we have stated some definitions which are rel-
evant to our work.

Definition 1. A function g y , y > 0, is said to be in space
Cη, η ∈ℜ, if there exists a real number p > η, such that
g y = ypg1 y , where g1 y ∈ C 0,∞ . The function g y ,
y > 0, is said to be in space Cη

λ if only if gλ ∈ Cη, λ ∈N .

Definition 2. The R-L fractional integral operator of order
α ≥ 0 of a function g ∈ Cη, η ≥ −1, is as follows:

Jαag y = 1
Γ α

y

a
y − η α−1g η dη, α > 0, y > a,

J0ag y = g y

3

Because of certain disadvantages of R-L fractional
derivative operator, Caputo proposed modified fractional
differential operator cD

α as follow.

Definition 3. Caputo fractional derivative of g y takes the
following form.

cD
α
ag y = 1

Γ λ − α

y

a
y − η λ−α−1gλ η dη, 4

where

λ − 1 < α ≤ λ,
λ ∈N ,
y > a,
g ∈ Cλ

−1

5

Definition 4. If λ − 1 < α ≤ λ, λ ∈N , and g ∈ Cλ
η , η ≥ −1, then

RLD
α
a J

α
ag y = g y and JαacD

α
ag y = g y − ∑λ−1

k=0g
k a

y − a k/k , y > a.

The properties of the operator Ja
α are shown as follows:

(i) Jαag y exists for almost every y ∈ a, b .

(ii) Jαa J
β
ag y = Jα+βa g y

(iii) Jαa J
β
ag y = Jβa Jαag y

(iv) Jαa y − a γ = Γ γ + 1 /Γ α + γ + 1 y − a α+γ

In the equations above, g ∈ Cλ
η , α, β > 0, η ≥ −1, and

γ ≥ −1

3. New Iterative Method

The basic mathematical theory of NIM is described as
follows.

Let us consider the following nonlinear equation:

v y = f y + ξ v y +ℵ v y , 6

where f y , y = y1, y, y3,… , yn , is the known function and
ξ and N are the linear and nonlinear functions of v y ,
respectively. According to the basic idea of NIM, the solution
of the above equation has the series form.

v y = 〠
∞

k=0
vk y 7

The linear operator ξ can be decomposed as

〠
∞

k=0
ξ vk = ξ 〠

∞

k=0
vk 8

The decomposition of the nonlinear operator ℵ is
as follows:

ℵ 〠
∞

k=0
vk =ℵ v0 + 〠

∞

k=1
ℵ 〠

k

i=0
vi −ℵ 〠

k−1

i=0
vi 9

Hence, the general equation of (6) takes the following
form:

v y = 〠
∞

k=0
vk y = f + ξ 〠

∝

k=0
vk +ℵ v0

+ 〠
∞

k=1
ℵ 〠

k

i=0
vi −ℵ 〠

k−1

i=0
vi ,

10

From this, we have

v0 = f ,
v1 = ξ v0 +ℵ v0 ,
v2 = ξ v1 +ℵ v0 + v1 −ℵ v0 ,

vm+1 = ξ vm +ℵ v0 + v1 +⋯ + vm
−ℵ v0 + v1 +⋯ + vm−1 ,

 m = 1, 2, 3…

11

The k-term series solution of the general equation (6)
takes the following form:

v = v0 + v1 +⋯ + vk−1 12
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4. Applications

Example 1 (damped Burger equation).
Consider the damped Burger equation

Dα
t u x, t + u x, t Dxu x, t −D2

xu x, t + λu x, t = 0,
 t > 0, 0 < α ≤ 1,

13

together with IC

u x, 0 = λx, 14

where λ is a constant. The exact solution of (13) is of the
following form:

u x, t = λx

2eλt − 1
15

Using the operator Jα on both sides of (13) using the ini-
tial condition and Definition 4 yields

u x, t = λx + Jα −u x, t Dxu x, t +D2
xu x, t − λu x, t ,

16

where ξ u = Jα D2
xu x, t − λu x, t and ℵ u = Jα −u

x, t Dxu x, t .
According to (11), we have

u0 x, t = λx,

u1 x, t = −
2λ2tαx
Γ α + 1 ,

u2 x, t = 2λ3t2αx 3 − 2λtα Γ 2α + 1 2/ Γ α + 1 2Γ 3α + 1
Γ 2α + 1

17

The three-term approximate solution of the above
equation is

u x, t = λx −
2λ2tαx
Γ α + 1

+ 2λ3t2αx 3 − 2λtα Γ 2α + 1 2/ Γ α + 1 2Γ 3α + 1
Γ 2α + 1

18

Example 2 (Sharma-Tasso-Olver equation).
One can consider

Dα
t u x, t + aDxu

3 x, t + 3
2 aD

2
xu

2 x, t + aD3
xu x, t = 0,

 t > 0, 0 < α ≤ 1,
19

together with IC

u x, 0 = 1
a
tanh 1

a
x , 20

where a is a constant. The exact solution of (19) for α = 1 is of
the following form:

u x, t = 1
a
tanh 1

a
x − t 21

Using the operator Jα on both sides of (19) using the initial
condition and Definition 4 yields

u x, t = 1
a
tanh 1

a
x + Jα −aDxu

3 x, t

−
3
2 aDx

2u2 x, t − aD3
xu x, t ,

22

where ξ u = Jα −aD3
xu x, t and ℵ u = Jα −aDxu

3 x, t −
3/2aD2

xu
2 x, t .

According to (11), we have

u0 x, t = 1
a
tanh 1

a
x ,

u1 x, t = −
tα sec h2 x/ a

aΓ 1 + α
,

u2 x, t = t2α sec h2 x/ a

a5/2

−
3 atα −3 + 2 cosh 2x/ a Γ 1 + 2α sec h4 x/ a

Γ 1 + α 2Γ 1 + 3α

−
2a tanh x/ a

Γ 1 + 2α −
6t2αΓ 1 + 3α sec h4 x/ a tanh x/ a

Γ 1 + α 3Γ 1 + 4α

23
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The three-term approximate solution of the above equation
is as follows:

5. Results and Discussion

We have implemented NIM for finding the approximate
solutions of the fractional damped Burger equation and frac-
tional Sharma-Tasso-Olver equation. Tables 1 and 2 show
the numerical results of the 2nd-order NIM which are
compared with those of the 5th-order fractional reduced
differential transform method (FRDTM) solution [18] for
the fractional-order damped Burger equation. Tables 3 and
4 show the comparison of the proposed scheme with the
FRDTM for the fractional-order Sharma-Tasso-Olver equa-
tion. Figure 1 shows the comparison of 2D plot of the
approximate and exact solution by NIM for the classical
damped Burger equation. Figure 2 shows the comparison of
the approximate solution for different values of α with the

exact solution at t = 0 01. In Figures 3 and 4, 3D plots of
approximate and exact solutions by NIM for the damped
Burger equation are given. In Figure 5, the 2D plots of the
approximate and exact solution for the classical Sharma-
Tasso-Olver equation are given. Figure 6 shows the compar-
ison of the approximate solution for different values of α with
the exact solution at t = 0 1. The 3D plots of approximate and
exact solutions for the Sharma-Tasso-Olver equation are
given in Figures 7 and 8. Throughout computations, we take
λ = 1 and a = 4.

By forming the numerical values and graphs, it is
clear that NIM is a very powerful tool for the solution
of fractional partial differential equations. The accuracy of
the NIM can further be increased by taking higher-order
approximations.

u x, t = 1
a
tanh 1

a
x −

tα sec h2 x/ a

aΓ 1 + α
+ t2α sec h2 x/ a

a5/2

−
3 atα −3 + 2 cosh 2x/ a Γ 1 + 2α sec h4 x/ a

Γ 1 + α 2Γ 1 + 3α

−
2a tanh x/ a

Γ 1 + 2α −
6t2αΓ 1 + 3α sec h4 x/ a tanh x/ a

Γ 1 + α 3Γ 1 + 4α

24

Table 1: Comparison of numerical results of NIM and FRDTM at
α = 1 and λ = 1.

x t
5th-order

FRDTM [18]
2nd-order

NIM
Exact

solution
Absolute error

−5

0.002 −4.980060 −4.98006 −4.98006 1.19501× 10−7

0.004 −4.960239 −4.96024 −4.96024 9.52046× 10−7

0.006 −4.940535 −4.94054 −4.94054 3.19985× 10−7

0.008 −4.920949 −4.92096 −4.92095 7.55346× 10−6

−3

0.002 −2.988036 −2.98804 −2.98804 7.17009× 10−8

0.004 −2.976143 −2.97614 −2.97614 5.71228× 10−7

0.006 −2.964321 −2.96432 −2.96432 1.91991× 10−6

0.008 −2.952569 −2.95257 −2.95257 4.53208× 10−6

3

0.002 2.988036 2.98804 2.98804 7.17009× 10−8

0.004 2.976143 2.97614 2.97614 5.71228× 10−7

0.006 2.964321 2.96432 2.96432 1.91991× 10−6

0.008 2.952569 2.95257 2.95257 4.53208× 10−6

5

0.002 4.980060 4.98006 4.98006 1.19501× 10−7

0.004 4.960239 4.96024 4.96024 9.52046× 10−7

0.006 4.940535 4.94054 4.94054 3.19985× 10−6

0.008 4.920949 4.92096 4.92095 7.55346× 10−6

Table 2: Comparison of numerical results of the 2nd-order NIM
and the 5th-order FRDTM for different values of α.

x t
FRDTM [18]
(α = 0 5)

FRDTM [18]
(α = 0 75)

NIM
(α = 0 5)

NIM
(α = 0 75)

−5

0.002 −4.211841 −4.876244 −4.55366 −4.89911
0.004 −3.938004 −4.794473 −4.4015 −4.8326
0.006 −3.744961 −4.724456 −4.29706 −4.7758
0.008 −3.592556 −4.661485 −4.21704 −4.72486

−3

0.002 −2.527105 −2.925746 −2.7322 −2.93946
0.004 −2.362803 −2.876684 −2.6409 −2.89956
0.006 −2.246977 −2.834674 −2.57824 −2.86548
0.008 −2.155534 −2.796891 −2.53022 −2.83492

3

0.002 2.527105 2.925746 2.7322 2.93946

0.004 2.362803 2.876684 2.6409 2.89956

0.006 2.246977 2.834674 2.57824 2.86548

0.008 2.155534 2.796891 2.53022 2.83492

5

0.002 4.211841 4.876244 4.55366 4.89911

0.004 3.938004 4.794473 4.4015 4.8326

0.006 3.744961 4.724456 4.29706 4.7758

0.008 3.592556 4.661485 4.21704 4.72486

4 Complexity



6. Conclusion

We have successfully applied NIM to time fractional (DB)
and (STO) equations. Results reveal that NIM converges
to the desired solution in lesser iteration compared to
FRDTM. We can conclude that NIM computationally

handles many physical and engineering problems in a sim-
ple and straightforward way. The accuracy of this method
is also better than that of many methods which are compu-
tationally difficult to use.

Table 4: Comparison of numerical results of the 2nd-order NIM
and the 5th-order FRDTM for different values of α.

x t
FRDTM [18]
(α = 0 5)

FRDTM [18]
(α = 0 75)

NIM
(α = 0 5)

NIM
(α = 0 75)

−5

0.002 −0.493876 −0.49339 −0.49363 −0.493375
0.004 −0.494098 −0.493447 −0.493755 −0.493421
0.006 −0.494262 −0.493496 −0.493849 −0.493461
0.008 −0.494397 −0.49354 −0.493926 −0.493497

−3

0.002 −0.456455 −0.453141 −0.454774 −0.453036
0.004 −0.457972 −0.453523 −0.455639 −0.453348
0.006 −0.459102 −0.453856 −0.456286 −0.45362
0.008 −0.460032 −0.45416 −0.456819 −0.453867

3

0.002 0.448366 0.452001 0.450211 0.452106

0.004 0.446521 0.451607 0.449182 0.451784

0.006 0.445064 0.451259 0.448372 0.4515

0.008 0.443806 0.450937 0.447674 0.451237

5

0.002 0.492686 0.493223 0.492959 0.493238

0.004 0.492412 0.493165 0.492806 0.493191

0.006 0.492194 0.493113 0.492687 0.493149

0.008 0.492007 0.493066 0.492583 0.49311

Table 3: Comparison of numerical results of NIM and FRDTM at
α = 1 and a = 4.

x t
5th-order

FRDTM [18]
2nd-order

NIM
Exact

solution
Absolute error

−5

0.002 −0.493320 −0.49332 −0.49332 7.13918× 10−12

0.004 −0.493334 −0.493334 −0.493334 5.70817× 10−11

0.006 −0.493347 −0.493347 −0.493347 1.92542× 10−10

0.008 −0.493360 −0.49336 −0.49336 4.56141× 10−10

−3

0.002 −0.452664 −0.452664 −0.452664 6.65773× 10−12

0.004 −0.452755 −0.452755 −0.452755 5.333× 10−11

0.006 −0.452844 −0.452844 −0.452844 1.80218× 10−10

0.008 −0.452934 −0.452934 −0.452934 4.27726× 10−10

3

0.002 0.452484 0.452484 0.452484 6.64085× 10−12

0.004 0.452393 0.452393 0.452393 5.30587× 10−11

0.006 0.452302 0.452302 0.452302 1.78845× 10−10

0.008 0.452211 0.452211 0.452211 4.23386× 10−10

5

0.002 0.493294 0.493294 0.493294 7.14723× 10−12

0.004 0.493281 0.493281 0.493281 5.721× 10−11

0.006 0.493267 0.493267 0.493267 1.93192× 10−10

0.008 0.493254 0.493254 0.493254 4.58194× 10−10

−4

−4

−2

−2

0
x

Exact
𝛼 = 1

𝜇
(x

)

0

2

2

4

4

Figure 1: Numerical solution of the classical damped Burger
equation with the exact solution at t = 0 01.
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−4 −2 0 2 4

−4

−2

0

2

4

Figure 2: Numerical solution of the fractional damped Burger
equation with the exact solution for different values of α at
t = 0 01.

Approx

5

5 0.002

0.004

0.006

0.008

0.010
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0
x
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Figure 3: 3D plot of u x, t for (DB) equation at α = 1.
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