
Conditionals, indeterminacy, and triviality

Justin Khoo

jkhoo@mit.edu

Forthcoming in Philosophical Perspectives (please cite published version)

This paper is about some obstacles to relating the probabilities of indicative conditionals to

their truth conditions. To get a feel for the issue, consider the following plausible principle

connecting the probability that a sentence is true with its truth conditions:

Sentential probability: The probability that a declarative sentence p is true in

some context c equals the probability of p (in c), where p is the proposition p expresses

in c.

Add in the following well-confirmed observation about the probabilities of indicative con-

ditionals:1

Ramsey’s observation: many indicative conditional/context pairs 〈pif p, qq, c〉 are

Ramseyan.

– Where 〈pif p, qq, c〉 is Ramseyan iff the probability that pif p, qq is true in c is

equal to the conditional probability that q is true in c given that p is true in c.

Ramsey’s observation is confirmed by the fact that we typically endorse conditionals

(in the sense of finding acceptable, or having a high degree of belief in) to the degree that

their consequent is likely given their antecedent. For instance, the Bulls are a pretty good

team, and nearly unbeatable when their star Michael Jordan suits up. As a result, though

1So-called because this equation between the probabilities of conditionals and conditional probabilities
was first suggested by Frank Ramsey:

If two people are arguing ‘If p will q?’ and both are in doubt as to p, they are adding p
hypothetically to their stock of knowledge and arguing on that basis about q . . . We can say
that they are fixing their degrees of belief in q given p. (Ramsey 1931, p. 249)
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we’re not sure whether Jordan played in last night’s game, we think (1-a) is very likely.

Nonetheless, we find (1-b) extremely unlikely.

(1) a. If Jordan played last night, the Bulls won.

b. If Jordan played last night, it rained in the Sahara.

If (1-a) is Ramseyan, then the likelihood of (1-a) goes by the conditional likelihood that the

Bulls won given that Jordan played last night—and the latter value is high since the Bulls

almost always win when Jordan plays, so we predict that (1-a) is very likely. Furthermore,

we predict if (1-b) is Ramseyan, then we predict that it is unlikely because the conditional

likelihood that it rained in the Sahara given that Jordan played last night is low.2

The problem is that Ramseyan conditional/context pairs make trouble for Sentential

probability given certain other auxiliary assumptions. For instance, the triviality results

of David Lewis can be leveraged, along with Sentential probability, to the conclusion

that a conditional/context pair is Ramseyan only if the probability of the conditional

(in that context) is equal to the probability of its consequent (in that context)—we’ll

call problems like this arising from the various triviality proofs problems of triviality.3 A

related problem charges that Sentential probability is incompatible with a particular

kind of Ramseyan conditional/context pair—one whose conditional is indeterminate at

any world in which its antecedent is false—and yet our intuitions confirm many such

conditional/context pairs; we’ll call this the problem of indeterminacy.4

These problems have motivated two radical views in the literature on conditionals—for

instance, non-propositionalism, which rejects Sentential probability (see for instance

Adams 1975, Gibbard 1981, Edgington 1995, Bennett 2003), and the material conditional

theory, which rejects Ramsey’s observation (see for instance Lewis 1976, Jackson 1979,

Grice 1989). However, given the intuitive appeal of both Sentential probability and

Ramsey’s observation, a theory that allows us to preserve both is prima facie more

plausible than a theory that rejects one or the other. But preserving both requires a theory

of indicative conditionals that can handle the troublesome Ramseyan conditional/context

pairs, and this requires the theory to explain how the probabilities of conditionals are

2For further confirmation of Ramsey’s observation, see the discussion in Edgington 1995, Bennett
2003. However, there seem to be non-Ramseyan indicative conditional/context pairs as well—see McGee
2000, Kaufmann 2004, Rothschild 2011, Khoo 2013.

3For Lewis’s original proof, see Lewis 1976, 1986. For variations, see Stalnaker 1976, Gibbard 1981,
Hájek 1989, 1994, 2011b, 2012, Hájek and Hall 1994, Edgington 1995, Bennett 2003.

4For a related problem for subjunctive conditionals, see Hájek 2011a.
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related to their truth conditions. In this paper, I aim to motivate such a theory by arguing

that we can plausibly avoid both the problems of indeterminacy and triviality by rejecting

some of their auxiliary assumptions.

Here’s the plan for what follows. I begin by discussing the problem of indeterminacy

(§1.1–1.2). In §1.3, I sketch my favored semantics for indicative conditionals and in §1.4

show how it resolves this indeterminacy problem. In §2, I turn to the various triviality

proofs, splitting them into two kinds, and show how our semantics handles the resulting

two problems of triviality. Perhaps unsurprisingly, the relation between the probabilities

of indicative conditionals and their truth conditions turns out to be more complex than

anticipated—on the theory I defend, the truth conditions of indicatives are highly context

dependent and such that an indicative conditional may be indeterminate in truth value at

each possible world throughout some region of logical space and yet still have a nonzero

probability throughout that region. Nonetheless, I hope to make an initial case for the

claim that these extra complexities are plausible and thus no barrier to endorsing both

Sentential probability and Ramsey’s observation.

1 The problem of indeterminacy

Roughly, the problem of indeterminacy charges that Sentential probability is incompat-

ible with Ramseyan conditional/context pairs whose conditional is indeterminate in truth

value at any world in which its antecedent is false. This is a problem for Sentential prob-

ability because, intuitively, there are many such conditional/context pairs. In order to

formally state the problem of indeterminacy and how I propose to solve it, it will be helpful

to review a few technical preliminaries. Throughout, I’ll use lowercase roman letters p, q,

r, . . . to denote sentences, and italicized letters p, q, r, . . . to denote the propositions ex-

pressed by the corresponding sentences (in the relevant context—I’ll leave that parameter

unvoiced unless it’s necessary to keep track of). I will be assuming that indicative condi-

tionals express propositions throughout in order to defend Sentential probability—so,

for a conditional/context pair 〈pif p, qq, c〉, we’ll let if p, q denote the proposition expressed

by pif p, qq at the context c. Allowing for a certain degree of idealization, we’ll assume

that an agent’s credences can be represented by a precise probability function P from

propositions to values in [1, 0], and assume that propositions are simply sets of possible

worlds. Thus, we can define a probability function P as any function from subsets of W

(the propositions) to values in [1, 0] obeying the Kolmogorov axioms:
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1. P (p) ≥ 0, for all p ∈ ℘(W )

2. P (W ) = 1

3. P (p ∨ q) = P (p) + P (q), for all p, q ∈ ℘(W ) such that p ∧ q = ∅

We add to [1]–[3] the following (standard) definition of conditional probability, setting aside

for now worries that this will not serve as a definition but at best an approximation of the

intuitive notion (characterized above):5

4. P (q|p) =
P (p ∧ q)

P (p)
, where P (p) > 0

Sentential probability is a claim connecting the probability that a sentence is true

with the probability of the proposition that sentence expresses. We formalize sentential

probability as follows. Let Pr be a function from contexts and sentences to values in [1, 0]

which give the probability that that sentence is true in that context (and a corresponding

conditional sentential probability function that takes contexts and two sentences into [1, 0]

defined in a way analogous to [4]). We can now restate what it is for a conditional/context

pair to be Ramseyan:

(2) A conditional/context pair 〈pif p, qq, c〉 is Ramseyan iff Prc(pif p, qq) = Prc(q | p).

along with our principles from the introduction:

Sentential probability: For any p and c, Prc(p) = Pc(p).

(Where Pc is the probability function of the relevant agent in c and p the propo-

sition expressed by p at c.)

Ramsey’s observation: for many 〈pif p, qq, c〉, Prc(pif p, qq) = Prc(q | p).

Notice that, given Sentential probability, it follows that:

(3) A conditional/context pair 〈pif p, qq, c〉 is Ramseyan iff Pc(if p, q) = Pc(q|p).

Since we are assuming Sentential probability in what follows, we’ll often move freely

between Prc and Pc. Next, let’s define two important properties of conditional/context

pairs:

5For problems with this definition, see Hájek 2003. We’ll ignore these for now.
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(4) 〈pif p, qq, c〉 is probability centered iff Prc(pif p, qq | p) = Prc(q | p).

(5) 〈pif p, qq, c〉 is antecedent independent iff Prc(pif p, qq | p) = Prc(pif p, qq).

Notice that if 〈pif p, qq, c〉 is both probability centered and antecedent independent, then it

is Ramseyan. In the next section, I’ll argue that indicatives are always probability centered:

PC: every conditional/context pair is probability centered.

However, I won’t argue that every conditional/context pair is antecedent independent,

since I think this is false, and furthermore that the exceptional cases are responsible for

non-Ramseyan conditional/context pairs (see the discussion in McGee 2000, Kaufmann

2004, Rothschild 2011, Khoo 2013). Let’s turn now to the motivation for PC. In §1.2, I’ll

draw on PC to motivate the problem of indeterminacy.

1.1 PC

Although my motivation for PC relies on Sentential probability, nothing crucial turns

on this assumption—we can reformulate the arguments in terms of probabilistic validity

on sentences instead of classical validity on propositions.6 PC follows from Strong cen-

tering, which itself follows from Conditional excluded middle (given the validity of

modus ponens):

Strong centering: for any 〈pif p, qq, c〉: |= p ⊃ (q ≡ if p, q)

Conditional excluded middle (CEM): for any 〈pif p, qq, c〉 and 〈pif p, not-qq,

c〉: |= (if p, q) ∨ (if p,¬q)

Basically, Strong Centering ensures that if p is true, then if p, q is true iff q is true.

CEM ensures that, for any conditional and context, either the proposition expressed by the

conditional or the proposition expressed by that conditional’s negated consequent cousin

is true. Here’s why CEM + modus ponens entails Strong Centering. Suppose CEM

holds; then if p and q are both true, if p, q must be true7—and furthermore, if p is true and

6See Adams 1975, 1998, for instance. I should point out that both Edgington, a non-propositionalist, and
Kaufmann, a non-classical theorist, endorse Strong centering—see Edgington 1995, p. 290 and Kaufmann
2005, p. 199.

7This follows given CEM by the following line of reasoning. Suppose p, q, and if p,¬q are true. Then
¬q is true by modus ponens. But this is a contradiction. So if p,¬q is false. But then by CEM if p, q is
true.
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if p, q is true, then q is true by modus ponens. Here’s why Strong Centering entails PC.

Suppose Strong Centering holds; then if p, q is true at exactly the q-worlds in which

p is true. Hence, conditional on p, the probability of if p, q equals the probability of q.

Therefore, for any 〈pif p, qq, c〉: Pc(if p, q|p) = Pc(q|p)—and this is just PC.

Thus, evidence for either Strong centering or CEM is evidence supporting PC. And,

intuitively, both of the former principles are intuitively supported. Take Strong centering

first. Suppose John recently rolled a fair six-sided die and kept the result hidden, and that

we place a bet on the outcome of the roll. I bet that if John rolled a prime, then he rolled

an odd, and you bet against me. Intuitively, if John rolled an odd prime (a 3 or 5) then I

win the bet, while if John rolled an even prime (a 2) then you win the bet (set aside what

happens if John doesn’t roll a prime for now). If our betting intuitions are evidence for the

truth conditions of (6), then it seems that p ∧ q is sufficient for the truth of if p, q, while

p ∧ ¬q is sufficient for the falsity of if p, q.

(6) If John rolled a prime then he rolled an odd.

That is, our betting intuitions confirm Strong centering.8

Next, CEM is supported by the fact that negations of conditionals are often interpreted

as conditionals with negated consequents:9

(7) I doubt that if John rolled a prime, he rolled an even.

≈ I think that if John rolled a prime, he rolled an odd.

8Some may be tempted by the thought that if p, q is false if it’s possible that p ∧ ¬q, since a bare
assertion of (6) seems unwarranted if it’s possible that John rolled an even prime. However, this thought is
at odds with the way (6) embeds. For instance, as Moss 2012 points out, (i-a) sounds much more felicitous
than (i-b):

(i) a. It’s more likely than not that if John rolled a prime then he rolled an odd.
b. #It’s not the case that if John rolled a prime then he rolled an odd.

Intuitively, (i-a) is true in c1, and it would be odd to utter (i-b) in c1 (just as it would be odd to utter (6)
in such a context). However, a theory that predicts that (6) is falsified by the fact that it is epistemically
possible that John rolled an even prime also predicts that (i-a) is false (as uttered in c1) and has no
explanation for why it would be odd to utter (i-b) in such a context (since it predicts that (i-b) is both true
and easily knowable in such a context). An alternative account of the intuition that we ought not assert (6)
if it’s possible that John rolled an even prime is that, in such a case, (6) (or the proposition it expresses)
would not be known and hence not satisfy the plausible knowledge norm of assertion (cf. Williamson 1996,
DeRose 2002).

9I borrow this argument for CEM from Rothschild 2011.
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Similarly, denials of conditionals in dialogues seem equivalent to affirmations of their

negated-consequent-cousins:10

(8) A: If John rolled a prime, then he rolled an even.

B: That’s false, if John rolled a prime, then he rolled an odd.

Furthermore, CEM allows us to predict the equivalence of:

(9) a. No student will succeed if he goofs off.

b. Every student will fail if he goofs off.

without failures of compositionality.11 It seems there is an abundance of evidence in favor of

both CEM and Strong centering, and hence PC.12 Thus, I will take PC as established

from now on. We turn now to the problem of indeterminacy.

1.2 Stating the problem

The problem of indeterminacy is that Sentential probability is incompatible with the

existence of conditional/context pairs 〈pif p, qq, c〉 that are (i) Ramseyan, (ii) such that

if p, q is neither true nor false at any world in which p is false, and (iii) such that Prc(p)

< 1.13 Yet, intuitively, there are such conditional/context pairs. To begin, let’s define

some properties of conditional/context pairs to facilitate the presentation of the problem.

(10) 〈pif p, qq, c〉 is A-indeterminate iff for every epistemically accessible ¬p-world w:

if p, q is neither true nor false at w.

(11) 〈pif p, qq, c〉 is A-uncertain iff Prc(p) < 1.

The first premise is the indeterminacy observation:

10It is possible to deny a conditional without affirming its negated-consequent counterpart, as in:

(i) A: If John rolled a prime, then he rolled an even.
B: No, if John rolled a prime, then he might have rolled an odd.

However, such denials typically require some emphasis on “might”, which suggests metalinguistic negation
is in play—cf. Horn 1985.

11See Higginbotham 1986, 2003, von Fintel and Iatridou 2002, Klinedinst 2010.
12Though, the case isn’t closed: see Lewis 1973, Stalnaker 1980, Bennett 2003, Cross 2009, Williams 2010

for further discussion.
13This problem is similar to that raised by Hájek 2011a for subjunctive conditionals—there, he argues

that all subjunctive conditionals are false (or indeterminate).
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(CI-1) There are conditional/context pairs which are Ramseyan, A-indeterminate, and

A-uncertain.

Recall our example from §1.1—suppose the context c1 is such that John has just rolled a

fair six-sided die and kept the result hidden; consider the following conditional:

(6) If John rolled a prime, then he rolled an odd.

Intuitively, 〈(6), c1〉 is Ramseyan. The conditional probability that John rolled an odd,

given that he rolled a prime is 2/3 since two out of the three prime outcomes (2, 3, 5) are

odd (3, 5). And it’s extremely plausible that Prc1((6)) = 2/3. For instance, the following

embedding seems true in this context:

(12) The likelihood that if John rolled a prime, he rolled an odd is two-thirds.

Next, suppose I bet that if John rolled a prime, he rolled an odd, and you bet against me.

It seems you should only accept such a bet at 2 to 1 odds—further confirmation that 〈(6),

c1〉 is Ramseyan. However, now consider an epistemically accessible world w∗ in which

John doesn’t roll a prime (a ¬prime-world). Intuitively, our bet is called off at w∗—there’s

no fact of w∗ that would settle the bet either way. This seems to be strong evidence

that there’s no fact of the matter at w∗ whether if John rolled a prime, he rolled an odd.

Therefore, it seems plausible that if prime, odd is neither true nor false at w∗—there’s no

fact of w∗ that could serve as its truthmaker or falsemaker.14 (For an additional argument

that (6) is not false as uttered in c, see the discussion in fn. 8) Therefore, since we reached

this conclusion by considering an arbitrary epistemically accessible ¬prime-world w∗, we

conclude that for any epistemically accessible ¬prime-world w, if prime, odd is neither

true nor false at w, and hence that 〈(6), c1〉 is A-indeterminate. Finally, notice that, since

we are uncertain whether John rolled a prime, Pc1(prime) < 1. Therefore, 〈(6), c1〉 is

Ramseyan, A-indeterminate, and A-uncertain in c1. Hence, (CI-1).

Next, it seems obvious that the probability that a sentence is true in a context requires

at least that there are some epistemically possible worlds in that context such that the sen-

14There are at least two ways out of line of reasoning. One is that the conditional can be true at a world
even though it lacks a truthmaker at that world since its truth at that world is a brute fact of it. The other
is that our intuition here tracks what we can know about the truth or falsity of if prime, odd at worlds like
w∗—this allows us to say that if prime, odd is either true or false at w∗, we just don’t know which. Both
are possible avenues worth exploring—for instance, see Khoo 2013 for an epistemicist implementation of
the semantics in §1.3 that rejects (CI-1) in this latter way. In this paper, I want to focus on a different
avenue that allows us to hold on to (CI-1).
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tence as uttered in that context is true at those worlds, hence our second premise (assuming

that the existential quantifier here is restricted to epistemically accessible worlds):

(CI-2) Pc(p) > 0 only if ∃w : p is true at c, w.

Sentential probability seems to entail (CI-2), given the assumption that propositions

are true or false relative to worlds. However, there is independent motivation for (CI-2) as

well. Our interest in sentential probability is probability of truth, so given the assumption

that sentences are true or false relative to worlds (and contexts), there must be some world

at which the sentence is true for it to have a nonzero probability of truth.

With (CI-1) and (CI-2) in hand, the problem of indeterminacy follows straightfor-

wardly. From (CI-1) we know there are some Ramseyan, A-indeterminate, A-uncertain

conditional/context pairs. Let 〈pif p, qq, c〉 be such a pair. From (CI-2) it follows that

Prc(pif p, qq | not-p) = 0. Substituting this into the law of total probability:

(13) Prc(pif p, qq) = Prc(pif p, qq | p) · Prc(p) + Prc(pif p, qq | not-p) · Prc(not-p)

yields:

(14) Prc(pif p, qq) = Prc(pif p, qq | p) · Prc(p)

Finally, recall PC:

PC: Prc(pif p, qq | p) = Prc(q | p) (For every p, q, pif p, qq, and c.)

Hence, substituting into (14) yields:

(15) Prc(pif p, qq) = Prc(q | p) · Prc(p)

But now since 〈pif p, qq, c〉 is Ramseyan it follows that:

(16) Prc(q | p) = Prc(q | p) · Prc(p)

And since 〈pif p, qq, c〉 is A-uncertain, we have a contradiction. Hence, we have a contra-

diction that follows from three plausible claims: (CI-1), PC, and Sentential probability

(which seems to entail (CI-2)). Thus, the three are jointly inconsistent—this is the problem

of indeterminacy.

I pause to mention four ways out of this problem that I will set aside for now. First,

we might deny (CI-1) on the grounds that conditionals like (6) are true at some ¬prime-
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worlds—see for instance the discussion in fn. 14. I think this is a promising approach, but

I want to confine our discussion here to ways of handling the problem that allow us to

hold on to (CI-1) (see Khoo 2013 for a way to implement this strategy in a way analogous

to the approach I take in §1.3). The second way out is to deny (CI-1) by denying that

conditional/context pairs like 〈(6), c1〉 are Ramseyan—this is the approach favored by those

who deny Ramsey’s observation.15 However, such views fly directly in the face of our

intuitions, and hence face the challenge of accounting for why it seems so plausible that 〈(6),

c1〉 is Ramseyan. Third, we might deny PC. However, the discussion in §1.1 shows that the

principle is well-motivated, and thus that giving it up would be a significant cost. Finally,

we could reject Sentential probability and hence undercut some of the motivation for

(CI-2). However, although a non-propositionalist who denies Sentential probability

need not be committed to (CI-2), her account is incomplete without some account of the

sense in which conditional sentences have probabilities if they aren’t probabilities of truth,

and this is a tall order.16

Unlike the above four responses, the response I favor is conservative—I aim to hold

on to both Sentential probability and Ramsey’s observation and yet deny (CI-2)

by motivating the claim that a sentence p can have a nonzero probability of truth in a

context c even though there is no epistemically accessible world in c relative to which p

is (determinately) true. In the next section I’ll sketch a propositionalist semantics for

indicatives that predicts exactly this result.

1.3 Semantics

In this section, I’ll sketch an orthodox propositionalist semantics for indicative conditionals

with a twist that will allow us to avoid the problem of indeterminacy by denying (CI-2).

Thus, one-half of the moral of the story for indicative conditionals and the work of §1.3–1.4

is to motivate a propositionalist semantics for indicative conditionals in which they can be

neither true nor false at each ¬p-world and also have a nonzero probability throughout the

15We need not give up Ramsey’s observation to adopt such an approach, but the trouble for this
strategy remains the same.

16For instance, we might hold that what’s to be explained is not the probability that some conditional
sentence is true but rather the acceptability (or degree of belief) we have in such sentences, and then hold
that it is a fundamental feature of conditional sentences that their acceptability (or the degree of belief we
have in them) goes by the Ramseyan Thesis (see for instance Adams 1975, Edgington 1995, Bennett 2003).
However, such a view runs into trouble predicting the non-Ramseyan conditional/context pairs discussed
in McGee 2000, Kaufmann 2004. Without a plausible story about those—how is it that a brute fact can
have exceptions?—this sort of primitivist view is in rough shape.
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¬p-region of logical space.

We begin with a baseline semantic framework in which J K is a function from expressions

to extensions (truth values, in the case of sentences) relative to a context c and world w.

We’ll let our truth values be 1 and 0; thus, JpKc,w = 1/0 iff p is true/false at c, w. From

here, we define the intension of a sentence at a context to be a function from worlds to

truth values (the sentence’s extension at that context and world); hence, the intension of p

at c = p = JpKc = {w : JpKc,w = 1}. I’ll adopt the usual doublespeak and use the expression

“the proposition expressed by p at c” to refer both to the intension of p at c and the set

of possible worlds for which that intension is a characteristic function.

Here’s an initial statement of the proposed truth conditions for indicative conditionals:

(17) Jpif p, qqKc,w = 1 iff the closest epistemically accessiblec,w p-world is a q-world.

Spelling out these truth conditions requires that we say more about epistemic accessibility

and the closeness relations on worlds. We model epistemic accessibility by way of a function

E from worlds to sets of worlds—those that are compatible with what is known at the input

world. Thus, at the very least, E(w) must be factive:

(18) Factivity: ∀w : w ∈ E(w).

We’ll also assume that each context c determines a unique epistemic accessibility relation

Ec (this might correspond to what’s compatible, for each w, with what is known at w by

those members of the conversation occurring at c—for our purposes, the value of Ec doesn’t

particularly matter). Thus, the epistemically accessiblec,w worlds are just the worlds in

Ec(w).

We characterize the closeness relation in two parts:

• Limit: For any context c and worlds w and w′ ∈ Ec(w): if p is true at w′, then w′

is the closest p-world to w′ in Ec(w).

• Similar: For any context c and worlds w and w′ ∈ Ec(w): if p is false at w′, then

the closest p-world to w′ in Ec(w) is among the most relevantly similar p-worlds to

w′ in Ec(w).

Limit says that if p is true at w, then Jpif p, qqKc,w = 1 iff JqKc,w = 1. Thus, by Limit

we predict that PC holds.17 Similar requires a bit more explanation—in particular, what

17We assume Sentential probability. Then Prc(pif p, qq | p) = Pc(if p, q|p). By Limit, if p, q is
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are the most relevantly similar p-worlds to w′ in Ec(w)? To answer this, we must say what

facts of w′ count toward relevant similarity with respect to w′. One fruitful way to model

this is to let relevant similarity be fixed by a partition on Ec(w), Z.18 Let [w]Z denote

the cell of Z in which w falls. The basic idea is that it is the Z-features of w that count

towards a world being relevantly similar to w. Or, putting it more picturesquely, the most

similar worlds to w given Z are [w]Z . Thus, the most similar p-worlds to w are [w]Z ∧ p.

Plugging this into Similar yields:

• Similar*: For any context c and worlds w and w′ ∈ Ec(w), and where Z is the

relevance partition for pif p, qq in c, the closest p-world to w′ in Ec(w) is among

[w′]Z ∧ p.

I want to set aside the difficult question of how a relevance partition for a conditional is

determined in a context,19 except to note that we need a constraint to avoid the following

problem: if Z is a relevance partition for pif p, qq in c and w is such that there are no

p-worlds in [w]Z , then the extension of pif p, qq (as uttered in c) will be undefined at w. I

assume that this situation is to be avoided—intuitively, only those features of w that are

compatible with p need to be held fixed in determining the closest p-world to w. Thus, we

stipulate that Z is an admissible relevance partition for pif p, qq in c only if each cell z ∈ Z

is compatible with Ec(w) and p, that is, only if there is some z ∧ p-world w′ in Ec(w), for

each z ∈ Z, that is, only if Z is p-compatible.

Similar* gives us a constraint on closeness when p is false at w, but doesn’t determine

a unique closest p-world to w in such a case unless there is a single world in [w]Z ∧ p.

Thus, since Similar* is the only constraint on closeness when p is false, if there is more

than one world in [w]Z ∧ p, our semantics leaves it indeterminate which among them is

the closest p-world to w (again, assuming p is false at w). It is how we understand and

incorporate this indeterminacy into our semantic framework that will be critical to solving

the indeterminacy problem.

equivalent to q at the p-worlds. Hence, we may substitute q for if p, q in the previous equation, yielding:
Prc(pif p, qq | p) = cP (q|p), which entails PC given Sentential probability.

18A partition on a set of worlds W is a set of subsets of those worlds Z such that
⋂

Z = W and for which
every w ∈W : there is exactly one z ∈ Z such that w ∈ z. Less formally, Z is a set of boxes of worlds of W
such that every world in W is in at least one box in Z, and no world in any box of Z is in any other box
in Z.

19See Khoo 2013 for a positive proposal about the features of context that determine relevance partitions.
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1.4 Avoiding the indeterminacy problem

Before we begin, I should mention that the approach to indeterminacy I sketch here is

not forced upon us—similar results (and analogous solutions to the challenge from in-

determinacy) can be obtained via different theories of indeterminacy (see Khoo 2013 for

discussion). The approach we’ll adopt understands the indeterminacy in closest p-world

to be metaphysical in nature—as there being an objective chance about which p-world is

closest, even if there is no objective fact about which actually is closest.20 Another way of

putting the idea is that the truth values of indicative conditionals are sensitive to distinc-

tions that cut more finely than distinctions between possible worlds—so, although possible

worlds represent all the determinate distinctions between possibilities that can be drawn,

further distinctions that give rise to (metaphysical) indeterminacies may be drawn as well.

To fix some terminology, let’s call these world-like entities that draw distinctions more

finely than possible worlds precisifiers. To model the relationship between worlds and

precifiers, we’ll assume that precisifiers are basic and worlds are sets of precisifiers. Thus,

we have both a set of all worlds W and a set of all precisifiers F such that F = ∪W .

Precifiers will now play the role in our semantics that worlds did previously, in defining

intensions for instance; we’ll then define new relations of determinately true, determinately

false, and indeterminate between sentential intensions and worlds.21 Thus, J K is now a

function from expressions to extensions relative to a context c and precisifier f . The

intension of p at c = JpKc = {f : JpKc,f = 1}. Since they play exactly the role in our new

theory as propositions played in our old theory, it will do no harm to call these precisifier-

intensions propositions (sets of precisifiers are as much truth conditions as sets of possible

worlds, only sensitive to distinctions more fine-grained than can be drawn between possible

worlds). Thus, propositions are now true/false relative to precisifiers, whereas they are

determinately true/false relative to worlds:

(19) JpKc is

20Inspirations for this approach include Akiba 2004, Barnes and Williams 2011, Barnes and Cameron
2011 and the following insightful quote from Stalnaker 1984 (though he’s talking about counterfactuals
and our topic is indicatives): “The selection functions relative to which counterfactuals are interpreted
do not simply select on the basis of facts and criteria of similarity that are intelligible independently of
counterfactuals. Rather, the claim is, the fact of selection gives rise to new ways of cutting up the space of
possibilities, and so to a richer conception of the way the world is” (169).

21The ramifications of these definitions will be many. For instance, possible worlds are ways things might
determinately be, while precisifiers are simply ways things might be. Furthermore, it may be indeterminate
which precifisier we are at, although it will be determinate which world we are at. And so on.

13



a. determinately true at w if ∀f ∈ w : JpKc,f = 1

b. determinately true at w if ∀f ∈ w : JpKc,f = 0

c. indeterminate at w otherwise

Intuitively, on this understanding of indeterminacy, determinate truth/falsity just is having

objective chance 1/0, and indeterminacy is having an objective chance not equal to 0 or 1.

Say that the objective chance of p relative to w is equal to the proportion of precisifers in

w at which p is true. Thus, on this theory, there can be two worlds w1 and w2 which agree

on the truth value of all the determinate propositions but differ in the chance they assign

to some proposition that is indeterminate at at least one of them.

Applying our theory to Similar* requires us first to restate our semantics for pif p,

qq at the level of precisifiers:

(20) Jpif p, qqKc,f = 1 iff ∀f ′ ∈ w: JqKc,f ′ = 1; where w is the closest p-world to f among

Ec(w
f ).

Two remarks: the truth of the conditional requires the determinate truth of q at the

closest p-world, and epistemic accessibility is still a relation on worlds—wf is the world

of f . Both of these might be subject to revision, depending on how we may we want to

handle indeterminacy within the consequents of conditionals, but for the sake of space let’s

set that matter aside for now and plow ahead.22 We revise Limit and Similar* at the

level of precisifiers (this is where our approach to indeterminacy gets teeth):

• Limit-M: For any context c and worlds w and w′ ∈ Ec(w): if p is determinately true

at w′, then ∀f ∈ w′: w′ is the closest p-world to f in Ec(w).

• Similar-M: For any context c and worlds w and w′ ∈ Ec(w) and where Z is the

relevance partition for pif p, qq in c: if p is determinately false at w′, then for each

f ∈ w′: there is a unique world w′′ ∈ [w′]Z ∧ p such that w′′ is the closest p-world to

f in Ec(w).

Similar-M ensures that for each ¬p-world w′, “closest p-world” behaves as a one-to-one

function from precisifiers f ∈ w′ to worlds in [w′]Z∧p. It does so by filtering the precisifiers

making up each ¬p-world, demanding that they conform to this constraint. In effect, what

22Furthermore, the division of labor in stating our revised Limit and Similar principles is split between
p being determinately true at w′ and determinately false at w′—we leave it open for now what happens
when p is indeterminate at w′.
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it does is translate the information about what worlds comprise [w′]Z into information

about the chance, at each ¬p-world in w′, what the closest p-world to it is. Thus, Similar-

M has no effect on the truth values of any determinate propositions, but it may affect

the chances of indeterminate propositions. And, in turn, we can appeal to it to predict

non-trivial probabilities for sentences that are indeterminate. Let ch(p)(w) be the chance

of p at w and C(p)(z) be the average chance of p throughout the worlds in z. Then, we’ll

say that ordinary probability of a proposition just is the expectation of the chance that p,

given each member of a set of propositions that jointly partition the epistemic space:

(21) Pc(p) =
∑
z∈Z
C(p)(z) · Pc(z) Where Z partitions Ec(w).

Take some arbitrary sentence p that expresses the proposition p (at c) such that p is

indeterminate (and hence neither determinately true nor determinately false) at each world

in some region z. Nonetheless, as long as its chance is nonzero at some world w ∈ z such

that Pc(z) > 0, it will be the case that Prc(p) > 0. Thus, by endorsing this semantics

we reject (CI-2)—a sentence may fail to be determinately true (relative to c) at every

world in Ec(w) and yet the probability that that sentence is true may still be nonzero.23

Furthermore, our semantics predicts Prob, which allows us to predict not only that Prc(pif

p, qq | not-p) is nontrivial but also the right value for it in various contexts:24

23To be completely precise, by endorsing this semantics we reject (CI-2) as stated because we reject that
sentences are true or false relative to contexts and worlds—instead holding that they are true/false relative
to contexts and precisifiers. The principle the semantics falsifies is the corresponding version of (CI-2) with
determinate truth:

(CI-2*) Prc(p) > 0 only if ∃w: p is determinately true at c, w.

24Here’s the derivation:

(i) Prc(pif p, qq | not-p) =

a. Pc(if p, q|¬p) = Sentential probability
b.

∑
z∈Z
C(if p, q)(z ∧ ¬p) · Pc(z|¬p) = Def. C

c.
∑
z∈Z

Pc(q|z ∧ p) · Pc(z|¬p) = See (*) below

(*) Here’s why C(if p, q)(z∧¬p) = Pc(q|z∧p). Take an arbitrary z∧¬p-world w′ ∈ Ec(w). By Similar-M,
for each w′′ ∈ z ∧ p, there is exactly one precisifier f ∈ w′, such that the closest p-world to f is w′′. And
since Jpif p, qqKc,f = 1 iff q is determinately true at w, where w is the closest p-world to f , it follows that
the proportion of precisifiers f ∈ w′ at which Jpif p, qqKc,f = 1 is equal to the proportion of q-worlds in
z ∧ p. Hence, ch(if p, q)(w) = Pc(q|z ∧ p). But the choice of z ∧ ¬p-world was arbitrary, so this holds for
every z ∧ ¬p-world. Therefore, the average chance that if p, q throughout the worlds in z ∧ ¬p is equal to
the probability that q given z ∧ p, that is, C(if p, q)(z ∧ ¬p) = P (q|z ∧ p).
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Prob: Prc(pif p, qq | not-p) =
∑
z∈Z

Pc(q|z ∧ p) · Pc(z|¬p)

This semantics is designed to predict both Ramseyan and non-Ramseyan conditional/context

pairs,25 but for now let’s focus on how it avoids the problem of indeterminacy by predicting

both Sentential probability and (CI-1). Let 〈pif p, qq, c〉 be such that Zc = {Ec(w)}.
Suppose also that p∧q, p∧¬q and ¬p are compatible with Ec(w), and let w′ be an arbitrary

¬p-world in Ec(w). Then our semantics predicts that Jpif p, qqKc is indeterminate at w′.26

Nonetheless, our semantics predicts that Prc(pif p, qq) = Pc(q|p).27 Therefore, we predict

that 〈pif p, qq, c〉 is Ramseyan, A-indeterminate, and A-uncertain, and hence (CI-1), and

we do so while also predicting Sentential probability.

2 Problems of triviality

We turn now to the problems for Sentential probability and Ramsey’s observation

that stem from the various triviality results. In stating these problems, it will be helpful

to have the property of being an R-function (R for “Ramsey”) for a conditional/context

pair:

For any 〈pif p, qq, c〉: P is an R-function for 〈pif p, qq, c〉 iff P (if p, q) = P (q|p).

25It predicts Ramseyan conditional/context pairs in the following condition (where Z is the relevance
partition on pif p, qq in c):

(i) Prc(pif p, qq) = Prc(q | p) iff
∑
z∈Z

Pc(q|z ∧ p) · Pc(z|¬p) = Pc(q|p)

See Khoo 2013 for more detailed discussion of this result and how our semantics predicts which conditionals
are intuitively Ramseyan in which contexts.

26Since Zc = {Ec(w)}, [w′]Z = Ec(w). Thus, [w′]Z ∧p contains both q and ¬q-worlds (by the assumption
that p ∧ q and p ∧ ¬q are both compatible with Ec(w)). Therefore, by Similar-M, there is a f ∈ w′ such
that the closest p-world to f in Ec(w) is a q-world, which ensures that Jpif p, qqKc,f = 1. And also by
Similar-M, there is a f ′ ∈ w′ such that closest p-world to f ′ in Ec(w) is a ¬q-world, which ensures that

Jpif p, qqKc,f
′

= 0. Putting both together, we predict that Jpif p, qqKc is indeterminate at w′.
27Here’s the calculation:

(i) Prc(pif p, qq) =

a. Prc(pif p, qq | p) · Prc(p) + Prc(pif p, qq | not-p) · Prc(not-p) Total probability
b. Pc(q|p) · Pc(p) +

∑
z∈Zc

Pc(q|z ∧ p) · Pc(z|¬p) · Pc(¬p) PC, Sentential probability, Prob

c. Pc(q|p) · Pc(p) + Pc(q|p) · Pc(¬p) Since Zc = {Ec(w)}
d. Pc(q|p) Algebra
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(Where if p, q, p, and q are the propositions expressed by the sentences pif p,

qq, p, and q in c—I’ll adopt this convention throughout.)

With this new terminology in hand, we can state the following consequence of Sentential

probability and Ramsey’s observation:

SR: There are conditional/context pairs 〈pif p, qq, c〉 such that Pc is an R-function

for 〈pif p, qq, c〉.

The various triviality proofs establish (in different senses) that not every probability func-

tion is an R-function for every indicative in every context.28 Triviality proofs come in

two kinds: some establish that the property of being an R-function for 〈pif p, qq, c〉 does

not hold across a class of probability functions (inter-function EQ failures), and others

that, holding fixed a particular probability function P and context c, there will always be

conditional/context pairs whose context-coordinate is c for which P is not an R-function

(intra-function EQ failures). In the following sections, I will discuss both kinds of triviality

proofs and argue that neither raises trouble for combining Sentential probability and

Ramsey’s observation, since the bridge principles necessary to generate an inconsistency

with SR are plausibly false.

2.1 Inter-function proofs

Here, we’ll consider the class of triviality proofs which aim to show that, for any 〈pif p,

qq, c〉: the property of being an R-function for 〈pif p, qq, c〉 does not hold across some

privileged class of probability functions.29 We’ll review as the representative of such proofs

Hájek’s version of Lewis’s original triviality result (Hájek 2011b).30 Let’s begin with a

piece of terminology: let P |x be the probability function that results from conditionalizing

P on x:

28We are restricting our attention to conditionals that express propositions in the context under discus-
sion. Hence, we’ll set aside cases where P is not an R-function for 〈pif p, qq, c〉 because pif p, qq does not
express any proposition in c.

29For instance, Lewis 1976, 1986, Carlstrom and Hill 1978.
30I discuss Hájek’s generalization rather than Lewis’s original proof (Lewis 1976) because any semantics

that predicts that if p, q can be true at some ¬p ∧ ¬q-world can falsify one of the assumptions of Lewis’s
proof (that P (if p, q|¬q) = P (q|p∩¬q) = 0)—see Rothschild 2011 for discussion—but Hájek’s generalization
does not rely on this assumption. Furthermore, Hájek proves that the same result generalizes beyond
conditionalizing to any revision rule that is “bold” and “moderate” (properties shared by imaging, maxent,
minxent, and various blurred imagings, among others—see Hájek 2011b for a full discussion).

17



(22) ∀p, q ∈ ℘(W ) : P |p(q) =def P (q|p), where P (p) > 0

A class of probability functions C is closed under conditionalizing iff any probability func-

tion that results from conditionalizing some function in C on some proposition is in C.

Let CP be the class of probability functions that contains P and is closed under con-

ditionalizing. Say that a probability function P is not H-trivial for 〈pif p, qq, c〉 iff

P (p) < 1 ∧ P (p ∧ q) > 0 ∧ P (p ∧ ¬q) > 0. The conclusion of Hájek’s proof is:

Hájek’s Result: for any P that is an R-function for 〈pif p, qq, c〉 and also not

H-trivial for 〈pif p, qq, c〉, there will be some probability function P ′ ∈ CP such

that P ′ is not an R-function for 〈pif p, qq, c〉.

A bit more simply, Hájek’s Result is that the property of being a non H-trivial R-

function for 〈pif p, qq, c〉 does not hold across the class of probability functions closed

under conditionalizing. Since it would be an intolerable result that the only R-functions

for 〈pif p, qq, c〉 are ones that are H-trivial for 〈pif p, qq, c〉, we can take it that Hájek’s

Result establishes:

Hájek’s Conclusion: if P is an R-function for 〈pif p, qq, c〉, then there will be

some probability function P ′ ∈ CP such that P ′ is not an R-function for 〈pif p, qq,

c〉.

This is not yet enough to yield a contradiction when paired with Sentential probability

and Ramsey’s observation. The minimal principle needed is:

H-Bridge: If P is an R-function for 〈pif p, qq, c〉, then every probability function

P ′ ∈ CP is such that P ′ is an R-function for 〈pif p, qq, c〉.

H-Bridge says, in effect, that if you fix on the proposition expressed by pif p, qq in c,

call it x, and a probability function P such that P (x) = P (q|p), then every probability

function P ′ related to P by conditionalization will be such that P ′(x) = P ′(q|p). From SR

we have that Pc is an R-function for 〈pif p, qq, c〉, which together with H-Bridge entails

that every P ∈ CPc is an R-function for 〈pif p, qq, c〉. But from Hájek’s Conclusion it

follows that there is some probability function P ′ ∈ CPc such that P ′ is not an R-function

for 〈pif p, qq, c〉—thus, we have a contradiction.
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In what follows, I’ll present a simplified version of Hájek’s elegant proof.31 SR entails

that there are conditional/context pairs 〈pif p, qq, c〉 such that Pc is a non-H-trivial EQ

function for 〈pif p, qq, c〉 (the extra assumption that Pc is non-H-trivial should be un-

controversial given examples like 〈(6), c1〉 from §1.2). I’ll adopt the following shorthand,

writing P |x for the probability function that results from conditionalizing P on x: hence,

P |x(z) = P (z|x). For simplicity of illustration, assume that p and q are independent and

both have probability 0.5. Given this, plus PC, it follows that if p, q is true throughout the

p∧q region of epistemic space (Ec(w)) and false throughout the p∧¬q region, and has some

probability distributed throughout the ¬p region such that Pc(if p, q|¬p) = Pc(if p, q|p).

So, things are as in Figure 1.

Figure 1

Now, by conditionalizing Pc on z—that is ¬(p ∧ q)—we eliminate the p ∧ q-worlds, and

renormalize over the remaining worlds. But now notice that it’s obvious that P
|z
c (q|p) = 0,

since the only p-worlds that are left are all ¬q-worlds. But at the same time, there’s

still some probability mass of if p, q distributed throughout the ¬p-worlds, and hence

P
|z
c (if p, q) 6= 0. Thus, PC and SR entail that H-Bridge is false; or, alternatively, H-

Bridge entails that either PC or SR is false (and hence that SR is false, since we’re

31Those readers interested in the formal proof should consult Hájek 2011b, pp. 10-12.
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assuming PC is true). Thus, holding fixed PC, it follows that either SR or H-Bridge is

false. But which should we give up?

I contend that SR is more plausible than H-Bridge and hence we ought to reject

the latter. To motivate this claim, let’s consider a concrete scenario analogous to the one

constructed in our informal version of Hájek’s proof. John has just rolled a fair six-sided

die and kept the result hidden—call this context c and suppose that (6) is uttered in c:

(6) If John rolled a prime, then he rolled an odd.

Let prime and odd denote the propositions that John rolled a prime and that John rolled

an odd. Notice that both prime/¬prime and odd/¬odd are compatible with what is known

in c. Let if c prime, odd be the proposition expressed by the utterance of (6) in c, let c+ be

the context exactly like c except that it’s known in c+ that ¬(prime∧ odd). Finally, notice

that Pc+(odd|prime) = 0, since there are no prime ∧ odd-worlds compatible with what’s

known in c+. What is at issue is whether Pc+(if c prime, odd) = Pc+(odd|prime) = 0—

that is, whether the probability, once we’ve learned ¬(prime ∧ odd), of the proposition we

expressed before learning that relevant fact by uttering (6) equals 0. Now, let’s turn to

two arguments that Pc+(if c prime, odd) 6= 0.

Argument 1. Suppose you say (6) prior to learning anything about the roll. Then

you learn that John didn’t both roll a prime and an odd. Given your new evidence,

there are still possibilities in which what you said (if c prime, odd) is definitely false—

these are the prime ∧ ¬odd possibilities (e.g., where he rolled a 2). But what about the

¬prime-possibilities compatible with your new evidence (e.g., where he rolled a 1, 4, or

6)? It seems that our intuitions are silent about whether if c prime, odd is true at such

worlds—hence, it seems wrong to conclude that what you said is certainly false at them.

Furthermore, our discussion of the problem of indeterminacy from §1 cautioned against

such a conclusion. Therefore, it seems plausible that if c prime, odd has some non-zero

probability throughout the ¬prime region of logical space, and this is reason to reject that

that Pc+(if c prime, odd) = 0.

Argument 2. ∀x : Pc+(x) = Pc(x|¬(prime ∧ odd)), so if Pc+(if c prime, odd) = 0 then

Pc(if c prime, odd|¬(prime ∧ odd)) = 0. But this entails that if c prime, odd is equivalent

to prime∧ odd, which is false—it is intuitively weaker than its corresponding conjunction.
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Hence, it seems that we do not judge that what you said when you uttered (6) in the prior

context has a probability of 0 after learning that John didn’t both roll a prime and an

odd. If this is correct, then we have a counterexample to H-Bridge that is structurally

identical to the conditionalization-case constructed in Hájek’s triviality proof.

These two arguments aim to bring out the unintuitive character of H-Bridge in light

of SR. Thus, they are only as compelling as our reasons for holding SR. And we might

be persuaded to reject SR if we had a compelling reason to endorse H-Bridge. I turn to

an argument for H-Bridge now. I’ll argue that we can plausibly reject H-Bridge even in

light of this argument.

An argument for H-Bridge. Suppose after learning that John didn’t roll a prime and

an odd, you rehearse the following argument:

(23) i. Given what I now know, either John didn’t roll a prime or he didn’t roll an

odd.

ii. So, it must be that if John rolled a prime, then he didn’t roll an odd.

iii. Therefore, (6) must be false (by conditional non-contradiction).

Thus, we have an apparently sound argument whose conclusion seems to be that the prob-

ability that (6) is true is 0—just what H-Bridge predicts about the situation constructed

in Hájek’s proof. What should we say about this argument? First, we must be slightly

more careful. Simply because the probability that the sentence (6) is true is 0 after having

learned ¬(prime ∧ odd) does not mean that the proposition expressed by that sentence in

the previous context has zero probability after having learned that evidence. After all, if

what proposition an indicative conditional expresses depends on the possibilities compati-

ble with the available evidence in the context, then the proposition expressed by (6) in the

original context (prior to learning ¬(prime∧ odd)) and the proposition expressed by (6) in

the posterior context (after having learned ¬(prime ∧ odd)) may be different.

In fact, this is exactly what our semantics from §1.3 predicts. In what follows, I’ll

sketch a quick example to illustrate why, for two contexts with distinct evidence c and c∗,

our semantics predicts that the probability (given the evidence in c∗) of the proposition

expressed by pif p, qq in c may be different from the probability (given the evidence in c∗)

of the proposition expressed by pif p, qq in c∗. As before, let Ec(w) be the set of worlds

compatible with the evidence in c, w, Pc be the probability function associated with c—
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defined over Ec(w)—and let if c p, q be the proposition expressed by pif p, qq in c. Suppose

that Ec(w) = {w,w1, w2} and suppose that the closest p-world to w, w1 and w2 is w1, and

that w1 is the only q-world in Ec(w). Then, the proposition expressed by pif p, qq at c is

{w,w1, w2} and hence Pc(if c p, q) = 1. Now, suppose that Ec∗(w) = {w,w2}. Basically,

c∗ is related to c by learning something that rules out q. Since there are no q-worlds in

Ec∗(w), none of the closest worlds to any world in Ec∗(w) is a q-world, so the proposition

expressed by pif p, qq at c∗ is ∅. Hence, Pc∗(if c∗ p, q) = 0. But of course, the proposition

expressed by pif p, qq is different in c than in c∗, and hence it may not be the case that

the probability (given the evidence available in c∗) of the proposition expressed by pif p,

qq in c is 0. In fact, in this situation, the probability (given the evidence available in c∗)

of that proposition is still 1—that is, Pc∗(if c p, q) = 1.

Now, our semantics can predict both what is appealing about the argument from (i)–

(iii) and our intuition that the probability (given what is known in c+) of the proposition

expressed by the utterance of (6) in c is not zero. We predict that the step from (i) to

(ii) in the argument is valid—once you’re in a context in which it’s taken for granted

that ¬(prime ∧ odd) then the proposition expressed by (6) in this context will have a

probability 0 and its negation will have probability 1. But the step from (ii) to (iii) will

be invalid if we understand it as a judgment about the probability that the sentence (6)

in the prior context is true, and valid only if we understand it as a judgment about the

probability that (6) in the posterior context is true. Thus, the kind of context-dependent

semantics motivated in §1.3 can predict both intuitions without appealing to H-Bridge—

therefore, we are warranted in rejecting H-Bridge on the grounds that it is falsified in

the scenario constructed in Hájek’s proof, given PC and SR.32 An exhaustive defense of

context-dependent semantics for indicative conditionals is beyond the scope of this paper,

and thus since I cannot find any additional arguments for H-Bridge, I conclude that we

are warranted in thinking that H-Bridge is false.

32To put the point another way: our context-dependent propositionalist semantic has the resources to
account for the intuitions that seem to support H-Bridge—for instance, the appeal of arguments like
(i)–(iii)—without H-Bridge being true. It does so by ensuring that whenever there is a match between
the context c relative to which the indicative expresses a proposition and the context that sets the available
evidence relevant for calculating probabilities, then, setting aside cases of independence failure, Pc will be
an R-function for 〈pif p, qq, c〉. Someone looking to defend H-Bridge must either try to undermine this
kind of context-dependent semantics, or find some additional argument for H-Bridge that is not amenable
to this kind of plausible counter-explanation.

22



2.2 Intra-function proofs

Inter-function triviality proofs are only a problem for SR given a suitable bridge principle.

In §2.1 we saw that a plausible way to avoid such problems is to reject H-Bridge rather

than SR, thus preserving both Sentential probability and Ramsey’s observation. In

this section, we’ll consider two intra-function triviality proofs which establish that, holding

fixed the probability function P and context c, there will always be some conditional pif p,

qq such that P is not an R-function for 〈pif p, qq, c〉. Going through these proofs is crucial

for a defense of SR, since the problems they raise are not avoided by a context-sensitive

semantics, but will instead showcase the features of our semantics that allowed us to avoid

the problem of indeterminacy. I’ll discuss the proofs of Robert Stalnaker (Stalnaker 1976)

and Alan Hájek (Hájek 1989, 2012) in §2.2.1 and 2.2.2 below.

2.2.1 Stalnaker’s proof

The conclusion of Stalnaker’s proof is:

Stalnaker’s Result: for any P that is an R-function for 〈pif p, qq, c〉, there is

another conditional pif r, sq such that P is not an R-function for 〈pif r, sq, c〉.

There is no contradiction between Stalnaker’s Result and SR. To yield a contradiction,

we need at least the following bridge principle:

S-Bridge: for any conditional/context pairs 〈pif p, qq, c〉 and 〈pif r, sq, c〉 and any

P that is an R-function for 〈pif p, qq, c〉, P is an R-function for 〈pif r, sq, c〉.

S-Bridge is a generality principle, just like H-Bridge; basically, it states that, once

you’ve got an R-function for some conditional in some context, that probability function

is also an R-function for every other conditional in that context. From SR we have some

conditional/context pair such that Pc is an R-function for 〈pif p, qq, c〉, and then this and

S-Bridge together entail that for any conditional pif x, yq, Pc is also an R-function for

〈pif x, yq, c〉. But then Stalnaker’s result entails that Pc is not an R-function for some

conditional/context pair 〈pif r, sq, c〉—thus, we have a contradiction.

I’ll discuss S-Bridge momentarily. Our proof of Stalnaker’s Result proceeds by

construction (my presentation here follows Edgington 1995). Fix our context c throughout,

and focus on the following propositions (as expressed by their corresponding sentences at

c):
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• Let x be ¬p ∧ (if p, q).

• Let r be ¬x.

• Let s be p ∧ ¬q.

Suppose our probabilities given Pc for these propositions are partitioned into four regions

(which we may treat as “worlds”) as follows:

w Pc({w}) p q if p, q r s x if r, s

1 0.25 T T T T F F F
2 0.25 T F F T T F T
3 0.25 F T F F T F
4 0.25 F F T F F F

We suppose that if p, q has this distribution of truth/falsity throughout the ¬p-region to

ensure that Pc(if p, q) = Pc(q|p). Given these propositions, if r, s is false at w1 and w4

because r ∧ ¬s hold there, and if r, s is true at w2 because r ∧ s holds there—this holds

because indicatives are strongly centered (as our semantics entails). Why is if r, s is false

at w3? The reason is that x entails that if r, s is false. This is so because x entails if p, q,

but if r, s entails ¬(if p, q).33 Hence, x entails ¬(if r, s), and thus that if r, s is false at w3.

But now notice that Pc(if r, s) 6= Pc(s|r), for Pc(s|r) =
1/4

3/4
= 1/3, while Pc(if r, s) = 1/4.

Hence, we have established Stalnaker’s Result, since the choice of P and conditional

were arbtirary.

I accept Stalnaker’s Result.34 Thus, Stalnaker’s Result entails that one of either

SR or S-Bridge is false. Here’s an argument that we ought to take Stalnaker’s Result

as evidence against S-Bridge rather than SR. Recall that, given PC, any 〈pif p, qq, c〉
which is not antecedent independent is such that Pc is not an R-function for 〈pif p, qq,

c〉. That is, if Pc(if p, q|p) 6= Pc(if p, q), then Pc(if p, q) 6= Pc(q|p). But now notice that

〈pif r, sq, c〉 is not antecedent independent—that is, Pc(if r, s) 6= Pc(if r, s|r). The latter

value is, unsurprisingly, 1/3, while the former is 1/4. Thus, far from establishing a problem

33Suppose if r, s is true. if r, s is true at w iff the closest r-world to w is an s world iff the closest
p ∨ ¬(if p, q)-world to w is a p ∧ ¬q-world. Let w′ be the closest p ∨ ¬(if p, q)-world to w. Since if r, s
is true at w (by hypothesis), w′ is a p ∧ ¬q-world. w′ is either a p-world or a ¬p-world. Suppose w′ is a
¬p-world. Then w′ is a p∧¬p-world, which cannot be the case. Therefore, w′ must be a p-world. But then
the closest p-world to w is a ¬q-world, in which case ¬(if p, q) is true at w.

34Though see Bennett 2003, p. 73 for some ways of rejecting this conclusion.
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for propositionalism about indicatives, Stalnaker’s proof merely establishes that there are

ways of spelling out a context c such that, even though Pc is an R-function for 〈pif p,

qq, c〉, there is another conditional pif r, sq, such that 〈pif r, sq, c〉 that is not antecedent

independent. And if this is true, then given PC, S-Bridge must be false. This may be

surprising, but it is not a problem, and is perfectly compatible with SR.

Before we go on, I want to show how our semantics from §1 predicts this result. It

turns out that our semantics requires that, in the context sketched in the course of the

proof, there must be an admissible non-trivial relevance partition for pif r, sq. But what

relevance partition will bring about the right results? A natural candidate is {p,¬p}. First,

notice that this is an admissible relevance partition for pif r, sq in c, since r ∧ p is true

at w1 and r ∧ ¬p is true at w4. Next, recall from §1.2 that Pc(if r, s|r) 6= Pc(if r, s) iff

Pc(if r, s|r) 6= Pc(if r, s|¬r). Hence, we must calculate Pc(if r, s|¬r) and to this we turn

to Prob* (which follows from Prob given Sentential probability):

(24) Prob*: Pc(if r, s|¬r) =
∑
z∈Z

Pc(s|z ∧ r) · Pc(z|¬r)

Thus:

• Pc(if r, s|¬r) =

Pc(s|p ∧ r) · Pc(p|¬r) + Pc(s|¬p ∧ r) · Pc(¬p|¬r) =

1/2 · 0 + 0 · 1 = 0

Hence, Pc(if r, s|¬r) = 0. But Pc(if r, s|r) = Pc(s|r) = 1/3, by PC. Hence, Pc(if r, s) 6=
Pc(s|r). Thus, as long as pif r, sq receives {p,¬p} as its relevance partition in c, our

semantics predicts exactly the situation constructed in the proof. Thus, we can take the

lesson of Stalnaker’s proof to be that the mere fact that Pc is an R-function for 〈pif p, qq,

c〉 does not guarantee, for every conditional pif x, yq, that Pc will be an R-function for 〈pif

x, yq, c〉.

2.2.2 Hájek’s wallflower proof

Alan Hájek’s “wallflower” proof (Hájek 1989, 1994, 2012) establishes the following:35

35So-called because there must be some wallflowers—conditional probability values for P—not paired
with any unconditional probability value for P . Here’s a simplified version of the proof from Hájek 2012.
Suppose W = {w1, w2, w3} and that P is a probability function defined over W such that P ({w1}) =

25



Wallflower Result: any non-trivial finite-ranged probability function P has more

distinct conditional probability values than distinct unconditional probability val-

ues.

What’s meant by non-trivial here is that P is defined over a finite set of worlds W such

that |W | > 2. As it stands, the Wallflower Result is not incompatible with SR, for all

it ensures is that, for any context c, if Pc is a non-trivial finite-ranged probability function,

then there are conditionals pif p, qq such that Pc is not an R-function for 〈pif p, qq, c〉.
And, in our discussion of Stalnaker’s Result we saw exactly how this might happen—

such a result is obtained if pif p, qq has a relevance partition in c that makes 〈pif p, qq, c〉
not antecedent independent.

However, although the Wallflower Result is strictly compatible with our semantics,

it threatens the following very plausible assumption:

(25) Trivial Relevance: it is possible that there are contexts c such that every condi-

tional pif p, qq is assigned a trivial relevance partition (= {Ec(w)}) in c.

This seems plausible, and if it is true, then given our semantics, there must be contexts

c for which it is possible that, for every conditional pif p, qq, Pc is an R-function for

〈pif p, qq, c〉. But this is what the Wallflower Result says cannot be the case. The

Wallflower Result thus complicates any picture of how relevance partitions are assigned

to conditionals in context, raising doubts for the sort of work our semantics aims to put

relevance partitions to use—in particular, threatening to undermine a natural explanation

of non-Ramseyan conditional/context pairs (cf. Kaufmann 2004, Khoo 2013). Therefore,

it would be nice to have a way of blocking the upshot of the Wallflower Result for our

semantics.

I’ll offer two plausible strategies for blocking the upshot of the Wallflower Result for

our semantics. The first is to reject Trivial Relevance. Recall that a relevance partition

Z for pif p, qq interacts with Similar-M to place a constraint on the precisifiers making

up each ¬p-world w′ ∈ Ec(w)—namely, demanding that they can be put in one-to-one

correspondence with the worlds in [w′]Z ∧ p. However, if there are not enough precisifiers

P ({w2}) = P ({w3}) = 1/3. The probability of any proposition p ∈ ℘(W ) must then be a multiple of 1/3.
However, various conditional probabilities are not multiples of 1/3. Let p = {w1, w2} and q = {w1}. Then,

P (q|p) =
P ({w1})

P ({w1, w2})
=

1/3

2/3
= 1/2. Therefore, there are conditional probability values for P that do

not equal unconditional probability values for P . Hájek 1989 proves that this result generalizes for any
finite-ranged probability function.
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in in some w′, then this cannot be done. If the set of precisifiers in ∪Ec(w) is finite, by

the Wallflower Result we know that Trivial Relevance must be false. As far as I can

tell, accepting this consequence as entailed by the Wallflower Result is not problematic

for our semantics. The prediction that there are no contexts in which every conditional is

assigned a trivial relevance partition is not a reductio of our theory. After all, it doesn’t

seem unreasonable to hold that no ordinary speech context will determine a relevance

partition for every conditional sentence, in which case our theory won’t make any false

predictions about ordinary speech contexts. Indeed, we might even conjecture that the

kind of context that could determine a relevance partition for every conditional sentence

differs so much from the ordinary speech contexts we are acquainted with that it’s no

shortcoming of a semantic/pragmatic theory that such contexts fall outside of its purview.

On the other hand, if we are motivated to accept Trivial Relevance, then by the

Wallflower Result we must conclude that the range of Pc is infinite for those possible

contexts c in which every conditional pif p, qq gets a trivial relevance partition in c (call

these trivial contexts). This result has seemed strange to some—after all, it has the conse-

quence that any agent (including ideally rationally agents) will be such that any probability

function Pc modeling their credences in a trivial context c is such that the range of Pc is

infinite.36 Restrict attention to agents whose credences in c are modeled by probability

functions that are R-functions for the class of Ramseyan conditional/context pairs whose

context-coordinate is c, and suppose the domain of such functions is the set of possible-

worlds propositions; then, the result entails that the domain of any agent’s probability

function is always infinite. This has the strange consequence that even ideally rational

agents (including those lacking constraints of memory or time to gather information) must

be uncertain of an infinite number of propositions. Furthermore, even if we are prepared

to accept such a result for other reasons, it is striking that it is forced upon us on the basis

of linguistic considerations and some probability theory.

Nonetheless, I think we can tell a reasonable story about why such a consequence would

arise from the indeterminacy of conditionals within our theory. Recall that in our frame-

work, we handled this indeterminacy within a framework that models propositions as sets

of precisifiers (F ) rather than possible worlds (W ), and thus the domain of P is ℘(F )

rather than ℘(W ), such that p is indeterminate at w iff 0 < ch(p)(w) < 1. Given this,

36Cf. Hájek and Hall 1994 (p. 98), who note that “it is difficult to see how, in addition, rationality would
preclude the appropriateness of finite or less-than-full functions (particularly when considering the highly
idealized agent).”
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the consequence that every agent (including ideally rational agents) must be uncertain of

an infinite number of propositions is secured by the additional stipulation that (i) any

set of possible worlds E representing the credal space of some agent is such that there is

an infinite set of metaphysically indeterminate propositions S ⊆ ℘(∪E).37 This stipula-

tion seems reasonable on at least two grounds. One, we’ve introduced the technology of

precisifiers for the express purpose of modeling the indeterminacy of conditionals, so we

should be prepared to endorse whatever features of F are mathematically needed for them

to do their job. And two, in making this assumption we still allow for the possibility of

rational agents who are certain of all the determinate propositions, which softens some

of the initial strangeness of the result. Therefore, even if we think Trivial Relevance

is plausible, we can tell a reasonably plausible story about the kind of consequences it

gives rise to, given the Wallflower Result. Thus, finally, no matter what our attitude

toward Trivial Relevance, our semantics is insulated from trouble arising from Hájek’s

Wallflower Result.

3 Conclusion

The problems raised by indeterminacy and triviality complicate the most straightforward

relationship between the truth conditions of indicative conditionals and their probabilities.

In the course of this paper, I hope to have shown that such problems do not force us to

give up either of the plausible principles we began with—Sentential probability and

Ramsey’s observation. On the contrary, the problems reveal two crucial features of

indicative conditionals that any semantic theory of conditionals ought to take seriously.

The first is that indicatives are often indeterminate in such a way that they fail to be

(determinately) true at some worlds and yet have a non-zero probability throughout those

worlds, and the second that what proposition indicatives express crucially depends on the

set of possible worlds that are epistemically possible in the context. Recognizing these

properties of indicatives, my semantics showed one natural and conservative way to handle

the problems of indeterminacy and triviality. I hope this paper adds an additional notch

in the belt of such a semantics, and also provides some illumination as to the often-unclear

upshots of these various problems for the project of theorizing about the semantics of

37By our rule of calculating probabilities, P (p) =
∑

w∈W
ch(p)(w). And if for every p ∈ S,∃w ∈ W : 0 <

ch(p)(w) < 1, this ensures that for every p ∈ S : 0 < P (p) < 1.
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indicative conditionals.38
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