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Abstract
This paper aims to contribute to the analysis of the nature of math-

ematical modality and hyperintensionality and to the applications of the
latter to absolute decidability. Rather than countenancing the interpre-
tational type of mathematical modality as a primitive, I argue that the
interpretational type of mathematical modality is a species of epistemic
modality. I argue, then, that the framework of two-dimensional semantics
ought to be applied to the mathematical setting. The framework permits
of a formally precise account of the priority and relation between epis-
temic mathematical modality and metaphysical mathematical modality.
The discrepancy between the modal systems governing the parameters in
the two-dimensional intensional setting provides an explanation of the dif-
ference between the metaphysical possibility of absolute decidability and
our knowledge thereof. I also advance a topic-sensitive epistemic two-
dimensional truthmaker semantics, if hyperintensional approaches are to
be preferred to possible worlds semantics. I examine the relation between
two-dimensional hyperintensional states and epistemic set theory, pro-
viding two-dimensional hyperintensional formalizations of epistemic set
theory, large cardinal axioms, the modal axioms governing Ω-logic, and
the Epistemic Church-Turing Thesis.

1 Introduction
This essay aims to contribute to the analysis of the nature of mathematical
modality and hyperintensionality, and to the applications of the latter to abso-
lute decidability. I argue that mathematical modality falls under at least four
types; the interpretational, the metaphysical, the non-maximally objective, and
the logical. The interpretational type of mathematical modality has tradition-
ally been taken to concern possible reinterpretations of quantifier domains (cf.
Fine, 2006, 2007; Linnebo, 2009, 2010, 2013; Studd, 2013), and the possible
reinterpretations of the intensions of the concept of set (Uzquiano, 2015,a). The
metaphysical type of modality concerns the ontological profile of abstracta and
mathematical truth. Abstracta are thus argued to have metaphysically neces-
sary being, and mathematical truths hold of metaphysical necessity, if at all (cf.
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Fine, 1981). Metaphysical modality is the maximal objective modality.1 How-
ever, the phenomenon of indefinite extensibility of the ordinals, cardinals, and
reals is, I argue, possessed of two modalities whose interaction is captured by
a two-dimensional semantics, and which consist of an epistemic modality char-
acterizing reinterpretations of quantifier domains, and a non-maximal, hence
non-metaphysical, yet still objective modality characterizing ontological expan-
sion.2 Another candidate for the non-maximal objective mathematical modality
is the modal profile of forcing (cf. Kripke 1965; Hamkins and Löwe, 2008). In-
stances, finally, of the logical type of mathematical modality might concern the
properties of consistency (cf. Field, 1989: 249-250, 257-260; Rayo, 2013: 50;
Leng: 2007; 2010: 258), and can perhaps be further witnessed by the logic of
provability (cf. Boolos, 1993).

The significance of the present contribution is as follows. (i) Rather than
countenancing the interpretational type of mathematical modality as a primi-
tive, I argue that the interpretational type of mathematical modality is a species
of epistemic modality. (ii) I argue, then, that the framework of two-dimensional
hyperintensional semantics ought to be applied to the mathematical setting.
The framework permits of a formally precise account of the priority and rela-
tion between epistemic mathematical modality and metaphysical mathematical
modality. I target, in particular, the modal axioms that the respective inter-
pretations of the modal operator ought to satisfy. The discrepancy between the
modal systems governing the parameters in the two-dimensional setting pro-
vides an explanation of the difference between the metaphysical possibility of
absolute decidability and our knowledge thereof. (iii) I examine the application
of the mathematical modalities beyond the issue of indefinite extensibility. As a
test case for the two-dimensional approach, I investigate the interaction between
epistemic and metaphysical mathematical modalities and both large cardinal ax-
ioms and Orey sentences which are undecidable relative to the axioms of ZFC,
such as the generalized continuum hypothesis. The two-dimensional framework
permits of a formally precise means of demonstrating how the metaphysical pos-
sibility of absolute decidability and the continuum hypothesis can be accessed
by their epistemic-modal-mathematical profile. I argue that, in the absence of
disproof, large cardinal axioms are epistemically possible, and thereby provide a
sufficient guide to the objective mathematical possibility of determinacy claims
and the continuum hypothesis. (iv) Finally, I define a novel, hyperintensional,
topic-sensitive epistemic two-dimensional truthmaker semantics. I examine the
relation between epistemic truthmakers and the axioms of epistemic set the-
ory, large cardinal axioms, the Epistemic Church-Turing Thesis, as well as the
verification-profile of Ω-logical consequence.

In Section 2, I discuss how the properties of the epistemic mathematical
modality and objective mathematical modality converge and depart from previ-
ous attempts to delineate the contours of similar notions. In Section 3, I define

1For endorsements of this contention, see Kripke (1980: 99), Lewis (1986), Stalnaker (2003:
203), and Williamson (2016b: 459-460). For an argument in opposition, see Clarke-Doane
(2021).

2See Author (ms) for further discussion.
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the formal clauses and modal axioms governing the epistemic and metaphysi-
cal types of mathematical modality. I also advance a topic-sensitive epistemic
two-dimensional truthmaker semantics, if hyperintensional approaches are to be
preferred to possible worlds semantics. Section 4 extends the two-dimensional
framework to the issue of mathematical knowledge; in particular, to the hyper-
intensional profile of large cardinal axioms and to the absolute decidability of
the continuum hypothesis. Section 5 provides concluding remarks.

2 Departures from Precedent
The approach to mathematical modality, according to which it yields a repre-
sentation of the cumulative universe of sets, has been examined by Fine (2006),
Uzquiano (2015), and Linnebo (2018a). Fine argues that the mathematical
modality should be postulational and interpretational; and thus taken to con-
cern the reinterpretation of the domain over which the quantifiers range, in
order to avoid inconsistency. Uzquiano argues similarly for an interpretational
construal of mathematical modality, where the cumulative hierarchy of sets is
fixed, yet what is possibly reinterpreted is the non-logical vocabulary of the
language, in particular the membership relation.3

In the setting of unrestricted quantification, suppose, e.g., that there is an
interpretation for the domain over which a quantifier ranges. Fine writes that
an interpretation ‘I is exten[s]ible – in symbols, E(I) – if possibly some inter-
pretation extends it, i.e. ⋄∃J(I⊂J)’ (2006: 30). Then, the interpretation of the
domain over which the quantifier ranges is extensible, if ‘∀I.E(I)’. The interpre-
tation of the domain over which the quantifier ranges is indefinitely extensible, if
‘□∀I.E(I)’ iff ‘□∀I⋄∃J(I⊂J)’. Fine’s interpretational modality is taken as postu-
lational and interpretational, although a natural thought might be to combine
it with the dynamic postulational modality which he also countenances. On
Fine (2005)’s approach, there are dynamic, postulational, and ‘prescriptive’ or
imperatival modalities. The prescriptive element consists in the rule:

‘Introduction: !x.C(x)’,
such that one is enjoined to postulate, i.e. to ‘introduce an object x con-

forming to the condition C(x)’ (2005: 91; 2006: 38).
Then, possible reinterpretations of quantifier domains are induced via the

prescriptive imperative to postulate the existence of a new object by the fore-
going ‘Introduction’ rule (2006: 30-31; 38). Fine clarifies that the postulational
approach is consistent with a ‘realist ontology’ of the set of reals. He refers to the
imperative to postulate new objects, and thereby reinterpret the domain for the
quantifier, as the ‘mechanism’ by which epistemically to track the cumulative
hierarchy of sets (2007: 124-125).

In accord with Fine’s approach, I will argue that epistemic mathematical
modality has a similarly representational interpretation, and perhaps the pos-
tulational property is an optimal means of inducing a reinterpretation of the

3Compare Gödel, 1947; Williamson, 1998; and Fine, 2005.
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domain of the quantifier. However, the present approach avoids a potential is-
sue with Fine’s account, with regard to the the introduction of deontic modal
properties of the prescriptive and imperatival rules that he mentions.4 It is suf-
ficient that the interpretational modalities are a species of epistemic modality,
i.e. possibilities that are relative to agents’ spaces of states of information.

Developing Parsons’ (1983) program, Linnebo (2013) outlines a modalized
version of ZF. 5 Linnebo argues that his modal set theory ought to be governed
by the system S4.2 – i.e. K [□(ϕ → ψ) → (□ϕ → □ψ)], T (□ϕ → ϕ), 4 ((□ϕ →
□□ϕ), and G (♢□ϕ → □♢ϕ) – the Converse Barcan formula, and a restricted
version of the Barcan formula. However – rather than being either interpreta-
tional or epistemic – Linnebo deploys the mathematical modality in order to
account for the notion of ‘potential infinity’, as anticipated by Aristotle.6 The
mathematical modality is thereby intended to provide a formally precise answer
to the inquiry into the extent of the cumulative set-theoretic hierarchy; i.e.,
in order to precisify the answer that the hierarchy extends ‘as far as possible’
(2013: 205).7

Thus, Linnebo takes the modality to be constitutive of the actual ontology
4For an analysis of the precise interaction between the semantic values of epistemic and

deontic modal operators, see Author (ms).
5Linnebo (2018b) discusses the differences between Putnam’s and Parsons’ accounts of

the role of modality in mathematics. Berry (2022) also discusses the differences between the
foregoing. Linnebo (op. cit.: 265-266) avails of two-dimensional indexing for the relation
between interpretational and circumstantial modalities. In Linnebo (2018a), he characterizes
the relation between interpretational and circumstantial modalities via a bimodal product
logic, rather than a two-dimensional semantics. He countenances two commutativity princi-
ples – ‘□■ϕ ⇐⇒ ■□’ and ‘♢♦ϕ ⇐⇒ ♦♢’, with □ a circumstantial modality and ■ an
interpretational modality – although details a counterexample to which they are susceptible.
The present approach occurs in the setting of epistemic two-dimensional semantics, such that
there is a one-way dependence of metaphysical profiles on epistemic profiles. The question of
whether there might perhaps be other fruitful interaction principles between epistemic and
metaphysical modality and hyperintensionality was raised in conversation with xx, and is a
topic for future research. Roberts (2019) countenances four interaction principles in a bimodal
logic for interpretational and circumstantial modalities, similar to Linnebo’s (op. cit.), and
applied to the indefinite extensibility of possibilia. Vlach-operators in two of the principles
simulate two-dimensional indexing. The principles are a bimodal version of the converse Bar-
can formula: ■□∀vϕ → ∀v■□ϕ (1159); ■(♢A → □♢A) (1161); ↑*1↑1♦↑*2♢↑2↓*1↓1□∀x([E(x)
→ ↓*2↓2E(x))] (1162); ↑*1□↑1♦↑*2♢↑2[↓*1↓1∀x[E(x) → ↓*2↓2E(x)] ∧ ∃x[E(x) ∧ ↓*1↓1¬E(x)]]
(op. cit.). ↑*A is a Vlach-operator on A selecting an interpretational modality from an ω-
sequence comprising a set thereof which validates A, and ↑A is a Vlach-operator on A selecting
a metaphysical possibility from an ω-sequence comprising a set thereof which validates A. The
appeal to epistemic two-dimensional semantics in order to account for interpretational as epis-
temic and circumstantial as objective modalities and their interaction in this essay was written
in 2015 and pursued prior to knowledge of Linnebo’s and Roberts’ accounts. My approach dif-
fers, as well, by countenancing a hyperintensional, topic-sensitive epistemic two-dimensional
truthmaker semantics and applying it to various phenomena in the philosophy of mathematics.

6Cf. Aristotle, Physics, Book III, Ch. 6.
7Precursors to the view that modal operators can be availed of in order to countenance

the potential hierarchy of sets include Hodes (1984). Intensional constructions of set the-
ory are further developed by Reinhardt (1974); Parsons (op. cit.); Myhill (1985); Scedrov
(1985); Flagg (1985); Goodman (1985); Hellman (1990); Nolan (2002); and Studd (2013).
(See Shapiro (1985) for an intensional construction of arithmetic.) Chihara (2004: 171-198)
argues that ‘broadly logical’ conceptual possibilities can be used to represent imaginary sit-
uations relevant to the construction of open-sentence tokens. The open-sentences can then
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of sets; and the quantifiers ranging over the actual ontology of sets are claimed
to have an ‘implicitly modal’ profile (2010: 146; 2013: 225). He suggests, e.g.,
that: ‘As science progresses, we formulate set theories that characterize larger
and larger initial segments of the universe of sets. At any one time, precisely
those sets are actual whose existence follows from our strongest, well-established
set theory’ (2010: 159n21). However – despite his claim that the modality is
constitutive of the actual ontology of sets – Linnebo concedes that the math-
ematical modality at issue cannot be interpreted metaphysically, because sets
exist of metaphysical necessity if at all (2010: 158; 2013: 207). In order partly
to allay the tension, Linnebo remarks, then, that set theorists ‘do not regard
themselves as located at some particular stage of the process of forming sets’
(2010: 159); and this might provide evidence that the inquiry – concerning at
which stage in the process of set-individuation we happen to be, at present –
can be avoided.

In response, a solution to this dilemma might be by distinguishing, as
above, between non-maximally objective and maximally objective modalities.
Maximally objective modalities are metaphysical and the most general type of
modality. Non-maximally objective modalities, such as those figuring in the two-
dimensional modal profile of indefinite extensibility, are not technically meta-
physical though are still non-epistemic and non-deontic, are interpreted so as to
concern reality, and are thus objective.

In his (2018a), Linnebo countenances both interpretational and metaphysical
modalitities, and he argues that the former also satisfy S4.2.

Another distinction to note is that both Linnebo (op. cit.) and Uzquiano
(op. cit.) avail of second-order plural quantification, in developing their prim-
itivist and interpretational accounts of mathematical modality. By contrast to
their approaches, the epistemic and metaphysical modalities defined in the next
section are defined with second-order singular quantification over sets.

Linnebo and Uzquiano both suggest that their mathematical modalities
ought to be governed by the G axiom; i.e. ⋄□ϕ → □⋄ϕ. The present ap-
proach eschews, however, of the G axiom, in virtue of the following. KT4G
is a sublogic of S5. Williamson (2009) demonstrates that an epistemic oper-
ator which validates the conjunction of the 4 axiom of positive introspection
and the E axiom of negative introspection will be inconsistent with the con-
dition of ‘recursively enumerable conservativeness’ (30). ‘[I]f a [modal logic] is
r.e. (quasi-)conservative then every (consistent) r.e. theory in the language
without � [interpreted as "I know that..."] is conservatively extended by an r.e.
theory in the language with � such that it is consistent in the modal logic for
[a recursively enumerable theory] R to be exactly what the agent cognizes in
the language without � while what the agent cognizes in the language with �
constitutes an r.e. theory’ (12). As axioms of an agent’s consistent, recursively
axiomatizable theorizing about the theory of its own states of knowledge and
belief, the conjunction of 4 and E would entail that the agent’s theory is both
be used to define the properties of natural and cardinal numbers and the axioms of Peano
arithmetic.
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consistent and decidable, in conflict with Gödel’s (1931) second incompleteness
theorem. The modal system, KT4, avoids the foregoing result.

My application of epistemic two-dimensional semantics to the epistemol-
ogy of mathematics departs from full-blooded platonism, as well. According
to full-blooded platonism, whatever mathematical objects can exist, do exist,
and every consistent mathematical theory describes either a different part of
the mathematical universe or distinct mathematical universes altogether (Bal-
aguer, 1998). Thus, ZFC+CH and ZFC+¬CH both ‘truly describe collections
of mathematical objects’, holding in distinct albeit equally real mathematical
universes (Balaguer, 2001: 97: see also Hamkins, 2012).

Epistemic two-dimensionalism and full-blooded platonism differ, further, on
both the nature of their target possibilities and on the status of the actuality
of the possibilities. Epistemic two-dimensionalism avails of epistemic possibili-
ties, whereas full-blooded platonism avails of logical possibilities. Further, not
all epistemic possibilities are actual according to epistemic two-dimensionalism,
whereas the objects of any logically consistent theory actually exist according
to full-blooded platonism. One reason to prefer epistemic two-dimensionalism
to full-blooded platonism is that the former can be formalized, whereas Re-
stall (2003) has shown that there are significant challenges to formalizing the
latter. Another reason to prefer epistemic two-dimensionalism is that – unlike
full-blooded platonism – it avoids commitment to the existence of inconsistent
universes of sets where e.g. both ZFC+V=L and ZFC+V ̸=L would obtain.

Waxman (ms) endeavors to account for the interaction between the imagina-
tion and mathematics. Whereas I avail in this paper of conceivability as defined
in epistemic two-dimensional semantics – which I refer to in the mathematical
setting as epistemic mathematical modality – in order to account for how the
epistemic possibility of abstraction principles and large cardinal axioms relates
to their metaphysical possibility, Waxman’s aim is to account for how imagining
a model of a mathematical theory entrains justification to believe its consistency
(op. cit.). Unlike Waxman, epistemic mathematical modality is ideal, whereas
imagination is, on his account, non-ideal (Waxman, op. cit.: 18; Chalmers,
2002), where ideal conceivability means true at the limit of apriori reflection
unconstrained by finite limitations. Unlike Waxman, I believe, further, that
imaginative contents are sensitive to hyperintensional subject-matters or topics
(cf. Berto, 2018; Canavotto, Berto, and Giordani, 2020).

Further applications of hyperintensional semantics to the philosophy of math-
ematics include availing of epistemic two-dimensional hyperintensions (func-
tions from topic-sensitive epistemic truthmakers to topic-sensitive metaphysi-
cal truthmakers to extensions) in order to capture the interaction between the
epistemic and objective or metaphysical hyperintensional profiles of abstraction
principles (Author, ms1), the access problem (Author, ms2), rational intuition
(Author, ms3), and indefinite extensibility (Author, ms4).
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3 Mathematical Modality
3.1 Metaphysical Mathematical Modality
A formula is a logical truth if and only if the formula is true in an intended model
structure, M = <W, D, R, V>, where W designates a space of metaphysically
possible worlds; D designates a domain of entities, constant across worlds; R
designates an accessibility relation on worlds; and V is an assignment function
mapping elements in D to subsets of W.
Metaphysical Mathematical Possibility

J⋄ϕKv,w = 1 ⇐⇒ ∃w′JϕKv,w′ = 1
Metaphysical Mathematical Necessity

J□ϕKv,w = 1 ⇐⇒ ∀w′JϕKv,w′ = 1,
with ⋄ := ¬□¬

3.2 Epistemic Mathematical Modality
In order to accommodate the notion of epistemic possibility, we enrich M with
the following conditions: M = <C, W, D, R, V>, where C, a set of epistemically
possibilities, is constrained as follows:

Let JϕKc ⊆ C;
(ϕ is a formula encoding a state of information at an epistemically possible

world).
The interpretation of epistemic possibility which will here be at issue defines

the notion in relation to logical reasoning (Jago, 2009; Bjerring, 2012), by con-
trast to a for all one knows operator (see MacFarlane, 2011) or as the dual of
epistemic necessity i.e. apriority (see Chalmers, 2006, 2011). Bjerring writes:
‘[W]e can now spell out deep epistemic necessity and possibility by appeal to
provability in n steps of logical reasoning using the rules in R. To that end, let
a proof of A in n steps of logical reasoning be a derivation of A from a set Γ of
sentences – potentially the empty set – consisting of at most n applications of
the rules in R. Let a disproof of A in n steps of logical reasoning be a deriva-
tion of ¬A from A – or from the set Γ of sentences such that A∈Γ – consisting
of at most n applications of the rules in R. Similarly, let a set Γ of sentences
be disprovable in n steps of logical reasoning whenever there is a derivation of
A and ¬A from Γ consisting of at most n applications of the rules in R. For
simplicity, I will assume that agents can rule out sets of sentence that contain
{A,¬A} non-inferentially. Finally, let ‘□n’ and ‘♢n’ be metalinguistic operators,
where ‘♢n’ is defined as ¬□n¬. Read ‘□n’ as ‘A is provable in n steps of logical
reasoning using the rules in R’, and read ‘♢n’as ‘A is not disprovable in n steps
of logical reasoning using the rules in R’. We can then define:

(Deep-Necn) A sentence A is deeplyn epistemically necessary iff □n.
(Deep-Posn) A sentence A is deeplyn epistemically possible iff ♢n’ (op. cit.).
The interpretation of epistemic possibility which will here be at issue de-

fines the notion as conceivability, the dual of epistemic necessity i.e. apriority
(see Chalmers, 2006, 2011), instead of consistent logical reasoning (Jago, 2009;
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Bjerring, 2012) and a for all one knows operator (see MacFarlane, 2011). In
the hyperintensional setting outlined below, the box and diamond operators
are replaced by necessary and possible truthmakers which serve as verifiers for
propositions. On the consistent logical reasoning interpretation of epistemic
possibility, necessary truthmakers receive the same interpretation as □n, i.e.
that a proposition A is provable in n steps of logical reasoning using the rules
in R. On their metaphysical interpretation, truthmakers verify the truth values
of propositions and are orthogonal to the logical reasoning which figures in the
interpretation of the epistemic truthmakers. The consistent logical reasoning in-
terpretation ties truthmaking to provability and is of relevance to the discussion
of epistemic possibility and hyperintensionality and their bearing on absolute
decidability, but will not be here examined.
Intensions

-pri(x) = λc.JxKc,c;
(This is a primary, or epistemic, intension. The two parameters relative to

which x – a propositional variable – obtains its value are epistemically possible
worlds).

-sec(x) = λc.JxKw,w

(This is a secondary intension. The two parameters relative to which x
obtains its value are metaphysically possible worlds).

-2D(x) = λcλwJxKc,w = 1
(This is a 2D intension. A first parameter ranging over epistemic scenarios

determines the value of the formula relative to a second parameter ranging over
metaphysically possible worlds).

Then:

• Epistemic Mathematical Necessity
J■ϕKc,w = 1 ⇐⇒ ∀c′JϕKc′,c′ = 1
(ϕ is true at all points in epistemic modal space).

• Epistemic Mathematical Possibility
J♦ϕK ̸= ∅ ⇐⇒ J¬■¬ϕK = 1
(ϕ might be true if and only if it is not epistemically necessary for ϕ to be
false).

Epistemic mathematical modality can be constrained by consistency, and
the formal techniques of provability and forcing. A mathematical formula is
false, and therefore metaphysically impossible, if it can be disproved or induces
inconsistency in a model.

3.3 Interaction
• Convergence

∀c∃wJϕKc,w = 1
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(the value of x is relative to a parameter for the space of epistemically pos-
sible worlds. The value of x relative to the first parameter determines the
value of x relative to the second parameter for the space of metaphysical
possibility).

• Super-rigidity
JϕKc,w = 1 ⇐⇒ ∀w’,c’JϕKc′,w′ = 1
(ϕ is rigid in all points in epistemic and metaphysical modal space).

3.4 Modal Axioms
• Metaphysical mathematical modality is governed by the modal system

KTE, as augmented by the Barcan formula and its Converse (cf. Fine,
1981).

K: □[ϕ → ψ] → [□ϕ → □ψ]
T: □ϕ → ϕ
E: ¬□ϕ → □¬□ϕ
Barcan: ⋄∃xFx → ∃x⋄Fx
Converse Barcan: ∃x⋄Fx → ⋄∃xFx

• Epistemic mathematical modality is governed by the modal system, K4+GL.8

K: ■[ϕ → ψ] → [■ϕ → ■ψ]
4: ■ϕ → ■■ϕ
GL: ■[■ϕ → ϕ] → ■ϕ
Note that, if one prefers a hyperintensional semantics to an intensional se-

mantics, one can avail of the definitions of hyperintensions as functions from
states in a state space to extensions instead of from whole epistemically and
metaphysically possible worlds. See Chapter 2 for the relevant models and
definitions.

8For further discussion of the properties of GL, see Löb (1955); Smiley (1963); Kripke
(1965); and Boolos (1993). Löb’s provability formula was formulated in response to Henkin’s
(1952) problem concerning whether a sentence which ascribes the property of being provable to
itself is provable. (Cf. Halbach and Visser, 2014, for further discussion.) For an anticipation
of the provability formula, see Wittgenstein (1933-1937/2005: 378). Wittgenstein writes:
‘If we prove that a problem can be solved, the concept ‘solution’ must somehow occur in
the proof. (There must be something in the mechanism of the proof that corresponds to
this concept.) But the concept mustn’t be represented by an external description; it must
really be demonstrated. / The proof of the provability of a proposition is the proof of the
proposition itself’ (op. cit.). Wittgenstein contrasts the foregoing type of proof with ‘proofs of
relevance’ which are akin to the mathematical, rather than empirical, propositions, discussed
in Wittgenstein (2001: IV, 4-13, 30-31).
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3.5 Topic-sensitive Two-dimensional Truthmaker Seman-
tics

If one prefers hyperintensional semantics to possible worlds semantics – in order
e.g. to avoid the situation in intensional semantics according to which all neces-
sary formulas express the same proposition because they are true at all possible
worlds – one can avail of the following epistemic two-dimensional truthmaker se-
mantics, which specifies a notion of exact verification in a state space and where
states are parts of whole worlds (Fine 2017a,b; Hawke and Özgün, forthcoming).
According to truthmaker semantics for epistemic logic, a modalized state space
model is a tuple ⟨S, P, ≤, v⟩, where S is a non-empty set of states, P is the sub-
space of possible states where states s and t comprise a fusion when s ⊔ t∈P, ≤
is a partial order, and v: Prop → (2S x 2S) assigns a bilateral proposition ⟨p+,
p−⟩ to each atom p∈Prop with p+ and p− incompatible (Hawke and Özgün,
forthcoming: 10-11). Exact verification (⊢) and exact falsification (⊣) are re-
cursively defined as follows (Fine, 2017a: 19; Hawke and Özgün, forthcoming:
11):

s ⊢ p if s∈JpK+

(s verifies p, if s is a truthmaker for p i.e. if s is in p’s extension);
s ⊣ p if s∈JpK−

(s falsifies p, if s is a falsifier for p i.e. if s is in p’s anti-extension);
s ⊢ ¬p if s ⊣ p
(s verifies not p, if s falsifies p);
s ⊣ ¬p if s ⊢ p
(s falsifies not p, if s verifies p);
s ⊢ p ∧ q if ∃v,u, v ⊢ p, u ⊢ q, and s = v ⊔ u
(s verifies p and q, if s is the fusion of states, v and u, v verifies p, and u

verifies q);
s ⊣ p ∧ q if s ⊣ p or s ⊣ q
(s falsifies p and q, if s falsifies p or s falsifies q);
s ⊢ p ∨ q if s ⊢ p or s ⊢ q
(s verifies p or q, if s verifies p or s verifies q);
s ⊣ p ∨ q if ∃v,u, v ⊣ p, u ⊣ q, and s = v ⊔ u
(s falsifies p or q, if s is the fusion of the states v and u, v falsifies p, and u

falsifies q);
s ⊢ ∀xϕ(x) if ∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and s = s1 ⊔ . . .

⊔ sn

[s verifies ∀xϕ(x) "if it is the fusion of verifiers of its instances ϕ(a1), . . . ,
ϕ(an)" (Fine, 2017c)];

s ⊣ ∀xϕ(x) if s ⊣ ϕ(a) for some individual a in a domain of individuals (op.
cit.)

[s falsifies ∀xϕ(x) "if it falsifies one of its instances" (op. cit.)];
s ⊢ ∃xϕ(x) if s ⊢ ϕ(a) for some individual a in a domain of individuals (op.

cit.)
[s verifies ∃xϕ(x) "if it verifies one of its instances ϕ(a1), . . . , ϕ(an)" (op.

cit.)];
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s ⊣ ∃xϕ(x) if ∃s1, . . . , sn, with s1 ⊣ ϕ(a1), . . . , sn ⊣ ϕ(an), and s = s1 ⊔ . . .
⊔ sn (op. cit.)

[s falsifies ∃xϕ(x) "if it is the fusion of falsifiers of its instances" (op. cit.)];
s exactly verifies p if and only if s ⊢ p if s∈JpK;
s inexactly verifies p if and only if s ▷ p if ∃s’≤S, s’ ⊢ p; and
s loosely verifies p if and only if, ∀v, s.t. s ⊔ v ⊢ p (35-36);
s ⊢ Aϕ if and only if for all u∈P there is a u’∈P such that u’ ⊔ u∈P and u’

⊢ ϕ, where Aϕ denotes the necessary truthmaker of ϕ; and
s ⊣ Aϕ if and only if there is a v∈P such that for all u∈P either v ⊔ u/∈P or

u ⊣ ϕ;
s ⊢ A(Aϕ) if and only if for all u∈P there is a u’∈P such that u’ ⊔ u ∈P and

u’ ⊢ ϕ and there is a u”∈P such that u’ ⊔ u”∈P and u” ⊢ ϕ;
s ⊢ A(∀xϕ(x)) if and only if for all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and u’ = s1 ⊔ . . . ⊔ sn];
s ⊢ A(∃xϕ(x)) if and only if or all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

ϕ(a)] for some individual a in a domain of individuals (op. cit.).
In order to account for two-dimensional indexing, we augment the model,

M, with a second state space, S*, on which we define both a new parthood
relation, ≤*, and partial function, V*, which serves to map propositions in a
domain, D, to pairs of subsets of S*, {1,0}, i.e. the verifier and falsifier of p,
such that JpK+ = 1 and JpK− = 0. Thus, M = ⟨S, S*, D, ≤, ≤*, V, V*⟩. The
two-dimensional hyperintensional profile of propositions may then be recorded
by defining the value of p relative to two parameters, c,i: c ranges over subsets
of S, and i ranges over subsets of S*.

(*) M,s∈S,s*∈S* ⊢ p iff:
(i) ∃csJpKc,c = 1 if s∈JpK+; and
(ii) ∃is∗JpKc,i = 1 if s*∈JpK+

(Distinct states, s,s*, from distinct state spaces, S,S*, provide a multi-
dimensional verification for a proposition, p, if the value of p is provided a
truthmaker by s. The value of p as verified by s determines the value of p as
verified by s*).

We say that p is hyper-rigid iff:

(**) M,s∈S,s*∈S* ⊢ p iff:
(i) ∀c’sJpKc,c′ = 1 if s∈JpK+; and
(ii) ∀is∗JpKc,i = 1 if s*∈JpK+

Epistemic (primary), subjunctive (secondary), and 2D hyperintensions can
be defined as follows, where hyperintensions are functions from states to ex-
tensions, and intensions are functions from worlds to extensions. Epistemic
two-dimensional truthmaker semantics receives substantial motivation by its
capacity (i) to model conceivability arguments involving hyperintensional meta-
physics, and (ii) to avoid the problem of mathematical omniscience entrained
by intensionalism about propositions9:

9See Author (ms1) through (msn) for further discussion.
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• Epistemic Hyperintension:
pri(x) = λs.JxKs,s, with s a state in the epistemic state space S

• Subjunctive Hyperintension:
secv@(x) = λw.JxKv@,w, with w a state in metaphysical state space W

In epistemic two-dimensional semantics, the value of a formula or term rel-
ative to a first parameter ranging over epistemic scenarios determines the value
of the formula or term relative to a second parameter ranging over metaphysi-
cally possible worlds. The dependence is recorded by 2D-intensions. Chalmers
(2006: 102) provides a conditional analysis of 2D-intensions to characterize the
dependence: "Here, in effect, a term’s subjunctive intension depends on which
epistemic possibility turns out to be actual. / This can be seen as a mapping
from scenarios to subjunctive intensions, or equivalently as a mapping from (sce-
nario, world) pairs to extensions. We can say: the two-dimensional intension
of a statement S is true at (V, W) if V verifies the claim that W satisfies S.
If [A]1 and [A]2 are canonical descriptions of V and W, we say that the two-
dimensional intension is true at (V, W) if [A]1 epistemically necessitates that
[A]2 subjunctively necessitates S. A good heuristic here is to ask "If [A]1 is the
case, then if [A]2 had been the case, would S have been the case?". Formally,
we can say that the two-dimensional intension is true at (V, W) iff ’□1([A]1 →
□2([A]2 → S))’ is true, where ’□1’ and ’□2’ express epistemic and subjunctive
necessity respectively".

• 2D-Hyperintension:
2D(x) = λsλwJxKs,w = 1.

Following the presentation of topic models in Berto (2018; 2019), Canavotto
et al (2020), and Berto and Hawke (2021), atomic topics comprising a set of
topics, T, record the hyperintensional intentional content of atomic formulas,
i.e. what the atomic formulas are about at a hyperintensional level. Topic
fusion is a binary operation, such that for all x, y, z∈T, the following properties
are satisfied: idempotence (x � x = x), commutativity (x � y = y � x), and
associativity [(x � y) � z = x � (y � z)] (Berto, 2018: 5). Topic parthood is
a partial order, ≤, defined as ∀x,y∈T(x ≤ y ⇐⇒ x � y = y) (op. cit.: 5-6).
Atomic topics are defined as follows: Atom(x) ⇐⇒ ¬∃y < x, with < a strict
order. Topic parthood is thus a partial ordering such that, for all x, y, z∈T, the
following properties are satisfied: reflexivity (x ≤ x), antisymmetry (x ≤ y ∧ y
≤ x → x = y), and transitivity (x ≤ y ∧ y ≤ z → x ≤ z) (6). A topic frame can
then be defined as {W, R, T, �, t}, with t a function assigning atomic topics to
atomic formulas. For formulas, ϕ, atomic formulas, p, q, r (p1, p2, . . . ), and a
set of atomic topics, Utϕ = {p1, . . . pn}, the topic of ϕ, t(ϕ) = �Utϕ = t(p1) �
. . . � t(pn) (op. cit.). Topics are hyperintensional, though not as fine-grained
as syntax. Thus t(ϕ) = t(¬¬ϕ), tϕ = t(¬ϕ), t(ϕ ∧ ψ) = t(ϕ) � t(ψ) = t(ϕ ∨
ψ) (op. cit.).

The diamond and box operators can then be defined relative to topics:
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⟨M,w⟩ ⊩ ⋄tϕ iff ⟨Rw,t⟩(ϕ)
⟨M,w⟩ ⊩ □tϕ iff [Rw,t](ϕ), with
⟨Rw,t⟩(ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ∩ ϕ ̸= ∅ and t’(ϕ) ≤ t(ϕ)
[Rw,t](ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ⊆ ϕ and t’(ϕ) ≤ t(ϕ).
We can then combine topics with truthmakers rather than worlds, thus coun-

tenancing doubly hyperintensional semantics, i.e. topic-sensitive epistemic two-
dimensional truthmaker semantics:

• Topic-sensitive Epistemic Hyperintension:
prit(x) = λsλt.JxKs∩t,s∩t, with s a truthmaker from an epistemic state
space.

• Topic-sensitive Subjunctive Hyperintension:
secv@∩t(x) = λwλt.JxKv@∩t,w∩t, with w a truthmaker from a metaphysical
state space.

• Topic-sensitive 2D-Hyperintension:
2D(x) = λsλwλtJxKs∩t,w∩t = 1.

4 Hyperintensional Epistemic Set Theory
4.1 Two-dimensional Hyperintensional Set Theory
Following the presentation in Scedrov (1986: 104), an epistemic truthmaker set
theory can be defined as follows.

Logic

• Equality axioms, x = y ∧ ϕ(x) → ϕ(y)
All classical propositional tautologies

• From ϕ and ϕ → ψ infer ψ

• A(ϕ) → ϕ

• A(ϕ) → AA(ϕ)

• A(ϕ) ∧ A(ϕ → ψ) → A(ψ)

• From ϕ infer A(ϕ)

• ∀ϕ(x) → ϕ(y), where y is free for x in ϕ(x)

• From ϕ → ψ(x) infer ϕ → ∀ψ(x), if x is not free in ϕ

• ϕ(y) → ∃ϕ(x), where y is free for x in ϕ(x)

• From ψ(x) → ϕ infer ∃ψ(x) → ϕ, if x is not free in A

Non-logical Axioms

13



• Epistemic Extensionality: A[∀z(z∈x → z∈y) → x = y]

• Foundation: ∀x[∀y∈xϕ(y) → ϕ(x)] → ∀xϕ(x)

• Epistemic Foundation: A[[∀x[A[∀y∈xϕ(y) → ϕ(x)]] → A[∀xϕ(x)]]

• Pairing: ∃zA(x∈z ∧ y∈z)

• Union: ∃zA[∀w(∃y∈xw∈y → w∈z)]

• Separation: ∃zA[∀y[y∈z ⇐⇒ y∈x ∧ ϕ(y)]], where z is not free in ϕ(y)

• Epistemic Power Set: ∃zA[∀w[A(∀y∈wy∈x → w∈z)]]

• Infinity: ∃A[∃yA(y∈z)∧ ∀u∈z∃vA(v∈z ∧ u∈v)]

• Collection: ∀x∈u∃yϕ(x, y) → ∃z∀x∈u∃y∈zϕ(x, y) where z is not free in
ϕ(x, y)

• Epistemic Collection: A[∀x∈u∃yϕ(x, y) → ∃zA∀x∈u∃y[A(y∈z) ∧ ϕ(x, y)]],
where z is not free in ϕ(x, y).

Two-dimensional hyperintensions can then be defined for each of the forego-
ing axioms, such that each axiom would be defined relative to two parameters,
the first ranging over topic-sensitive epistemic truthmakers, which determines
the value of the axiom relative to a second parameter ranging over either non-
maximally objective or maximally objective i.e. metaphysical truthmakers.

4.2 Two-dimensional Hyperintensional Large Cardinals
A provisional definition of large cardinal axioms is as follows.

∃xΦ is a large cardinal axiom, because:
(i) Φx is a Σ2-formula, where ‘a sentence ϕ is a Σ2-sentence if it is of the

form: There exists an ordinal α such that Vα ⊩ ψ, for some sentence ψ’ (Woodin,
2019);

(ii) if κ is a cardinal, such that V |= Φ(κ), then κ is strongly inaccessible,
where a cardinal κ is regular if the cofinality of κ – comprised of the unions of
sets with cardinality less than κ – is identical to κ, and a strongly inaccessible
cardinal is regular and has a strong limit, such that if λ < κ, then 2λ < κ (Cf.
Kanamori, 2012: 360); and

(iii) for all generic partial orders P∈Vκ, and all V-generics G ⊆ P, V[G] |=
Φx (Koellner, 2006: 180).

The truthmaker 2D-intension for large cardinal axioms is then ∀s∈S,i∈IJΦxKs,i

= 1 iff ∃s’∈S,i’∈IJΦxKs′,i′ = 1.
The intension states that the value of a large cardinal axiom relative to an

epistemic truthmaker determines the value of the axiom relative to a metaphys-
ical truthmaker.
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4.3 Two-dimensional Hyperintensionality and the Epis-
temic Church-Turing Thesis

The Epistemic Church-Turing Thesis can receive a similar two-dimensional hy-
perintensional formalization. Carlson (2016: 132) presents the schema for the
Epistemic Church-Turing Thesis as follows:

With □ interpreted as a knowledge operator, ‘□∀x∃y□ϕ → ∃e□∀x∃y[E(e, x,
y) ∧ ϕ],

‘where e does not occur free in ϕ and E is a fixed formula of LP A [i.e the
language of Peano Arithmetic] with free variables v0, v1, v2 such that, letting
N be the standard model of arithmetic,

‘N ⊩ E(e, x, y)[e, x, y | a, m, n]
‘iff on input m, the ath Turing machine halts and outputs n. For convenience,

we will write {t1}{t2} ≃ t3 for E(t1, t2, t3) when t1, t2, t3 are terms’. Carlson
defines (x1, . . . , xn | (y1, . . . , y1) as denoting the ‘function which maps xi to
yi for each i = 1, . . . , n’ (op. cit.: 130). Hyperintensionally reformalized, the
Epistemic Church-Turing Thesis is then:

A∀x∃yAϕ → ∃eA∀x∃y[E(e, x, y) ∧ ϕ].
The two-dimensional hyperintensional profile of the Epistemic Church-Turing

Thesis can be countenanced by adding a topic-sensitive truthmaker from a meta-
physical state space and making its value dependent on the value of the epis-
temically necessary truthmaker A(ϕ). Thus:

A(w∩t)∀x∃yA(w∩t)ϕ → ∃eA(w∩t)∀x∃y[E(e, x, y) ∧ ϕ].

4.4 Two-dimensional Hyperintensionality and Ω-logic
Finally, the hyperintensional formalization of Ω-logical consequence in set theory
can be defined as follows. For partial orders, P, let VP = VB, where B is the
regular open completion of (P).10 Ma = (Va)M and MB

a = (VB
a)M = (VMB

a ).
Sent denotes a set of sentences in a first-order language of set theory. T∪{ϕ}
is a set of sentences extending ZFC. c.t.m abbreviates the notion of a countable
transitive ∈-model. c.B.a. abbreviates the notion of a complete Boolean algebra.

Define a c.B.a. in V, such that VB. Let VB
0 = ∅; VB

λ =
⋃

b<λVB
b , with λ a

limit ordinal; VB
a+1 = {f: X → B | X ⊆VB

a}; and VB =
⋃

a∈OnVB
a.

ϕ is true in VB, if its Boolean-value is 1B, if and only if
VB |= ϕ iff JϕKB = 1B.
Thus, for all ordinals, a, and every c.B.a. B, VB

a ≡ (Va)V B iff for all x∈VB,
∃y∈VBJx = yKB = 1B iff Jx∈VBKB = 1B.

Then, VB
a |= ϕ iff VB |= ’Va |= ϕ’.

Ω-logical validity can then be defined as follows:
For T∪{ϕ}⊆Sent,
T |=Ω ϕ, if for all ordinals, a, and c.B.a. B, if VB

a |= T, then VB
a |= ϕ.

Supposing that there exists a proper class of Woodin cardinals and if T∪{ϕ}⊆Sent,
then for all set-forcing conditions, P:

10The definitions in this section follow the presentation in Bagaria et al. (2006).
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T |=Ω ϕ iff VT |= ’T |=Ω ϕ’,
where T |=Ω ϕ ≡ ∅ |= ’T |=Ω ϕ’.
The Ω-Conjecture states that V |=Ω ϕ iff VB |=Ω ϕ (Woodin, ms). Thus,

Ω-logical validity is invariant in all set-forcing extensions of ground models in
the set-theoretic universe.

The soundness of Ω-Logic is defined by universally Baire sets of reals. For
a cardinal, e, let a set A be e-universally Baire, if for all partial orders P of
cardinality e, there exist trees, S and T on ω X λ, such that A = p[T] and if
G⊆P is generic, then p[T]G = RG – p[S]G (Koellner, 2013). A is universally
Baire, if it is e-universally Baire for all e (op. cit.).

Ω-Logic is sound, such that V ⊢Ω ϕ → V |=Ω ϕ. However, the completeness
of Ω-Logic has yet to be resolved.

Leach-Krouse (ms) defines the modal logic of Ω-consequence as satisfying the
following axioms. The interaction between hyperintensional necessary truth-
makers and the axioms is as follows:

For a theory T and with A(□ϕ) := for all t∈P there is a t’∈P such that t’
⊔ t ∈P and t’ ⊢ ‘TB

α ⊩ ZFC ⇒ TB
α ⊩ ϕ’, where □ is interpreted as TB

α ⊩ ZFC
⇒ TB

α ⊩ ϕ,
ZFC ⊢ ϕ ⇒ ZFC ⊢ A(□ϕ)
ZFC ⊢ A[□(ϕ → ψ) → (□ϕ → □ψ)]
ZFC ⊢ A(□ϕ) → ϕ ⇒ ZFC ⊢ ϕ
ZFC ⊢ A(□ϕ) → A(□□ϕ)
ZFC ⊢ A[□(□ϕ → ϕ)] → A(□ϕ)
A[□(□ϕ → ψ) ∨ □(□ψ ∧ ψ → ϕ)], where this clause added to GL is the

logic of ‘true in all Vκ for all κ strongly inaccessible’ in ZFC. As with the two-
dimensional hyperintensional profile of the Epistemic Church-Turing Thesis,
the two-dimensional hyperintensional profile of Ω-logical consequence can be
countenanced by adding a topic-sensitive truthmaker from a metaphysical state
space and making its value dependent on the value of the epistemically necessary
truthmaker A(ϕ).

5 Knowledge of Absolute Decidability
Williamson (2016a) examines the extension of the metaphysically modal profile
of mathematical truths to the question of absolute decidability. A statement
is decidable if and only if there is an algorithm for deciding it or its negation.
Statements are absolutely undecidable if and only if they are ‘undecidable rela-
tive to any set of axioms that are justified’ rather than just relative to a system
(Koellner, 2006: 153), and they are absolute decidable if and only if they are
not absolutely undecidable. In this section, I aim to extend Williamson’s anal-
ysis to the notion of epistemic mathematical modality that has been developed
in the foregoing sections. The extension provides a crucial means of witness-
ing the significance of the two-dimensional approach for the epistemology of
mathematics.
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Williamson proceeds by suggesting the following line of thought. Sup-
pose that A is a true interpreted mathematical formula which eludes present
human techniques of provability; e.g. the continuum hypothesis (op. cit.).
Williamson argues that mathematical truths are metaphysically necessary (op.
cit.). Williamson then enjoins one to consider the following scenario: It is meta-
physically possible that there is a species which finds A primitively compelling
in virtue of their brain states and the evolutionary history thereof. Further,
the species ‘could not easily have come to believe ¬A or any other falsehood
in a relevantly similar way’. He writes: ‘In current epistemological terms, their
knowledge of A meets the condition of safety: they could not easily have been
wrong in a relevantly similar case. Here the relevantly similar cases include cases
in which the creatures are presented with sentences that are similar to, but still
discriminably different from, A, and express different and false propositions; by
hypothesis, the creatures refuse to accept such other sentences, although they
may also refuse to accept their negations ... Therefore A is absolutely provable,
because the creatures can prove it in one line’ (11). Williamson writes then that:
‘The claim is not just that A would be absolutely provable if there were such
creatures. The point is the stronger one that A is absolutely provable because
there could in principle be such creatures.’

One way that Williamson’s argument might be improved is by endeavoring to
accommodate epistemic possibilities in a two-dimensional setting, such that the
epistemic possibility of deciding Orey sentences such as CH can be a guide to the
metaphysical possibility of deciding Orey sentences. Woodin (2010) discusses
a number of results, e.g., with regard to the maximality of an inner model for
a supercompact cardinal, and takes such results to comprise evidence for the
axiom that the set-theoretic universe, V, is Ultimate-L.11 The axiom implies
the truth of CH. This is thus one case in which the evidence for the epistemic
possibility of CH can provide a guide to its metaphysical possibility.

The relation between the Epistemic Church-Turing Thesis and absolute un-
decidability is complicated, however, by there being results pointing to two
opposing conclusions.

The first result is by Leitgeb (2009). Leitgeb endeavors to argue for the
convergence between the notion of informal provability – countenanced as an
epistemic modal operator, K – and mathematical truth. Availing of Hilbert’s
(1923/1996: ¶18-42) epsilon terms for propositions, such that, for an arbitrary
predicate, C(x), with x a propositional variable, the term ‘ϵp.C(p)’ is intuitively
interpreted as stating that ‘there is a proposition, x(/p), s.t. the formula, that p
satisfies C, obtains’ (op. cit.: 290). Leitgeb purports to demonstrate that ∀p(p
→ Kp), i.e. that informal provability is absolute; i.e. truth and provability
are co-extensive. He argues as follows. Let Q(p) abbreviate the formula ‘p ∧
¬K(p)’, i.e., that the proposition, p, is true while yet being unprovable. Let K be

11The axiom states that ‘(i) There is a proper class of Woodin cardinals, and (ii) For
each Σ2-sentence ϕ, if ϕ holds in V then there is a universally Baire set A ⊆ R such that
HODL(A,R) ⊩ ϕ, where a set is universally Baire if for all topological spaces Ω and for all
continuous functions π : Ω → Rn, the preimage of A by π has the property of Baire in the
space Ω’ (Woodin, 2019).
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the informal provability operator reflecting knowability or epistemic necessity,
with ⟨K⟩ its dual.12 Then:

1. ∃p(p ∧ ¬Kp) ⇐⇒ ϵp.Q(p) ∧ ¬Kϵp.Q(p).
By necessitation,
2. K[∃p(p ∧ ¬Kp)] ⇐⇒ K[ϵp.Q(p) ∧ ¬Kϵp.Q(p)].
Applying modal axioms, KT, to (1), however,
3. ¬K[ϵp.Q(p) ∧ ¬Kϵp.Q(p)].
Thus,
4. ¬K∃p(p ∧ ¬Kp).
Leitgeb suggests that (4) be rewritten
5. ⟨K⟩∀p(p → Kp).
Abbreviate ∀p(p → Kp) by B. By existential introduction and modal axiom

K, both
6. B → ∃p[K(p → B) ∨ K(p → ¬B) ∧ p], and
7. ¬B → ∃p[K(p → B) ∨ K(p → ¬B) ∧ p].
Thus,
8. ∃p[K(p → B) ∨ K(p → ¬B) ∧ p].
Abbreviate (8) by C(p). Introducing epsilon notation,
9. [K(ϵp.C(p) → B) ∨ K(ϵp.C(p) → ¬B)] ∧ ϵp.C(p).
By K,
10. [K(ϵp.C(p) → KB) ∨ K(ϵp.C(p) → K¬B)].
From (9) and necessitation, one can further derive
11. Kϵp.C(p).
By (10) and (11),
12. KB ∨ K¬B.
From (5), (12), and K, Leitgeb derives
13. KB.
By, then, the T axiom,
14. ∀p(p → Kp) (291-292).
Leitgeb takes the proof to demonstrate that formulas of epistemic logic and

the epsilon calculus are not logical truths (292). If they are, however, then
Leitgeb’s proof witnesses the collapse between informal provability and mathe-
matical truth.

The second result is by Marfori and Horsten (2016: 260-261), who prove
that if the Epistemic Church-Turing Thesis is true, then there are absolutely
undecidable propositions in the language of Epistemic Arithmetic. They prove
the following theorem:

‘If ECT restricted to Π1 arithmetical relations ϕ(x, y) holds, then there are
absolutely undecidable Π3 sentences of LEA’.

They proceed by proving the contrapositive: If there are no Π3 absolute
undecidable sentences of LEA, then ECT restricted to Π1 arithmetical relations
is false. They write: ‘Suppose that there are no absolutely undecidable Π3
sentences in LEA:

12See Section 5, for further discussion of the duality of knowledge, and its relation to doxastic
operators.
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‘□Ψ ⇐⇒ Ψ for all Π3 Ψ∈LEA.
‘Choose a Turing-uncomputable total functional Π1 arithmetical relation

ϕ(x, y); from elementary recursion theory we know that such ϕ(x, y) exist.
‘Then, ∀x∃yϕ(x, y). But then we also have that ∀x∃y□ϕ(x, y). The reason

is that Π1 ⊂ Π3, so for every m and n, ϕ(m, n), being a Π1 statement, entails
□ϕ(m, n). However, ∀x∃y□ϕ(x, y) is now a Π3 statement of LEA, so again from
our assumption it follows that □∀x∃y□ϕ(x, y).

‘Therefore, for the chosen ϕ(x, y) the antecedent of ECT is true whereas its
consequent is false. Therefore, for the chosen ϕ(x, y), ECT is false.’

Leitgeb’s result demonstrates that informal provability converges with truth,
and thus corroborates that mathematical truths are absolutely decidable, whereas
Marfori and Horsten’s result demonstrates the inconsistency of the Epistemic
Church-Turing Thesis and absolute decidability. The consistency of these results
is innocuous, and vindicates Gödel’s (1951) disjunction: ‘Either mathematics
is incompletable in this sense, that its evident axioms can never be comprised
in a finite rule, that is to say, the human mind (even within the realm of pure
mathematics) infinitely surpasses the powers of any finite machine, or else there
exist absolutely unsolvable diophantine problems of the type specified (where
the case that both terms of the disjunction are true is not excluded, so that
there are, strictly speaking, three alternatives)’ (Gödel, 1951/1995: 310, §13).
When epistemic possibility is interpreted as informal provability rather than as
a type of mechanism, mathematical truths are absolutely decidable. Epistemic-
modally constrained computability as in the Epistemic Church-Turing Thesis
is, however, inconsistent with absolute decidability.

Note that the two-dimensional intensions and hyperintensions of epistemic
two-dimensional semantics account as well for the linking between what Cantor
refers to as intrasubjective i.e. immanent reality and transsubjective i.e. tran-
sient reality (Cantor, 1883/1996: §8). Immanent reality concerns the reality of
mathematical objects relative to the ‘understanding’, whereas transient reality
concerns the reality of mathematical objects relative to the ‘external world’ (op.
cit.). Cantor attributes the relation between the two realities as owing to the
‘unity of the all to which we ourselves belong’ (op. cit.). However, the existence
of functions, i.e. hyperintensions, from topic-sensitive epistemic state spaces to
topic-sensitive objective or metaphysical state spaces to extensions provides a
more illuminating explanation of the relation between concepts and metaphysics
than does the contention that all entities can figure as members of sets or classes
in set theory.

The significance of the two-dimensional intensional framework outlined in the
foregoing is that it provides an explanation of the discrepancy between meta-
physical mathematical modality and epistemic mathematical modality. Meta-
physical mathematical modality is governed by the system S5, the Barcan for-
mula, and its Converse, whereas epistemic mathematical modality is governed by
GL.Thus, epistemic mathematical modality figures as the mechanism, such that
it can provide a guide to the metaphysical possibility of mathematical truth. In
the hyperintensional setting, the relation between epistemic and objective states
was defined by way of a 2D-hyperintensions.
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6 Concluding Remarks
In this paper, I have endeavored to delineate the types of mathematical modality,
and to argue that the epistemic interpretation of topic-sensitive two-dimensional
truthmaker semantics can be applied in order to explain, in part, the two-
dimensional status of large cardinal axioms and the decidability of Orey sen-
tences. The formal constraints on hyperintensional conceivability adumbrated
in the foregoing can therefore be considered a guide to our possible knowledge
of objective mathematical truth.
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