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This paper returns to the problem [1] about two light pulses 
propagating across an accelerated infinite chain of re-emitters 
(point absorber-re-emitters) of light, where both non-inertial 
and inertial observers look for possible intersection of these 
light pulses. It is shown that the author’s previous conclusion 
about violation of the causality principle in this problem 
contained a mistake. In this connection the present paper 
analyses a simplified version of the problem, where two 
reflectors of light substitute for an infinite chain of reflectors. 
The compatibility of causality and relativity principles is 
derived. 
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Introduction 
The paper [1] of the author, claiming a finding of violation of 
causality in relativity theory, was published two years ago. Later, 
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due to activity of one of the Editors of Apeiron, a widespread 
discussion was carried out concerning the physical problem to be 
found in the paper: propagation of two short light pulses across an 
infinite chain of uniformly accelerated re-emitters of light. This 
discussion showed that the problem was correctly solved by the 
author in the accelerated frame (so that the comment by Vladimir 
Onoochin [2] was erroneous), while the author’s consideration of 
the problem in an inertial reference frame contained a mistake. The 
obligation of the author is to recognize the mistake and to express 
gratitude to Prof. Dvoeglazov for organization of the discussion, as 
well as to the reviewer who found the mistake. Section 2 
reproduces a description of the physical problem from [1] and 
indicates the mistake in its analysis. Simultaneously it shows that 
the revealed error still does not resolve a problem about violation 
of causality in relativity theory, as the author sees this problem: 
namely, possible violation of causality in the processes of 
emission/absorption of light, where the corresponding world lines 
have fracture points (discontinuous slopes). The implemented 
analysis just indicates that the particular example chosen by the 
author for demonstration of his idea was wrong. Section 3 
considers a simplified version of the problem [1], where only two 
re-emitters of light replace the infinite chain of re-emitters. This 
allows a complete quantitative analysis. The result of calculations 
shows the validity of causality in relativity theory in the processes 
of emission/absorption of light. 

Propagation of two light pulse across an infinite 
chain of re-emitters of light in a rigid non-inertial 
reference frame and the causality principle 
Let us recall the problem considered in [1]. 
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Imagine a rigid non-inertial reference frame, moving at the 
constant (in relativistic meaning) acceleration a along the axis x. The 
rigid frame is defined by the relationships [3] 

 ' ; ' 0; ,x x t tα α τ= = =  (1) 

where primed space and time coordinates belong to successive 
instantaneously co-moving inertial reference frames, while τ  stands 
for the proper time at the origin of coordinates.  

Let a short light pulse be emitted from the point x = 0 along the 
axis x of this frame. Let a number of point re-emitters of light RLm be 
located along the x-axis at points xm (RL0 is located at the point x = 0 
and, for simplicity, all ∆xm = xm+1−xm are equal to each other). When a 
light pulse arrives at each re-emitter, it is absorbed by it, and after a 
fixed interval of its proper time ∆τ0 is emitted by RL along the x-axis 
again. 

Further, let the second light pulse be emitted from the point x = 0 
at a moment of time (taken as t = 0), when the first light pulse has a 
coordinate 
 10 .x x< ∆ ≤  (2) 

One requires to find the times t1 and t2, where t1 is the moment of time 
when the first (right) light pulse is emitted by RLn, while t2 is the 
moment of time when the second (left) pulse is reaching RLn, and n is 
some number. 

It has been shown in the paper [1] that for a spatial point xn, 
defined by the equation 

 
( )

2

0
n

tc
x

a tτ
∆

= −
∆ + ∆

 (3) 
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the values t1 and t2 are equal to each other. (Here 
1 10'x x xt t t− −∆∆ = − , 

where 
1 0'xt −  is the propagation time of the second (left) light pulse 

from the point x = 0 to point x1, while 
1x xt −∆  is the propagation time of 

the first (right) light pulse from the point ∆x to point x1. The sign of 
the acceleration is negative). The equality t1 = t2 means that an 
observer in this accelerated frame detects an absolute event: a meeting 
of both light pulses considered at the spatial point xn. As an example, 
Fig. 1 shows a meeting of the right and left light pulses at the point xn 
for n = 4. One can see from Fig. 1 that a physical reason, which 
makes possible an intersection of the light pulses at the point xn, is the 
different rate of clocks at different points x. 
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Fig. 1. An intersection of the right and left light pulses at the point xn for n = 4. 
On the other hand, the author in ref. [1] claimed that these light 

pulses would never meet for any external inertial observer. It would 
mean a violation of causality in relativity theory. In order to prove this 
assertion in a general form (particular calculations were very complex 
in an inertial frame), the author assumed that the chain of re-emitters 
is infinitely long along the axis x. Further, let us choose for observing 
the propagation process of the light pulses an inertial frame K, such 
that, at the moment when an observer sees the appearance of the left 
light pulse at the point x = 0, he simultaneously sees the right pulse 
arriving at RL1. For this time moment we introduced into 
consideration the second inertial frame Ks shifted along the axis x at 
such a distance (with respect to K) which is equal to the distance 

I n t e r s e c t i o n  p o i n t

x

t

0
x 1 x 2 x 3 x 4

∆ x
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between RL0 and RL1. (The relative velocity of K and Ks is equal to 
zero). Due to the space homogeneity in inertial frames, such a shift 
for an infinitely long chain of re-emitter’s seems equivalent to a re-
numbering of the re-emitters in Ks: the RLm (in K) becomes RLm-1 (in 
Ks). Hence, the propagation time from RL0 to RLn-1 for the left pulse 
seems to be exactly equal to the propagation time from RL1 to RLn for 
the right pulse in both K and Ks frames (since the RL1, RLn in K are 
the RL0, RLn-1 in Ks). Hence, at the moment of time (in K) when RLn 
emits the right pulse, the left one is emitted by RLn-1 for any n. 
Therefore, these light pulses will never meet in the inertial frame K. 

This problem was discussed for a long time, and finally it was 
found that the inertial frames K and Ks are not equivalent to each 
other, if one considers a finite-length chain of re-emitters (an 
infinitely long chain cannot exist in nature). However, each finite 
chain has its origin and end, and displacement of an inertial observer 
along the axis x changes their coordinates. Hence, despite the 
homogeneity of space in inertial reference frames, two spatially 
shifted inertial observers are nevertheless not equivalent to each other 
with respect to the considered physical problem. Thus, we have to 
analyse this problem (propagation of two light pulses across the chain 
of accelerated re-emitters) for a single inertial observer. For such an 
observer, in particular, the momentary velocities of each re-emitter 
are different due to the time-dependent scale contraction effect for the 
moving chain. For this reason (v = v(t)), the time dilation effect also 
depends on x. This means that the rate of clocks at different points x is 
also different. Hence, the two light pulses considered may meet in the 
inertial frame, too. This makes improvable the statement of the author 
about possible violation of causality in the problem considered. 

Now it is appropriate to explain why the author believed that in 
such of physical problems, dealing with emission/absorption of light, 
a violation of causality nevertheless might be expected.  
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In general, the causality principle (CP) implies two fundamental 
requirements: 

1. The cause-consequence order of events is absolute. 
2. Events, which can cause essential inferences (for example, 

collision of particles), are absolute. 
It is known that the finiteness of light velocity provides conformity of 
the relativity theory with the first requirement of CP. The second 
requirement of CP is taken into account by a choice of homogeneous 
admissible space-time transformations for increments of space-time 
four-vectors. Indeed, the event of collision of two particles (or 
intersection of two light rays) corresponds to the equality ∆t, ∆r = 0, 
and for homogeneous transformations we get ∆t’, ∆r’ = 0, too. Here t, 
r and t’, r’ belong to two different reference frames. At the same time, 
when the space-time coordinates of two particles (or any other point 
objects) are close to each other, a possibility of intersection (or non-
intersection) of their world lines can be expressed locally in terms of 
relationships between magnitudes and time derivatives of the 
functions describing these world lines. It is clear that in a physically 
correct theory the conditions of intersection/non-intersection of the 
world lines should be the same for observers in any frame of 
references. 

Let us formulate such conditions for a one-dimensional case, using 
further in this section units with c = 1. Let there be two world lines 

(1) ( )x t  and (2) ( )x t  in an empty space time of a reference frame (either 
inertial or non-inertial). Within some short time interval {t0, t0+∆t} 
the values (1)x  and (2)x  are close to each other, and, for example, 

(2) (1)
0 0( ) ( )x t x t> . Then we may certainly assert that the functions 

(1) ( )x t  and (2) ( )x t  will not have a point of intersection within the 
time interval ∆t, if in this time range  
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(1) (2)

(1) (2)
0 0( ) ( )

dx dx
x t t x t t

dt dt
+ ∆ < + ∆ , or 

 
(1) (2)dx dx x

dt dt t
∆

− <
∆

, (4) 

where we designated (2) (1)
0 0( ) ( )x x t x t∆ = − . Conversely, a condition 

of intersection of the world lines considered is 

 
(1) (2)dx dx x

dt dt t
∆

− ≥
∆

. (5) 

Due to the homogeneity of space-time transformations, the 
corresponding space coordinates X(1)(T), X(2)(T) for another observer 
are also close to each other within a corresponding time interval ∆T. 
For X(2)(T0)>X(1)(T0), two world lines do not have a point of 
intersection for this observer, if  

 
(1) (2)dX dX X

dT dT T
∆

− <
∆

. (6) 

Here we designated (2) (1)
0 0( ) ( )X X T X T∆ = − . Conversely, the world 

line intersect, if 

 
(1) (2)dX dX X

dT dT T
∆

− ≥
∆

. (7) 

Simultaneous validity of either inequalities (4, 6) or inequalities (5, 7) 
is a strong requirement of CP. 

Thus, we find that the finiteness of light velocity and the 
homogeneity of space-time transformations are necessary, but still not 
sufficient, conditions for implementation of the CP in relativity 
theory. Namely, one requires to realize either inequalities (4, 6) or 
inequalities (5, 7).  
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Here we omit a proof that for smooth functions x(t), X(t), the 
inequalities (4, 6) or inequalities (5, 7) are always implemented 
simultaneously for all observers, either inertial or non-inertial [4]. It 
seems that this theorem completely proves a correspondence of 
relativity theory with CP. However, if at least one of the functions 

(1) (2) (1) (2)( ), ( ), ( ), ( )x t x t X T X T  has a fracture (slope discontinuity) in 
the considered time range, the proof becomes invalid. Indeed, in such 
a case at least one of the time derivatives in the inequalities (4)-(7) is 
infinite at the fracture point tf, lying inside the considered time 
interval {t0, t0+∆t}. Then for tf<t<t0+∆t, the time derivative may have 
a value unrelated to its old value. However, from the viewpoint of 
physics it seems that such fracture points cannot exist: infinite time 
derivatives dx dt  and dX dT  are impossible, due to the 
fundamental requirement that the velocity of any entity cannot exceed 
the velocity of light. This is actually true, with one exception: the 
cases of absorption (emission) of light. Indeed, let us imagine some 
absorber/re-emitter of light, which moves in some reference frame. At 
some instant let it absorb an incident short light pulse, and after a 
fixed interval of its proper time ∆tr let it re-emit a light pulse in the 
same direction. Since ∆tr is a definite value, we may imagine that 
during this time the re-emitter «keeps» information about the 
absorbed light pulse. Hence, we may join the world lines of absorbed 
and re-emitted light pulses by the world line of absorber/re-emitter 
(Fig. 2). In this case the events of absorption/emission of light can be 
formally considered in macroscopic scale as the “fracture” points of 
the common full world line in Fig. 2.  



 Apeiron, Vol. 10, No. 2, April 2003 144 

© 2003 C. Roy Keys Inc. 

Fig. 2. Common “world line” of “absorbing light ray → absorber/re-emitter → 
emitted light ray”. The events of absorption/re-emission of light can formally be 
considered as “fracture” points on a macro-physical scale. 

Thus, it seems that formal mathematics does not forbid a violation 
of CP in relativity theory. Ref. [1] represents the first physical 
example, where the CP in relativity theory can be tested through the 
processes of emission/absorption of light. However, due to the efforts 
of many people, it was found that the problem could not answer the 
question about possible violation of CP: the particular calculations for 
an inertial observer are stupendously difficult. At the same time, one 
may greatly simplify this problem, going from an infinite chain of re-
emitters of light to only two such re-emitters. This problem, where all 
calculations can be completed in both non-inertial and inertial 
reference frames, is analysed in the next Section. 

Absorbing
light ray

Emitted
light ray

Absorber/remitter

“Fracture” points

x

t
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Case of two light pulses and two re-emitters of 
light in a rigid non-inertial reference frame 
In a rigid frame, moving at the constant acceleration a along the axis x 
and defined by Eqs. (1), let a short light pulse be emitted from the 
point x = 0 along the axis x. Let two re-emitters of light RL0 and RL1 
be located along the x-axis at the points 0 and 1x . When a light pulse 
arrives at each re-emitter, it is absorbed by it, and after a fixed interval 
of its proper time ∆τ0 is emitted by RL along the x-axis again. 

Further, let the second light pulse be emitted from the point x = 0 
at a moment of time (taken as t = 0) when the first light pulse has a 
coordinate value satisfying (2). One requires to find the times t1 and 
t2, where t1 is the moment of time when the first (right) light pulse is 
emitted by RL1, while t2 is the moment of time when the second (left) 
pulse reaches RL1. 

In order to solve this problem we have to determine the metric 
coefficients in the accelerated frame. For this purpose let us write a 
known relationship between space-time coordinates in a fixed inertial 
reference frame (T, X, Y, Z) and (t, x, y, z) [3]: 

 2(1 ) ,
ax at dx at

dT dt ch sh
c c c c

= + +  (8) 

 2(1 ) ,
ax at at

dX cdt sh dxch
c c c

= + +  ,dY dy=  dZ dz= . (9) 

The space-time metric determined by eqs. (8), (9), is the following: 

 2 2 2 2 2 2 2
2(1 ) ( ) ( ) ( ) .

ax
ds c dt dx dy dz

c
= + − − −  (10) 

And the corresponding components of the metric tensor are: 
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 2
00 0 11 22 332(1 ) ; 0; 1,

ax
g g g g g

c α= + = = = = −  all others 0gαβ = .(11) 

The physical values are related to the coordinate values by the 
equations  

 0 0
ph0 00

00

g dx
dx g dx

g

α
α= + , (12a) 

 0 02
ph

00
a

g g
dx g dx dx

g
α β α β

αβ

 
Σ = − + 

 
, (α = 1…3). (12b) 

Substituting the components of the metric tensor from (11) into (12), 
we obtain 
 ph ,dx dx=  ph ,dy dy=  ph ;dz dz=  (13) 

 ph 2(1 ).
ax

dt dt
c

= +  (14) 

Further, let is consider the first (right) light pulse. At the initial 
time moment it starts moving from the point ∆x to point x1. Along the 
light signal ph phdx dt c= , and  

 x

dx
c

dt
= , (15) 

where the light velocity in (x, t) coordinates is 

 ( )21xc c ax c= + . (16) 

(Here we used Eqs. (13), (14)). Further, at the moment 

 
1

11
ln

1

x

R x
x

ax cc
t dx c

a a x c∆

+
= =

+ ∆∫ . (17) 
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the light signal reaches RL1 at the point x1 and is absorbed there. Here 
we have a fracture point on the common world line “right light signal 
+ RL1”, and further the world line is described by the equation x = x1 
within the time range {tR, tR+∆t1), where ∆t1 can be found from the 
equation (see, (14)): 

 
( )

2
0 1

0

( ) (1 )
t x

phdt x t ax cτ
∆

∆ = = ∆ +∫ , 

 0
1 2

11
t

ax c
τ∆

∆ =
+

. (18) 

Then at the moment  
 1 1Rt t t= + ∆  (19) 

the right light pulse is re-emitted by RL1 along the axis x, and we 
ignore its subsequent history (Fig. 3). 

Now let us look for the second (left) light signal. At t = 0 it 
emerges at the point x = 0 and is immediately absorbed by RL0. Then 
during the time 0τ∆  the common world line “RL0+left light pulse” is 
described by the equation x = 0. At the moment 0τ∆  the left light 
pulse is emitted by RL0 (fracture point on the common world line), 
and then the world line is described by Eq. (15). The time of passage 
of the left light signal from the point x = 0 to point x1 is determined as 

 
1

0

x

L xt dx c= ∫ , (20) 

and  
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 2 0 Lt tτ= ∆ + . (21). 

Fig. 3. World lines for the systems “right light pulse + RL1” and “RL0 + left light 
pulse” for a non-inertial observer. Both light pulses meet at the point x1. 
Intersection of the two light pulses occurs for t1 = t2. Substituting their 
values from Eqs. (19) and (21), we obtain 
 1 0R Lt t tτ+ ∆ = ∆ + . (22) 

Further substitution of Eqs. (17), (18) and (20) gives: 

 
1 1

0
02

1 01

x x

x x
x

dx c dx c
ax c

τ
τ

∆

∆
− ∆ = −

+ ∫ ∫ , or 

 0 1
2 2

1 01

x

x

ax
dx c

ax c c
τ ∆∆

− =
+ ∫ . 

Further manipulations with the help of Eq. (16) lead to 

Right light signal

Left light signal

x

kt

∆x x1

∆t0
tR

tR+∆t1

Point of intersection
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( ) ( )3 2 2

1
0 2

1

1 ln 1c ax c a x c

a x
τ

+ + ∆
∆ = − . (23) 

Thus, if Eq. (23) is satisfied, two light pulses intersect at the point x1, 
as depicted in Fig. 3. One can also see from Eq. (23) that such an 
intersection is possible only for a negative sign of the acceleration a.  

Now let us consider the same problem for an inertial observer, 
assuming that at t = 0 the momentary relative velocity of the non-
inertial and inertial frames is equal to zero. Then the forms of the 
world lines for the first and second light signals can be obtained from 
Eqs. (8), (9). First consider the left pulse. The motional equation for 
RL0 before the instant of emission can be easily obtained through 
integration of Eqs. (8), (9) for x = 0, dx = 0: 

 ,
at

dT dtch
c

=  
0

0

0
L

aat c
T ch dt sh

c a c

τ τ∆ ∆
= =∫ .  (24)  

 
at

dX cdtsh
c

= , 
0 2

0

0

1L

aat c
X c sh dt ch

c a c

τ τ∆ ∆ = = − 
 ∫ . (25) 

At the emission instant we have a fracture point, and subsequently the 
propagation of the left light pulse is described by the equation 
 X c T∆ = ∆  (26) 
before its absorption by RL1. 

The right light pulse at the initial time moment has the space 
coordinate X(0) = ∆x, and before its absorption by RL1 its motion is 
described by Eq. (26). Let us designate its coordinate at the absorption 
instant as TR. Then the corresponding space coordinate at this instant 
is 
 R RX x cT= ∆ + . (27) 
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At the point (XR, TR) the common world line "right light signal + RL1" 
has a fracture point (absorption event), and for T>TR the shape of the 
world line describes the motion of the re-emitter RL1. For this motion 
x = x1 until the moment of re-emission of a light pulse. Substituting 
the equality x = x1 into Eqs. (8), (9), we get 

 1
21 ,

ax at
dT dt ch

c c
 = + 
 

 (28)  

 1
21

ax at
dX cdt sh

c c
 = + 
 

. (29) 

Integration of (28) gives the time interval between absorption and re-
emission of the right light pulse: 

 
( )

1

1
2

11
2

1

1

R

R

t t

R
t

R R

ax at
T ch dt

c c

a t tax atc
sh sh

a c c c

+∆
 ∆ = + = 
 

∆ +  + −  
  

∫
, (30) 

and integration of (29) allows us to find the distance of passage by 
RL1 between the absorption and emission moments: 

 
( )

1

1
2

2
11

2

1

1

R

R

t t

R
t

R R

ax at
X c sh dt

c c

a t tax atc
ch ch

a c c c

+∆
 ∆ = + = 
 

∆ +  + −  
   

∫
. (31) 

Now let us determine the space coordinate of the left light signal at 
the moment of emission of the right light pulse ( R RT T+ ∆ ). It is clear 
that this coordinate is defined by the equation 
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 ( )( )L R R L R R LX T T X c T T T+ ∆ = + + ∆ − , 

where XL is determined by Eq. (25), and ( )R R Lc T T T+ ∆ −  is the 
distance covered by this light pulse between the time of its emission 

LT  and the emission time of the right pulse R RT T+ ∆ . Then the 
difference of space coordinates of both light pulses at the instant 

R RT T+ ∆  should be equal to zero according to the requirement of CP 
(both light pulses should meet at the point x1).  The expression for this 
difference for an inertial observer is written as 

 ( )
( ) ( )

( )

.

R R L R R

R R L R R L

R L R L

X X X T T

X X X c T T T

x X X c T T

∆ = + ∆ − + ∆ =

+ ∆ − − + ∆ − =

= ∆ + ∆ − − ∆ −

 (32) 

(here we used Eq. (27)). 
Substituting corresponding values from Eqs. (31), (30), (25) and 

(24), one gets: 

 

( )

( )

01

2
11

2

2
0

2 2
1 01

2

2 2
1

2

1

1

1

1 e e 1 e 1
R

R R

R R

aat a t
c c c

a t tax atc
x ch ch

a c c c

ac
ch

a c

a t t aax atc c
sh sh sh

a c c c a c

axc c
x

a c a

τ

τ

τ

∆∆
− − −

∆ +  ∆ = ∆ + + − −  
  

∆ − − 
 

 ∆ +  ∆ − + − − =   
    

   = ∆ + + − − −   
     

 (33) 

(here we have used the identity chx–shx = e–x).  
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Further substitutions of the values tR, ∆t1 and ∆τ0 from 
corresponding Eqs. (17), (18) and (23) yield: 

 

2

1

2
1

2
1

2

1

2

1

22
1 1

2 2 2

12

2

2

2 2

2

2 2

1
1 1 1

1

1 1

1 1 1

1 1

c
ax

axc
ax c

c
ax

c
ax

ax a x cc a x
x

a c ax c c

c a x
a c

c a x a x
x

a c c

c a x a x
a c c

 + 
 

 
 + ∆ ∆    ∆ = ∆ + + + − −      +     

 
 

∆  + − =    
 

 
∆ ∆    = ∆ + + + − −        

 

∆ ∆  + + 
  
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2

1

2 2

2 2 2

2 2

2 2

2 2

1

1 1 1

1 1

0

c
ax

c
ax

c a x a x c a x
x

a c c a c

c a x a x c
a c c a

c c
x x

a a

 
 − =   

 

∆ ∆ ∆    = ∆ + + + − + −    
    

∆ ∆   + + + =   
   

= ∆ − − ∆ + = (34) 

Thus, we determine that two light pulses intersect for both inertial 
and non-inertial observer in accordance with CP. 
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4. Conclusion 
We conclude that there is no contradiction between the causality and 
relativity principles in the processes of emission and absorption of 
light, when the common world lines “emitter/absorber + light pulse” 
have fracture points. At such points the time derivatives of the world 
lines (the velocities of entities) before and after the fracture point are 
not correlated with each other. However, stepwise changes of time 
derivatives of world lines are correlated for different observers. That, 
perhaps, prevents a violation of causality. Nevertheless, the present 
problem concerning propagation of two light pulses across a chain of 
accelerated re-emitters of light seems physically interesting in itself. 
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