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Abstract
This essay provides a novel account of iterated epistemic states. The

essay argues that states of epistemic determinacy might be secured by
countenancing iterated epistemic states on the model of fixed points in
the modal µ-calculus. Despite the epistemic indeterminacy witnessed by
the invalidation of modal axiom 4 in the sorites paradox – i.e. the KK prin-
ciple: □ϕ → □□ϕ – a epistemic hyperintensional µ-automaton permits
fixed points to entrain a principled means by which to iterate epistemic
states and account thereby for necessary conditions on self-knowledge.
The epistemic hyperintensional µ-calculus is applied to the iteration of
the epistemic states of a single agent instead of the common knowledge of
a group of agents, and is thus a novel contribution to the literature.

This essay provides a novel account of self-knowledge, which avoids the epis-
temic indeterminacy witnessed by the invalidation of modal axiom 4 in epistemic
logic; i.e. the KK principle: □ϕ → □□ϕ. The essay argues, by contrast, that –
despite the invalidation of modal axiom 4 on its epistemic interpretation – states
of epistemic determinacy might yet be secured by countenancing self-knowledge
on the model of fixed points in the modal µ-calculus.

Counterinstances to modal axiom 4 – which records the property of transi-
tivity in labeled transition systems1 – have been argued to occur within various
interpretations of the sorites paradox. Suppose, e.g., that a subject is presented
with a bounded continuum, the incipient point of which bears a red color hue
and the terminal point of which bears an orange color hue. Suppose, then, that
the cut-off points between the points ranging from red to orange are indiscrim-
inable, such that the initial point, a, is determinately red, and matches the
next apparent point, b; b matches the next apparent point, c; and thus – by
transitivity – a matches c. Similarly, if b matches c, and c matches d, then b
matches d. The sorites paradox consists in that iterations of transitivity would

∗I changed my name, from Hasen Joseph Khudairi and Timothy Alison Bowen, to David
Elohim, in April, 2024. Please cite this paper and my published book and articles under
‘Elohim, David’.

1See Kripke (1963).
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entail that the initial and terminal points in the bounded continuum are phe-
nomenally indistinguishable. However, if one takes transitivity to be the culprit
in the sorites, then eschewing the principle would entail a rejection of the corre-
sponding modal axiom (4), which records the iterative nature of the relation.2
Given the epistemic interpretation of the axiom – namely, that knowledge that
a point has a color hue entails knowing that one knows that the point has that
color hue – a resolution of the paradox which proceeds by invalidating axiom 4
subsequently entrains the result that one can know that one of the points has a
color hue, and yet not know that they know that the point has that color hue
(Williamson, 1990: 107-108; 1994: 223-244; 2001: chs. 4-5).

The non-transitivity of phenomenal indistinguishability corresponds to the
non-transitivity of epistemic accessibility. As Williamson (1994: 242) writes:
"The example began with the non-transitive indiscriminability of days in the
height of the tree, and moved on to a similar phenomenon for worlds. It seems
that this can always be done. Whatever x, y and z are, if x is indiscriminable
from y, and y from z, but x is discriminable from z, then one can construct
miniature worlds wx, wy and wz in which the subject is presented with x, y and
z respectively, everything else being relevantly similar. The indiscriminability of
the objects is equivalent to the indiscriminability of the corresponding worlds,
and therefore to their accessibility. The latter is therefore a non-transitive rela-
tion too." The foregoing result holds, furthermore, in the probabilistic setting,
such that the evidential probability that a proposition has a particular value
may be certain – i.e., be equal to 1 – while the iteration of the evidential prob-
ability operator – recording the evidence with regard to that evidence – is yet
equal to 0. Thus, one may be certain on the basis of one’s evidence that a
proposition has a particular value, while the higher-order evidence with regard
to one’s evidence adduces entirely against that valuation (Williamson, 2014).

In the foregoing argument, ‘safety’ figures as a necessary condition on knowl-
edge, and is codified by margin-for-error principles of the form: ∀x∀ϕ[Km+1ϕ(x)
→ Kmϕ(x+1)], with m a natural number (Williamson, 2001: 128; Gómez-
Torrente, 2002: 114). Intuitively, the safety condition ensures that if one knows
that a predicate is satisfied, then one knows that the predicate is satisfied in rel-
evantly similar worlds. Williamson targets the inconsistency of margin-for-error
principles, the luminosity principle [‘∀x∀ϕ[ϕ(x) → Kϕ(x)’], and the characteri-
zation of the sorites as occurring when an initial state satisfies a condition, e.g.
being red, and a terminal state satisfies a distinct condition, e.g. being orange.
As Srinivisan (2013: 4) writes: ‘By [the luminosity principle], if C obtains in
α0, then S knows that C obtains in α0. By [margin-for-error principles], if S
knows that C obtains in α0, then C obtains in α1. By [the characterization
of the sorites], C does obtain in α0; therefore, C obtains in α1. Similarly, we
can establish that C also obtains in α2, α3, α4, . . . , αn. But according to [the
characterization of the sorites] C doesn’t obtain in αn. Thus we arrive at a
contradiction’. The triad evinces that the luminosity principle is false, given the
plausibility of margin-for-error principles and the characterization of the sorites.

2For more on non-transitivist approaches to the sorites, see Zardini (2019).
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In cases, further, in which conditions on knowledge are satisfied, epistemic in-
determinacy is supposed to issue from the non-transitivity of the accessibility
relation on worlds (1994: 242).

The anti-luminosity argument can be availed of to argue against the KK
principle. If states are not luminous, then knowing that ϕ will not entail that
one knows that one knows that ϕ. A different argument is presented, as well,
in Williamson (2001: ch. 5, p. 115-116). Suppose the following:

(1i) If K that x is i+1 inches tall, then ¬K¬x is i inches tall
(If an agent knows that some object is i+1 inches tall, then for all the agent

knows the object is i inches tall); and
(C) ‘If p and all members of the set X are pertinent propositions, p is a logical

consequence of X, and [an agent] knows each member of X, then he knows p’
(op. cit.: 116).

Suppose that:
(2i) An agent knows that the object is not i inches tall.
By the KK principle, (3i) follows form (2i).
(3i) An agent knows that she knows that an object is not i inches tall.
Suppose a proposition (q) which states that the object is i+1 inches tall. By

(1), then the agent knows that ¬(2i). However, if (3i), then the agent knows
(2i). Thus, (q) → (2i) ∧ ¬(2i). Thus – by (C) – (1i) and (3i) imply that the
agent knows ¬(q):

(2i+1) the agent knows that the object is not i+1 inches tall.
Thus, from (KK), (C), and (2i), we can infer (2i+1).
Repeating the argument for values of i ranging from 0 to 664, we have
(20) An agent knows that the object is not 0 inches tall.
(2664) An agent knows that the object is not 664 inches tall.
However, suppose that the object is in fact 664 inches tall and grant the

factivity of knowledge (modal axiom T: □ϕ → ϕ). Then (2664) is false. So,
from (1), (20), (C), and (KK), we can derive a false conclusion, (2664).

(C) is a principle of deductive closure, and thus arguably ought to be pre-
served. Williamson takes (2i) to be a truism, and (1) to be defensible. He thus
argues that we ought to reject the KK principle.

In this essay, I endeavor to provide a novel account which permits the re-
tention of both classical logic as well as a modal approach to the phenomenon
of vagueness, while salvaging the ability of subjects to satisfy necessary condi-
tions on there being iterated epistemic states. I will argue that – despite the
invalidity of modal axiom 4 – a distinct means of securing an iterated state
of knowledge concerning one’s first-order knowledge that a particular state ob-
tains is by availing of fixed point, non-deterministic automata in the setting of
coalgebraic modal logic.

The modal µ-calculus is equivalent to the bisimulation-invariant fragment of
monadic second-order logic.3 µ(x). is an operator recording a least fixed point.
Despite the non-transitivity of sorites phenomena – such that, on its epistemic
interpretation, the subsequent invalidation of modal axiom 4 entails structural,

3Cf. Janin and Walukiewicz (1996).
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higher-order epistemic indeterminacy – the modal µ-calculus provides a natural
setting in which a least fixed point can be defined with regard to the states
instantiated by non-deterministic modal automata. In virtue of recording iter-
ations of particular states, the least fixed points witnessed by non-deterministic
modal automata provide, then, an escape route from the conclusion that the
invalidation of the KK principle provides an exhaustive and insuperable ob-
struction to self-knowledge. Rather, the least fixed points countenanced in the
modal µ-calculus provide another conduit into subjects’ knowledge to the effect
that they know that a state has a determinate value. Thus, because of the fixed
points definable in the modal µ-calculus, the non-transitivity of the similarity
relation is yet consistent with necessary conditions on epistemic determinacy
and self-knowledge, and the states at issue can be luminous to the subjects who
instantiate them.

In the remainder of the essay, we introduce labeled transition systems, the
modal µ-calculus, and non-deterministic Kripke (i.e., µ-) automata. We recount
then the sorites paradox in the setting of the modal µ-calculus, and demonstrate
how the existence of fixed points enables there to be iterative phenomena which
ensure that – despite the invalidation of modal axiom 4 – iterations of mental
states can be secured, and can thereby be luminous.

A labeled transition system is a tuple comprised of a set of worlds, M;
a valuation, V, from M to its powerset, ℘(M); and a family of accessibility
relations, R. So LTS = ⟨M,V,R⟩ (cf. Venema, 2012: 7). A Kripke coalgebra
combines V and R into a Kripke functor, σ; i.e. the set of binary morphisms
from M to ℘(M) (op. cit.: 7-8). Thus for an s∈M, σ(s) := [σV (s), σR(s)] (op.
cit.). Satisfaction for the system is defined inductively as follows: For a formula
ϕ defined at a state, s, in M,

JϕKM = V(s) 4

J¬ϕKM = S – V(s)
J⊥KM = ∅
JTKM = M
Jϕ ∨ ψKM = JϕKM ∪ JψKM

Jϕ ∧ ψKM = JϕKM ∩ JψKM

J⋄dϕKM = ⟨Rd⟩JϕKM

J□dϕKM = [Rd]JϕKM , with
⟨Rd⟩(ϕ) := {s∈S | Rd[s] ∩ ϕ ̸= ∅} and
[Rd](ϕ) := {s∈S | Rd[s] ⊆ ϕ} (9)
Jµx.ϕK =

⋂
{U ⊆ M | JϕK ⊆ U} (Fontaine, 2010: 18)

Jvx.ϕK =
⋃

{U ⊆ M | U ⊆ JϕK} (op. cit.; Fontaine and Place, 2010),
A Kripke coalgebra can be represented as the pair (M, σ: S → KA) (Venema,

2020: 8.1)
In our Kripke colagebra, we have M,s ⊩ ⟨π*⟩ϕ ⇐⇒ (ϕ ∨ ⋄s⟨π*⟩ϕ) (Venema,

2012: 25). ⟨π*⟩ϕ is thus said to be the fixed point for the equation, x ⇐⇒ ϕ ∨
⋄x, where the value of the formula is a function of the value of x conditional on
the constancy in value of ϕ (38). The smallest solution of the formula, x ⇐⇒

4Alternatively, M,s ⊩ ϕ if s∈V(ϕ) (9).
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ϕ ∨ ⋄x, is written µx.ϕ ∨ ⋄x (25). The value of the least fixed point is, finally,
defined more specifically thus:

Jµx.ϕ ∨ ⋄xK = V(ϕ) ∪ ⟨R⟩(Jµx.ϕ ∨ ⋄xK) (38).
A non-deterministic automaton is a tuple A = ⟨A, Ξ, Acc, aI⟩, with A a

finite set of states, aI being the initial state of A; Ξ is a transition function
s.t. Ξ: A → ℘(A); and Acc ⊆ A is an acceptance condition which specifies
admissible conditions on Ξ (60, 66).

Let two Kripke models A = ⟨A, a⟩ and S = ⟨S, s⟩, be bisimilar if and only
if there is is a non-empty binary relation, Z ⊆ A x S, which is satisfied, if:

(i) For all a∈Aand s∈S, if aZs, then a and s satisfy the same proposition letters;
(ii) The forth condition. If aZs and R△a,v1 . . . vn, then there are v’1 . . . v’n
in S, s.t.
• for all i (1 ≤ i ≤ n) viZv’i, and
• R’△s,v’1 . . . v’n;
(iii) The back condition. If aZs and R’△s,v’1 . . . v’n, then there are v1 . . . vn

in A, s.t.
• for all i (1 ≤ i ≤ n) viZv’i and
• R△a,v1 . . . vn (cf. Blackburn et al, 2001: 64-65).

Bisimulations may be redefined as relation liftings. We let, e.g., a Kripke
functor, K, be such that there is a relation K ⊆ K(A) x K(A’) (Venema, 2020:
81). Let Z be a binary relation s.t. Z ⊆ A x A’ and ℘Z ⊆ ℘(A) x ℘(A’), with

℘Z := {(X,X’) | ∀x∈X∃x’∈X’ with (x,x’)∈Z ∧ ∀x’∈X’∃x∈X with (x,x’)∈Z}
(op. cit.). Then, we can define the relation lifting, K, as follows:

K := {[(π,X), (π’,X’)] | π = π’ and (X,X’)∈℘Z} (op. cit.), with π a projection
mapping of K.5

The relation lifting, K, associated with the functor, K, satisfies the following
properties (Enqvist et al, 2019: 586):

• K extends K. Thus Kf = Kf for all functions f : X1 → X2;

• K preserves the diagonal. Thus KIdX = IdKX for any set X and functor,
Id, where IdC maps a set S to the product S x C (583, 586);

• K is monotone. R ⊆ Q implies KR ⊆ KQ for all relations R,Q ⊆ X1 x
X2;

• K commutes with taking converse. KR◦ = (KR)◦ for all relations R ⊆
X1 x X2;

• K distributes over relation composition. K(R ; Q) = KR ; KQ, for all
relations R ⊆ X1 x X2 and Q ⊆ X2 x X3, provided that the functor K
preserves weak pullbacks (op. cit.). Venema and Vosmaer (2014: §4.2.2)

5The projections of a relation R, with R a relation between two sets X and Y such that R
⊆ X x Y, are

X ←−(π1) R (π2)−→ Y such that π1((x,y)) = x, and π2((x,y)) = y. See Rutten (2019:
240).
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define a weak pullback as follows: ’A weak pullback of two morphisms f :
X → Z and g : Y → Z with a shared codomain Z is a pair of morphisms
pX : P → X and pY : P → Y with a shared domain P, such that (1) f ◦
pX = g ◦ pY , and (2) for any other pair of morphisms qX : Q → X and
qY : Q → Y with f ◦ qX = g ◦ qY , there is a morphism q : Q → P such
that pX ◦ q = qX and pY ◦ q = qY . This pullback is "weak" because we
are not requiring q to be unique. Saying that [a set functor] T : Set →
Set preserves weak pullbacks means that if pX : P → X and pY : P →
Y form a weak pullback of f : X → Z and g : Y → Z, then TpX : TP →
TX and TpY : TP → TY form a weak pullback of Tf : TX → TZ and
Tg : TY → TZ’.

Finally, given the Kripke functor, K, K can be defined as the µ-automaton,
i.e., the tuple A = ⟨A, Ξ, aI⟩, with aI∈A defined again as the initial state in
the set of states A; and Ξ defined as a mapping such that Ξ : A → ℘∃(KA),
where the ∃ subscript indicates that (a,s)∈A x S → {(a’,s) ∈ K(A) x S | a’ ∈
Ξ(a)} (93). The duality between the categories of coalgebras, A, and algebras,
S, and the definition of the functor, K, as an expression relation expressed by
µ-automata, provide an account of expressivism for self-knowledge.6

The philosophical significance of the foregoing can now be witnessed by defin-
ing the µ-automata on an alphabet; in particular, a non-transitive set comprising
a bounded real-valued, ordered sequence of terms for chromatic properties. Al-
though the non-transitivity of the ordered sequence of terms for color hues belies
modal axiom 4, such that one can know that a particular point in the sequence
has a particular value although not know that one knows that the point satisfies
that value, terms for chromatic values, ϕ, in the non-transitive set of color terms
nevertheless permits every sequential input state in the µ-automaton to define
a fixed point. In order for there to be least and greatest fixed points, there must
be monotone operators defined on complete lattices. As Venema (2020: A-2)
writes: ‘A partial order is a structure P = ⟨P, ≤⟩ such that ≤ is a reflexive,
transitive and antisymmetric relation on P. Given a partial order P, an element
p∈P is an upper bound (lower bound, respectively) of a set X ⊆ P if p ≥ x for all
x∈X (p ≤ x for all x∈X). If the set of upper bounds of X has a minimum, this
element is called the least upper bound, supremum, or join of X, notation:

∨
X.

Dually, the greatest lower bound, infimum, or meet of X, if existing, is denoted
as

∧
X . . . A partial order P is called a lattice if every two-element subset of P

has both an infimum and a supremum; in this case, the notation is as follows:
p∧q :=

∧
{p,q}, p∨q :=

∨
{p,q} . . . A partial order P is called a complete lattice

if every subset of P has both an infimum and a supremum . . . A complete lat-
tice will usually be denoted as a structure C = ⟨C,

∨
,
∧

⟩.’ ‘Let P and P′ be two
partial orders and let f : P → P’ be some map. Then f is called monotone or

6See Elohim (2024), for further discussion of modal and hyperintensional expressivism. For
further discussion of the convergence between expressivism and self-knowledge, see Wittgen-
stein (1953/2009); Bar-On (2004); and Bar-On and Wright (2023). For discussion of the con-
vergence between self-knowledge and Wright (2001)’s intention-based view of rule-following,
see Coliva (2012) and Elohim (2024).
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order preserving if f(x) ≤’ f(y) whenever x ≤ y . . . ’ (3.1). ‘Let P = ⟨P, ≤⟩ be
a partial order, and let f : P → P be some map. Then an element p∈P is called
a prefixpoint of f if f(p) ≤ p, a postfixpoint of f if p ≤ f(p), and a fixpoint if
f(p) = p. The sets of prefixpoints, postfixpoints, and fixpoints of f are denoted
respectively as PRE(f), POS(f) and FIX(f). / In case the set of fixpoints of
f has a least (respectively greatest) member, this element is denoted LFP.f
(GFP.f , respectively)’ (3-2). The Knaster-Tarski Theorem says, then, that, for
a complete lattice, C = ⟨C,

∨
,
∧

⟩, with f : C → C being monotone, f has both
a least and greatest fixpoint, LFP.f =

∧
PRE(f), and GFP.f =

∨
POS(f) (op.

cit.).7
The epistemicist approach to vagueness relies, as noted, on the epistemic

interpretation of the modal operator, such that the invalidation of transitivity
and modal axiom 4 (□ϕ → □□ϕ) can be interpreted as providing a barrier to
a necessary condition on self-knowledge.8 Crucially, µ-automata can receive a
similar epistemic interpretation.9 An epistemic interpretation of a µ-automaton
is just such that the automaton operates over epistemically possible worlds. The
automaton can thus be considered a model for an epistemic agent. The tran-
sition function accounts for the transition from one epistemic state to another,
e.g. as one proceeds along the stages of a continuum. A fixed point operator
on a given epistemic state, e.g. □(ϕ) where □ is interpreted so as to mean
knowledge-that, amounts to one way to iterate the state. If one knows a propo-
sition ϕ, the least fixed point operation, µx.(□(ϕ)), records an iteration of the
epistemic state, knowledge of knowledge, and similarly for belief. Thus, inter-
preting the µ-automaton epistemically permits the fixed points relative to the
arbitrary points in the ordered continuum to provide a principled means – dis-
tinct from the satisfaction of the KK principle – by which to account for the
pertinent iterations of epistemic states unique to an agent’s self-knowledge.

Fixed points for the iteration of epistemic states can be obtained, as with
the Knaster-Tarski Theorem, by Lambek (1968)’s Theorem according to which
‘Fixed points for the iteration of epistemic states can be obtained, as with
the Knaster-Tarski Theorem, by Lambek (1968)’s Theorem according to which
‘C denotes a category and F an endofunctor on it [...] a fixed point of an
endofunctor F consists of an object X and an isomorphism between FX and
X. Hence, it can be viewed as an algebra or a coalgebra for F . Fundamental
examples are

F (µF ) →ι µF
the initial algebra for F , whose algebra structure ι is an isomorphism by

Lambek’s Lemma [...] and dually
7Knaster (1928); Tarski (1955).
8Williamson (p.c.) writes: ‘My argument against KK is compatible with there being lots of

cases of knowledge that one knows. Indeed, the picture of knowledge it suggests (with margins
for error) suggests that there is plenty of knowledge, as I think there is. Right now, I know
that I know that I’m typing on my laptop. The failure of KK is a limitation on self-knowledge
but not a very severe one’.

9For more on the epistemic µ-calculus, see Bulling and Jamroga (2011); Bozianu et al
(2013); and Dima et al (2014). For an examination of the modal µ-calculus and common
knowledge, see Alberucci (2002).
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F →τ F (F )
the terminal coalgebra for F . Of course, both µF and F are unique up to

isomorphism, if they exist’ (Adámek et al., 2018).10

Fixed points for the iteration of epistemic states can, too, be obtained from
(i) the Kleene fixed point theorem which states: ‘Let f : P → P be a mono-

tone function on a poset [i.e. partially ordered set: reflexive, a ≤ a; transitive,
if a ≤ b ∧ b ≤ c → a ≤ c; anti-symmetric, if a ≤ b ∧ b ≤ a, then a = b –
D.E. ] P . If P has a least element ⊥ and joins of increasing sequences, and if
f preserves joins of increasing sequences, then a least fixed point of f can be
constructed as the join of the increasing sequence:

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ ...’ (https://ncatlab.org/nlab/show/Kleene[pound
symbol]27s+fixed+point+theorem),11 and

(ii) the Pohlová-Adámek fixed point theorem which states: ‘Let C be a
category with an initial object 0 and transfinite composition of length ω, hence
colimits [i.e. sums] of sequences ω → C (where ω is the first infinite ordinal),
and suppose F : C → C preserves colimits of Cω-chains. Then the colimit γ of
the chain

0 →i F (0) →F (i) ... F (n)(0) →F (n)(0) F
(n+1)(0) → ...

carries a structure of the initial F -algebra’ (https://ncatlab.org/nlab/show/Adámek[pound
symbol]27s+fixed+point+theorem).12

The fixed point operators in the modal µ-calculus can be rendered hyperin-
tensional, by defining the elements in the sets in the semantics for the opera-
tors above, such that they are hyperintensional parts of epistemically possible
worlds, rather than whole epistemically possible worlds. [See Fine, 2017a,b,c,
for a presentation of truthmaker semantics, and Elohim (2024) for detailed dis-
cussion of multi-hyperintensional semantics, which incorporates atomic topics,
truthmakers, subject matter similarity relations between truthmakers, and two-
dimensional indexing.] The semantics for each operator can then remain as
presented in the foregoing, while changing the sets and their subsets to hyper-
intensional epistemic states or verifiers instead of worlds.

The fixed point approach to iterated epistemic states will provide a com-
pelling alternative to the KK principle, if Williamson’s argument against the
KK principle does not hold for all ancestral relations of knowledge but rather
only for specific applications of luminosity and modal axiom 4.13 If Williamson’s
argument does not generalize to all ancestral relations of knowledge, then one
can avoid the objection that the fact that µx.(□(ϕ)) entails that one knows that
one knows that ϕ is such that the state collapses just to KK such that the state
would rarely be satisfied in light of the argument against the KK principle. An
iteration procedure via a fixed point operation on a knowledge state is distinct
from an application of the KK principle, i.e. an application of modal axiom 4,
and provides a novel formal method for accounting for the iteration of epistemic
states.

10Lambek (1968: §2). See Adámek et al. (forthcoming).
11Kleene (1971); Cousot and Cousot (1979).
12Pohlová (1973); Adámek (1974).
13Thanks here to Jon Litland for the objection.
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