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Abstract

We present an algorithmically efficient criterion of modal definability for first-order existential conjunctive formulas with several
free variables. Then we apply it to establish modal definability of some family of first-order ∀∃-formulas. Finally, we use our
definability results to show that, in any expressive description logic, the problem of answering modally definable conjunctive
queries is polynomially reducible to the problem of knowledge base consistency.
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1. Introduction

The correspondence between modal and first-order (FO) formulas on Kripke frames is the heart of modal logic. Developed
in the 1960s, it is still a common tool for establishing completeness of many modal calculi. A typical modern example of its
application is given by various logics of multi-agent systems for reasoning about agents’ knowledge, belief, intentions, and
cooperative actions [12].

Traditionally, two kinds of correspondence are studied: the global one between modal formulas and closed FO formulas,
and the local one between modal formulas and FO formulas with one free variable. It was Kracht who first introduced in [25]
the notion of correspondence between n-tuples of modal formulas and FO formulas with n free variables, for arbitrary n ≥ 1.
He established basic properties of this notion and devised a special calculus (called “the calculus of internal descriptions”) for
deriving instances of such a correspondence. In [25] he used this notion of correspondence for proving the claim, known now as
Kracht’s theorem [5, 24], which describes a large class of FO formulas that are modally definable.

Typically, this notion of correspondence is used only as a technical tool for proving similar theorems (see, e.g., [20]). How-
ever, recently a query answering algorithm based on the local correspondence emerged [36, 37]. Its key idea is to replace a
query (which is a FO formula) with a corresponding modal formula. Since this algorithm is based on the local correspondence,
the range of its applications is limited to unary queries, i.e., to FO formulas with one free variable. Now, this limitation can
be overcome by considering a more general kind of correspondence, i.e., modal definability of FO formulas with several free
variables. This is the departing point for our research.

In this paper, we mainly focus on modal definability of FO formulas of a special kind, called existential conjunctive formulas,
or ∃&-formulas, for short. An ∃&-formula is an existentially quantified conjunction of atomic formulas of the form xRy; for
instance, ∃y (xRy∧yRy). The motivation for considering these formulas is not only that they form a natural fragment of FO logic,
but also that they are closely related to so-called conjunctive queries, which play an important rôle in knowledge representation
and reasoning.

The main result of our paper is the algorithmically efficient criterion of modal definability for ∃&-formulas with several free
variables. Moreover, given a modally definable ∃&-formula, our algorithm produces, in polynomial time, the corresponding
tuple of modal formulas. This contrasts to the general case, for it is undecidable whether an arbitrary FO formula (even with one
free variable) is modally definable, due to Chagrova’s result [9].

The paper is organized as follows. Sect. 2 recalls the notion of modal definability (and introduces its generalization, modal
expressibility) for FO formulas with several free variables. Sect. 3 introduces the family of ∃&-formulas, together with their
graph representation. Sect. 3.1 presents our main result — the criterion of modal definability of ∃&-formulas, formulated in
graph-theoretic terms. The proofs of definability and undefinability results are given in Sect. 4 and 5, respectively. In Sect. 6 we
use our results to prove modal definability of a large family of ∀∃-formulas, which arise in many-dimensional modal logics.

The last part of our paper, Sect. 7, gives an application of our definability results to the problem of answering conjunctive
queries in description logic knowledge bases. There we recall all necessary definitions and cornerstone results in that field.
Then, the Reduction Theorem (Theorem 7.2) establishes the relationship between modal definability and query answering in FO
theories. Its consequence (Theorem 7.8) says that for modally definable conjunctive queries, the problem of query answering
can be solved easier than that for arbitrary conjunctive queries, by a polynomial reduction to the problem of knowledge base
consistency. The concluding Sect. 8 points out directions for further research.
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2. Modal definability

Modal formulas are built up from propositional variables PV = {p0, p1, . . .} and modal operators {�` | ` ∈ L} according to the
following syntax:

ϕ, ψ ::= pi | ¬ϕ | ϕ ∧ ψ | �`ϕ.

Other connectives are taken as standard abbreviations, e.g. ◇`ϕ = ¬�`¬ϕ.
Let us recall the Kripke semantics. A frame F = (W, (R`)`∈L) consists of a nonempty set W of points or worlds and binary

relations R` ⊆ W ×W. A model is a pair M = (F, θ), where F is a frame and θ a valuation on F, i.e., a function that assigns to
each variable p a set θ(p) ⊆ W. The truth of a formula ϕ at a point w ∈ W in a model M (denoted by M,w |= ϕ or F, θ,w |= ϕ) is
defined in a standard way. In particular, M,w |= �`ϕ iff M, u |= ϕ for all points u ∈ W with wR`u. A formula ϕ is called valid at
a point w of a frame F (notation: F,w |= ϕ) if F, θ,w |= ϕ for all valuations θ.

Next fix a countable set Var of individual variables and consider the first-order (FO) language with equality in the signature of
binary relation symbols1 R`, for each ` ∈ L. Observe that a frame F can serve as an interpretation for this language. Hence, given
a FO formula A(x1, . . . , xn) with n free variables and n elements e1, . . . , en ∈ W, the relation F |= A(e1, . . . , en) is well-defined.

Now we come to the central definition of our paper, first proposed by Kracht in [25]. Intuitively, it formalizes the notion of
a first-order formula A(x1, . . . , xn) and a tuple of modal formulas 〈ϕ1, . . . , ϕn〉 being equivalent in some sense. Unless otherwise
stated, below we assume that n ≥ 1, so that we do not consider closed FO formulas.

Definition 2.1. A FO formula A(x1, . . . , xn) corresponds to a tuple of modal formulas 〈ϕ1, . . . , ϕn〉 if, for any frame F and any
points e1, . . . , en in F, the equivalence holds:

F |= A(e1, . . . , en)⇐⇒ for every valuation θ there is i ≤ n with F, θ, ei |= ϕi.

In this case we write A(~x) ! 〈ϕ1, . . . , ϕn〉. A formula A(~x) is modally definable if it corresponds to some tuple of modal
formulas. For n = 1 this yields the classical definition of local correspondence between a FO formula A(x) with one free variable
and a modal formula ϕ.

Let us write F, θ |= e:ϕ as a shortcut for F, θ, e |= ϕ and allow for disjunctions of expressions e:ϕ. Then we can rewrite the
above equivalence as follows:

F |= A(e1, . . . , en) ⇐⇒ for every valuation θ we have F, θ |= e1:ϕ1 ∨ . . . ∨ en:ϕn.

Or even shorter, using the notion of validity (see also Definition 2.4 below):

F |= A(e1, . . . , en) ⇐⇒ F |= e1:ϕ1 ∨ . . . ∨ en:ϕn.

Here are some examples (proofs are left to the reader):

• A(x, y) = xRy corresponds to the pair of modal formulas 〈◇p,¬p〉,
• A(x, y) = ∃z (xRz ∧ yRz) corresponds to the pair 〈◇p,◇¬p〉,
• A(x, y) = ∃z (xRz ∧ zRx ∧ yRz ∧ zRy) corresponds to 〈¬p ∨◇¬q,¬r ∨◇(q ∧◇p ∧◇r)〉.

The set of modally definable FO formulas is closed under disjunction. Indeed, if A(x1, . . . , xn) corresponds to 〈ϕ1, . . . , ϕn〉 and
B(x1, . . . , xn) corresponds to 〈ψ1, . . . , ψn〉, then A∨B correspond to 〈ϕ1∨ψ1, . . . , ϕn∨ψn〉, provided that the tuples 〈ϕ1, . . . , ϕn〉 and
〈ψ1, . . . , ψn〉 have no common propositional variables (which can be assumed w.l.o.g.). On the contrary, conjunction of modally
definable FO formulas is not always definable, as the following example shows.

Example 2.2. Reflexivity is known to be modally definable: the formula A(x, y) = xRx corresponds to the pair 〈p→ ◇p,⊥〉,
and the formula B(x, y) = yRy corresponds to 〈⊥, p→ ◇p〉. Let us show that their conjunction C(x, y) = xRx ∧ yRy is not
modally definable. Assume the contrary, i.e., that C corresponds to a pair of modal formulas 〈ϕ, ψ〉.

Let W = {a, b} and consider two frames F1 = (W, {〈a, a〉}) and F2 = (W, {〈b, b〉}). Obviously, C(a, b) is false in both F1
and F2. Hence there exist valuations2 θ1, θ2: W → 2PV such that, denoting M1 = (F1, θ1) and M2 = (F2, θ2), we have M1, a 6|= ϕ
and M2, b 6|= ψ.

Now consider a frame F = (W, {〈a, a〉, 〈b, b〉}). Clearly, C(a, b) is true in F. In order to obtain a contradiction with modal
definability of C, let us show that F 6|= a:ϕ ∨ b:ψ. Consider a model M = (F, θ), where we put θ(a) := θ1(a) and θ(b) := θ2(b).
Then the following bisimulations ([5, p. 64]) hold: M, a ∼ M1, a and M, b ∼ M2, b. Hence M, a 6|= ϕ and M, b 6|= ψ. Thus, F, θ 6|=
a:ϕ ∨ b:ψ.

1We use R` for a relation in a frame and R` for the corresponding predicate symbol.
2By definition, a valuation is a function θ: PV→ 2W , but it can be also represented as a function θ′: W → 2PV, by putting θ′(w) = {p ∈ PV | w ∈ θ(p)}.
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2.1. Modal expressibility
Here we generalize the notion of modal definability so that the resulting notion is closed under both conjunction and disjunc-

tion. Recall that Var stands for the set of individual variables that are used in first-order formulas.

Definition 2.3 (Syntax). Modal expressions have the following syntax:

Φ,Ψ ::= x:ϕ | Φ ∧ Ψ | Φ ∨ Ψ,

where x ∈ Var and ϕ is an arbitrary modal formula. We can assume that negation (and hence implication) of modal expressions is
available as well: ¬ can be pushed down through ∧ and ∨, and ¬(x:ϕ) can be taken as a shortcut for x:¬ϕ. If a modal expression
Φ contains individual variables x1, . . . , xn, we indicate this as Φ(x1, . . . , xn). Modal expressions can be regarded as formulas of
the hybrid logicH(@), once we rewrite x:ϕ as @xϕ (cf. [4], p. 49, see also Chapter 14).

Definition 2.4 (Semantics). The truth of a modal expression Φ(~x) in a model M on an n-tuple of its elements ~e is denoted by
M |= Φ(~e) and defined by induction: M |= e:ϕ iff M, e |= ϕ; the cases of ∧ and ∨ are standard. Validity of a modal expression in
a frame on a tuple of elements F |= Φ(~e) is defined as usual.

Definition 2.5. A FO formula A(~x) corresponds to a modal expression Φ(~x), written as A(~x)! Φ(~x), if for every frame F and
every n-tuple of its elements ~e, the equivalence holds:

F |= A(~e) ⇐⇒ F |= Φ(~e).

If such an expression Φ(~x) exists, the FO formula A(~x) is called modally expressible.

For example, the formula A(x, y) = xRy corresponds to the modal expression y: p→ x:◇p. Observe that the family of
modally expressible FO formulas is closed under both conjunction and disjunction. Kracht’s modal definability (Def. 2.1) is a
special case of modal expressibility, with Φ(~x) = x1:ϕ1 ∨ . . . ∨ xn:ϕn; modal expressions of this kind will be called Kracht
disjunctions, since they essentially appeared, although implicitly, in [25].

A notion equivalent to our notion of a modal expression was considered even earlier by van Benthem in [3, Ch. 3] from a
different perspective. Therein, he introduced a family of FO formulas with several free variables called m-formulas and proved
that every m-formula is equivalent to a Boolean combination of (the standard translations of) expressions of the form xi:ϕi,
for some variables xi and modal formulas ϕi (see our Sect. 7.1 below for the definition of the standard translation). Thus, van
Benthem’s m-formulas are exactly the FO translations of our modal expressions. In [3, Theorem 3.9] he proved the following
result: an arbitrary FO formula A(~x) with unary and binary predicate symbols is equivalent to some m-formula (i.e., A(~x)
is equivalent on Kripke models, not frames, to some modal expression Φ(~x)) iff A(~x) is invariant for total bisimulations and
generated submodels.

3. Existential conjunctive first-order formulas

In the sequel, we investigate modal definability of existential conjunctive formulas (or ∃&-formulas, for short), which are
first-order formulas of the form ∃~y B(~x, ~y), where B is a conjunction of atomic formulas. Whether such a formula is modally
definable depends on its properties, which can be conveniently formulated in graph-theoretic terms. So, first let us introduce a
graph representation of such formulas.

Suppose that we are given an ∃&-formula A(~x) = ∃~y B(~x, ~y), where B is a conjunction of formulas of the form zRz′ with
R ∈ {R` | ` ∈ L}, z, z′ ∈ (~x, ~y), ~x = (x1, . . . , xn), ~y = (y1, . . . , ym). To this formula we associate a two-color graph called the
diagram (or ∃-diagram) of A, which is a tuple

D = (V,V•,V◦, (Π`)`∈L),

where V = V• ∪ V◦, V• = {x1, . . . , xn} (black nodes), V◦ = {y1, . . . , ym} (white nodes), V• ∩ V◦ = ∅, and binary relations Π` ⊆ V×V
are defined as follows:

〈z, z′〉 ∈ Π` ⇐⇒ the formula B(~x, ~y) contains the conjunct zR`z′.

So, in the diagram D, black and white nodes are the free and bound variables of the formula A, respectively, and edges correspond
to conjuncts in the formula B. We will denote diagrams by D = (V,V•,V◦, ~Π), where ~Π = (Π`)`∈L.

Conversely, any diagram D (i.e., a graph of the above type) gives rise to an ∃&-formula AD(~x) = ∃~y BD(~x, ~y), where

BD(~x, ~y) =
∧{

zR`z′ | 〈z, z′〉 ∈ Π`, ` ∈ L
}
.

For instance, the diagram in Figure 1 gives rise to the following ∃&-formula:

A(x1, x2) = ∃y1∃y2∃y3(x1Ry1 ∧ y1Ry2 ∧ y2Ry1 ∧ y2Rx2 ∧ x2Ry3).

Now we can apply all graph-theoretic notions to ∃&-formulas, meaning that we are talking about the associated diagrams.
We assume the reader to be familiar with standard notions of graph theory, such as a (directed or undirected) path and cycle,
etc.. A graph is called connected if any two distinct nodes are connected by a (possibly undirected) path, acyclic if it contains no
cycles (even undirected). A node b is called reachable from a node a if there is a directed path from a to b.

Given a diagram D and a subset Z ⊆ V of its nodes, by D�Z we denote its subgraph (diagram) spanned by the set Z. A white
edge (path, cycle) in a diagram is an edge (path, cycle) that contains only white nodes. A white subgraph of D is the graph
(diagram) D�V◦ . Similarly for the black color. Two diagrams D and D′ with the same set of black nodes ~x are called equivalent
if their formulas AD(~x) and AD′ (~x) are equivalent. To any diagram D = (V,V•,V◦, ~Π) we associate a frame FD = (V, ~Π) obtained
from D by forgetting the colors of nodes.
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Figure 1: A diagram (minimal, accessible, and containing a white cycle).

minimal ∃&-formula A(~x) = ∃~y B(~x, ~y)
inaccessible accessible

inexpressible

white-cyclic white-acyclic

inexpressible
disconnected connected
expressible,

definable
not definable

Table 1: Criterion of modal definability for ∃&-formulas.

3.1. Criterion of modal definability

The main result of our paper is the criterion of modal definability (and expressibility) for ∃&-formulas. It is efficient, in
the sense that there is an algorithm that, given an ∃&-formula, decides whether it is modally definable or expressible (and if so,
produces the corresponding modal formulas or a modal expression). Note that in general the problem of determining whether a
first-order formula (even with only one free variable) is modally definable is undecidable, due to Chagrova’s result [9].

Definition 3.1. A diagram D (and its ∃&-formula) is called

• minimal if removing any of its edges yields a diagram not equivalent to D;
• accessible if every white node is reachable from some black node;
• white-acyclic if its white subgraph is acyclic.

The criterion is summarized in Table 1. Below we give explicit formulations of the results and provide some comments.

Criterion. Let A(~x) = ∃~y B(~x, ~y) be an ∃&-formula. Without loss of generality, we can assume that A(~x) is minimal.3

Indeed, given an ∃&-formula, one can efficiently build an equivalent minimal one. Simply, try to remove edges one by one
and check whether the resulting formula A′(~x) implies A(~x). If it does, then the removed edge was redundant and we can repeat
the process for the new formula. Note that checking whether one ∃&-formula implies another one amounts to checking the
existence of a graph homomorphism (which is an NP-complete problem).

• If A(~x) is minimal, but inaccessible, then it is not modally expressible, and hence not modally definable (Lemma 5.7). This
is intuitively clear: no modal formula can say anything about unreachable worlds in a Kripke frame.

• If A(~x) is minimal,4 accessible, but contains a white cycle, then it is not modally expressible, and hence not modally
definable (Theorem 5.15).

This is one of the hardest (negative) results of our paper. Its proof employs the notion of the ultrafilter extension of a
Kripke frame.

• If A(~x) is accessible, white-acyclic, and connected, then it is modally definable (Theorem 4.1). This is the most important
positive result of our paper.

• If A(~x) is accessible and white-acyclic, then it is modally expressible (Theorem 4.2). If, additionally, it is disconnected and
minimal, then it is not modally definable (Lemma 5.8). This is the only case where modal expressibility gives us more than
modal definability.

4. Definable ∃&-formulas

This section is devoted to the proof of the positive results stated in Sect. 3.1.

Theorem 4.1. If an ∃&-formula A(~x) is accessible, white-acyclic, and connected, then it is modally definable.

3Minimality is only needed in negative (i.e., undefinability) results. For positive results it is redundant, as the algorithm that produces modal formulas or
expressions does not require the minimality of an ∃&-formula.

4Minimality is essential here, as the formula A(x) = ∃y (xRx ∧ xRy ∧ yRy) illustrates: despite the presence of a white cycle yRy, it is equivalent to xRx and
so is modally definable. On the other hand, the formula A′(x) = ∃y (xRy ∧ yRy) is minimal and known to be undefinable [19].
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Figure 2: A modally definable diagram.

Theorem 4.2. Every accessible and white-acyclic ∃&-formula A(~x) is modally expressible.

The latter theorem is a simple corollary of the former one. Indeed, the diagram of A(~x) is a disjoint union of connected
components. Hence A(~x) is a conjunction of modally definable (and hence modally expressible) formulas, and so is modally
expressible itself.

Before we proceed to the proof of Theorem 4.1, let us formulate this theorem for the case n = 1 more specifically, using the
notion of a modal generalized Sahlqvist formula introduced by Goranko and Vakarelov [18] (we will not reproduce its rather
complicated definition here).

Theorem 4.3. If an ∃&-formula A(x) with one free variable is accessible and white-acyclic, then it corresponds to some modal
generalized Sahlqvist formula.

The proof is given at the end of Sect. 4.2, as it uses some notions introduced below. The remainder of Sect. 4 constitutes the
proof of Theorem 4.1. Let us first illustrate the underlying idea with examples.

4.1. Examples

Here we demonstrate how to turn an ∃&-formula that satisfies the conditions of Theorem 4.1 into a modal expression.
Schematically, the process consists of the following stages:

∃&-formula 7→ diagram 7→ term 7→ system 7→ solution 7→ modal expression.

For the time being, please do not look for the rigorous meaning of each step presented below, rather consider them as a “rule of
thumb”. Everything will be explained in the subsequent subsections.

Example 4.4. Consider an ∃&-formula whose diagram D is depicted in Fig. 2:

A(x, y) = ∃z∃w (xR1z ∧ xR2w ∧ zR3y ∧ yR4w ∧ zR5w).

Observe that it is accessible, white-acyclic, and connected, thus satisfies the preconditions of Theorem 4.1. First, we build a term
that “describes” the diagram D “from the viewpoint” of the node x:

t = ◇1

(
◇3y ∧◇5(x2x ∧x4y)

)
.

Intuitively, it says that the node x can 1-see a node (labeled by z) that 3-sees y and 5-sees a node (labeled by w) that is 2-seen
from x and 4-seen from y. In order to obtain modal formulas, we need to eliminate x’s and the nominals x and y. To this end,
we introduce propositional variables p, q, r that will “stand for” the corresponding subterms of t:

t = ◇1

(
◇3 y︸︷︷︸

p

∧◇5( x2x︸︷︷︸
q

∧ x4y︸︷︷︸
r

)
)
.

Thus we obtain the following “system” and “solve” it as described in Sect. 4.4.1:
y ⇒ p

x2x ⇒ q
x4y ⇒ r

 


y ⇒ p
x ⇒ �2q
y ⇒ �4r

Now we use this to build a modal expression: its antecedent is the conjunction of the lines of the above solution, whereas its
consequent is x: t′, where t′ is a modal formula obtained by substituting the variables p, q, r for the appropriate subterms into t:(

y: p ∧ x:�2q ∧ y:�4r
)
→ x:◇1(◇3 p ∧◇5(q ∧ r)).

Clearly, it can be equivalently rewritten into a modal expression of the form x:ϕ ∨ y:ψ, where ϕ and ψ are ordinary modal
formulas. So, the FO formula A(x, y) is modally definable indeed.
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Example 4.5. For the same formula A(x, y), we could proceed alternatively. Let us start our “traversal” of the diagram D with
the edge xR2w. Then we obtain a different term t1 that again “describes” the diagram D “from the viewpoint” of the node x:

t1 = ◇2

(
x4y︸︷︷︸

q

∧ x5(◇3

p︷︸︸︷
y ∧x1x)︸                     ︷︷                     ︸
r

)
.

This time we obtain (and solve) the following “system”:
y ⇒ p

x4y ⇒ q
x5(◇3 p ∧x1x) ⇒ r

 


y ⇒ p
y ⇒ �4q
x ⇒ �1(◇3 p→ �5r)

Finally, we obtain a modal expression similarly to the above:(
y: p ∧ y:�4q ∧ x:�1(◇3 p→ �5r)

)
→ x:◇2(q ∧ r).

Although the resulting modal expression differs from that in the previous example, the reader is encouraged to verify that both
expressions correspond to our ∃&-formula A(x, y).

4.2. Safe terms
Here we describe a wide family of first-order formulas with several free variables that are modally definable (see Theo-

rem 4.13 below). They are obtained from the so called safe terms5 introduced (in different notation) in [20].

Definition 4.6 (Syntax). Terms are built up according to the following syntax, where x ranges over the set Var of nominals and
` ∈ L:

t, s ::= > | ⊥ | x | t ∧ s | t ∨ s | ◇`t | �`t | x`t.

One can see that terms are what is known as hybrid formulas [4, p. 49] extended with converse diamonds x, but containing no
propositional variables, negations, or converse boxes ⊟. Terms with propositional variables will appear later in Sect. 4.4.

Definition 4.7 (Semantics). Given a term t(~x) that contains nominals ~x = (x1, . . . , xn), a frame F = (W, (R`)`∈L), and its elements
b and ~a = (a1, . . . , an), we define the truth relation F, b |= t(~a) inductively as follows (the cases for the Boolean connectives
>,⊥,∧,∨ are standard):

F, b |= a 
 b = a
F, b |= ◇`t 
 ∃c ∈ W ( bR`c & F, c |= t )
F, b |= �`t 
 ∀c ∈ W ( bR`c ⇒ F, c |= t )
F, b |= x`t 
 ∃c ∈ W ( cR`b & F, c |= t )

Definition 4.8 (Standard translation). To every term t(~x) we associate a FO formula t∗(~x; y) (or t∗(y) for short, when ~x is clear
from context); its free variables are y and those nominals xi that occur in t. The translation t∗ is defined by induction (here z is a
fresh variable; the cases for the Boolean connectives >,⊥,∧,∨ are standard):

x∗i (y) := (y = xi)
(◇`t)∗(y) := ∃z ( yR`z ∧ t∗(z) )
(�`t)∗(y) := ∀z ( yR`z→ t∗(z) )
(x`t)∗(y) := ∃z ( zR`y ∧ t∗(z) )

Since the standard translation “mimics” the semantics of terms, it is clear that F, b |= t(~a) iff F |= t∗(~a; b). Below, we omit the
subscript ` in operators ◇,�,x whenever possible, assuming that it ranges over L.

Definition 4.9. Simple6 terms are defined by induction (notice ‘or’ in the third item):

• each nominal xi is a simple term;
• if t is simple, then so is xt;
• if t or s is simple, then so is t ∧ s.

A term is called safe if all its subterms of the form xt are simple.

Examples of simple terms are x, xx, x(xx ∧ ◇xy); they are also safe. The term ◇x is safe but not simple; the term
xx ∧x◇x is simple, but not safe; the termx◇x is neither simple, nor safe. Simple terms can be characterized in terms of their
syntactic trees as follows. Ax∧-path in the syntactic tree of a term is a path from its root to a leaf in which all nodes (except for
its end) are labeled by either ∧ or x.

5Originally, terms represent (in some sense not discussed here) minimal valuations in van Benthem’s substitution algorithm for computing first-order equiva-
lents of generalized Sahlqvist formulas; the latter were introduced in [18].

6Our terminology differs from that in [20]. What we call here: (a) a term, (b) a simple term, (c) a safe term, corresponds in [20] to: (a) an L-expression, (b) an
L-expression φ safe for φ, (c) a positive combination of L-expressions or a quasi-safe L-expression.
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Lemma 4.10. A term is simple iff its syntactic tree contains a x∧-path from the root to some nominal.

Let us write F |= b: t(~a) as an alternative notation for F, b |= t(~a). This gives us the semantics for “expressions” of the form
y: t(~x). Note that y: t(~x) can be regarded as a hybrid formula @yt(~x).

Definition 4.11. We say that a FO formula C(~x, y) is equivalent to y: t(~x), written as C(~x, y) ↔ y: t(~x), if for every frame F and
all its points ~a, b, we have F |= C(~a, b) iff F |= b: t(~a).

We say that y: t(~x) corresponds to a modal expression Φ(~x, y) and write y: t(~x) ! Φ(~x, y) if, for every frame F and all its
elements ~a, b, we have F |= b: t(~a) iff F |= Φ(~a, b). A term t(~x) is called modally expressible if y: t(~x) corresponds to some modal
expression Φ(~x, y); if Φ(~x, y) here is a Kracht disjunction x1:ϕ1 ∨ . . . ∨ xn:ϕn ∨ y:ϕ, the term t is called modally definable.

Now we are ready to outline our plan of the proof of Theorem 4.1. For a given ∃&-formula A(~x) that satisfies the conditions
of the theorem, we build a safe term t(~x) such that A(~x) is equivalent to xi: t(~x), for some i. Then for this safe term t we build a
corresponding modal expression Φ(~x, y). As a consequence, A(~x) corresponds to Φ(~x, xi), so we are done. Formally, we establish
the following two theorems.

Theorem 4.12. Given an accessible, white-acyclic, and connected ∃&-formula A(~x) and any i ≤ n, one can build in polynomial
time a safe term t(~x) such that A(~x) is equivalent to xi: t(~x).

For the proof, see Sect. 4.3. Note that the resulting safe term t will contain only nominals and operators >,∧,◇,x.

Theorem 4.13. Every safe term is modally definable. Moreover, given a safe term t(~x), one can build in polynomial time a modal
expression (even a Kracht disjunction) Φ(~x, y) that corresponds to y: t(~x).

The proof is given in Sect. 4.4. We prove this theorem for safe terms t that may additionally involve the operators ⊥,∨,�
(as it costs us almost nothing). Note that Theorem 4.13 has already been proved in Lemma 35 of [20]. Here we re-establish this
result and present an explicit polynomial algorithm that produces a modal expression Φ for a given safe term t.

Thus, FO formulas of the form t∗(~x; y), for safe terms t, yield a family of modally definable FO formulas with several free
variables.

We are ready to prove Theorem 4.3, which says: If an ∃&-formula A(x) with one free variable is accessible and white-acyclic,
then it corresponds to some generalized Sahlqvist modal formula.

Proof. Since A(x) has a single free variable, accessibility of its diagram implies connectivity. Then, by Theorem 4.12, A(x) is
equivalent to x: t(x), for some safe term t. Now, the (standard translation of the) expression x: t(x) is a special case of a first-order
generalized Kracht formula introduced in [20, Def. 29]. Therefore, by Theorem 30 from [20], x: t(x), and hence A(x), corresponds
to some generalized Sahlqvist modal formula.

4.3. From diagrams to safe terms

Here we prove Theorem 4.12. Let D be a diagram, AD(~x) its ∃&-formula, xi its black node. A pair (D, xi) will be called a
•-diagram; it will be called acyclic, accessible, etc., if D is so.

Definition 4.14. We say that a term t(~x) represents a •-diagram (D, xi) if the formula AD(~x) is equivalent to xi: t(~x).

Our aim is to show that any accessible, white-acyclic, connected •-diagram is representable by a safe term. To this end, we
first show that any such diagram can be obtained from an acyclic one by merging some black nodes (Lemma 4.17). Secondly,
for an acyclic •-diagram, its representing term can be built easily (Lemma 4.18).

Let D = (V,V•,V◦, ~Π) and D′ = (V ′,V•′,V◦, ~Π′) be diagrams with the same white subgraph: Π`�V◦ = Π′`�V◦ , for each ` ∈ L. Here
V• = {x1, . . . , xn} and V•′ = {x′1, . . . , x

′
κ}.

Definition 4.15. We say that D′ is obtained by merging black nodes in D if there is a function f : V → V ′ (we call it a •-merging
function) that is identical on white nodes: f (y) = y for all y ∈ V◦, surjectively maps V• onto V•′, and the induced function on pairs
of nodes defined by 〈u, v〉 7→ 〈 f (u), f (v)〉 surjectively maps Π` onto Π′`, for each ` ∈ L.

Observe that merging black nodes in a diagram D corresponds to substituting in its ∃&-formula AD(~x) some free variables
for some other free variables, and then removing duplicate conjuncts. To be more precise, if f (xi) = zi for all 1 ≤ i ≤ n, where
zi ∈ ~x ′ = (x′1, . . . , x

′
κ), then the formula AD′ (~x ′) is equivalent to AD(~z).

Lemma 4.16. Any •-merging function preserves representability of •-diagrams by safe terms.

Proof. Assume that a safe term t(~x) represents a •-diagram (D, xi), so, AD(~x) ↔ xi: t(~x). Substituting ~z for ~x yields AD(~z) ↔
zi: t(~z). By the above remark, AD′ (~x ′) ↔ AD(~z). Therefore, AD′ (~x ′) ↔ zi: t(~z), hence the term t(~z) represents the •-diagram
(D′, zi). It remains to note that t(~z) is a safe term, for renaming nominals preserves safety.

Lemma 4.17. Any white-acyclic diagram D can be obtained by merging black nodes in some acyclic diagram D′. If additionally
D is accessible and connected, then D′ can be chosen so too. The diagram D′ and the •-merging function from D′ onto D can be
built efficiently (in polynomial time).
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Proof. By induction on the number of (undirected) simple7 cycles in D. Let us show how to reduce this number by one. Assume
that D has an simple cycle. Since D is white-acyclic, this cycle contains a black node, say x ∈ V•, and so has a form:

x = v0
`1— v1 . . .

`κ— vκ = x,

where all nodes vi are distinct except for that v0 = vκ, and κ ≥ 1.
Now we add to D a fresh black node x′ and replace the edge x `1— v1 with the edge x′ `1— v1 of the same orientation.8 The

resulting diagram D′ has at least one simple cycle less than D has. Indeed, every simple cycle in D′ belongs to D (since the node
x′ has degree 1 and so cannot occur in simple cycles), and the above cycle does not belong to D′. The projection from D′ onto
D is built in the obvious way: let f (x′) = x and let f be identical on all other nodes. Note that the diagram D′ is accessible and
connected if D was so.

Lemma 4.18. Every accessible, acyclic, connected •-diagram is representable by a safe term, which can be built in polynomial
(linear) time.

Proof. Given such a •-diagram (D, r), we introduce a non-transitive relation ≺ on the set V of its nodes: x ≺ y iff x belongs to
the (unique undirected) path from r to y, and the nodes x and y are adjacent (i.e., linked by an edge in any direction). Clearly,
(V,≺) is a directed tree with the root r.

Now, to each node z of D, we associate a term tz by induction from leaves to the root of the tree (V,≺):

• For z a leaf of the tree, we put tz =

{
z, if z is a black node,
>, if z is a white node.

• For z not a leaf of the tree, we put tz =

{
z ∧ sz, if z is a black node,
sz, if z is a white node.

Here
sz =

∧
{◇`tv | z ≺ v, 〈z, v〉 ∈ Π`, ` ∈ L } ∧∧
{x`tv | z ≺ v, 〈v, z〉 ∈ Π`, ` ∈ L }.

It remains to prove that the term tr is safe and represents the •-diagram (D, r).

Claim 1. The term tr is safe.
Indeed, take any subterm of tr of the form x`t. By the above construction, t = tv for some node v. Moreover, x`tv is a

conjunct in sz for some node z with z ≺ v and 〈v, z〉 ∈ Π` (see the second line of the definition of sz). We need to show that x`t
(or, equivalently, t itself) is simple.

If v is a black node, then tv = v ∧ sv is simple, since v is a nominal.
If v is a white node, then since D is accessible, there is a directed path p from some black node x to v. Note that x , r;

indeed, the only (undirected) path from r to v goes through z (since z ≺ v), and the last edge in that path is directed from v to z,
not vice versa (since 〈v, z〉 ∈ Π`). Then, by induction on the length of the path p, we can show that, for every node y in this path
(including y = v), the term ty is simple. Induction base (v = x) is trivial. As for induction step, ty is a conjunction with at least
one conjunct of the formxκtu, where the node u is closer to x and, by induction hypothesis, tu is simple, hence so isxκtu and the
whole conjunction ty.
Claim 2. The term tr represents the •-diagram (D, r).

For every node z in D, denote by Dz the diagram obtained from D by taking the z-rooted subtree of (V,≺) and making the
node z black (if it was white in D); the colors of other nodes of Dz and the edges between nodes of Dz are the same as in D.
It suffices to prove, by induction from leaves to the root of (V,≺), the following statement: for every node z in D, the term tz
represents the •-diagram (Dz, z). In symbols, we need to prove the equivalence: z: tz(~x) ↔ ADz (~x). Below, we omit ~x. Since an
“expression” of the form v: t(~x) is equivalent to the FO formula t∗(~x; v), below we freely use v: t in FO formulas.

Induction base. If z is a leaf of the tree (V,≺), then tz is either z or >, hence z: tz is equivalent to >. At the same time, the
formula ADz is an empty conjunction and hence equivalent to >, too.

Induction step. Assume that z is not a leaf. For simplicity, let z have only two children in (V,≺), a black one x ∈ V• and
a white one y ∈ V◦, linked to z by the edges 〈z, x〉 ∈ Π` and 〈y, z〉 ∈ Πκ, for some `, κ ∈ L. (If z has more children or edges are
oriented differently, the argument is the same, but notation becomes cumbersome.) To avoid trivial cases, let us also assume that
neither x nor y is a leaf. So, we have sz = ◇`tx ∧xκty, and the formula ADz is related to the formulas ADx and ADy as follows:

ADz ↔ ( zR`x ∧ ADx ) ∧ ∃y ( yRκz ∧ ADy ). (1)

In order to prove that z: tz ↔ ADz , observe that the following chain of equivalences holds:

z: tz
(a)
←→ z: sz

(b)
←→ z: (◇`tx ∧xκty)

(c)
←→ ∃u ( zR`u ∧ u: tx ) ∧ ∃v ( vRκz ∧ v: ty )

(d)
←→ ( zR`x ∧ x: tx ) ∧ ∃y ( yRκz ∧ y: ty ). (2)

7A cycle is called simple if all its nodes are distinct. Of course, we have to count only simple cycles, since a cyclic graph always has infinitely many
non-simple cycles.

8In particular, if we had a loop in D, i.e., a cycle of the length κ = 1, then the edge xΠ`x is replaced with x′Π`x.
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Here (a) holds since tz is either sz or z ∧ sz; (b) holds due to sz = ◇`tx ∧xκty; (c) uses the equivalence z:◇t ↔ ∃w ( zRw ∧ w: t )
and a similar one for x; (d) uses two facts: first, x is black and so tx = (x ∧ sx), hence u: tx ↔ (u = x) ∧ u: tx, thus we can drop
∃u and replace u with x; secondly, y is white and hence does not occur in ty, so we can rename v into y.

By induction hypothesis, x: tx ↔ ADx and y: ty ↔ ADy . Therefore, the last formulas in (2) and (1) are equivalent, so we are
done.

4.4. From safe terms to modal formulas
Here we prove Theorem 4.13. Let t(~x) be a safe term. We show how to transform y: t(~x) into a corresponding modal expression

of the form (which is obviously equivalent to a Kracht disjunction defined in Sect. 2.1):

(x1:ϕ1 ∧ . . . ∧ xn:ϕn) → y:ϕ (3)

Idea. We shall eliminate nominals and x’s from t one by one and substitute propositional variables pi for some of its
subterms, until t contains no nominals orx’s and hence is an ordinary modal formula. At intermediate steps of the transformation
of a term into a modal formula we will obtain “terms with variables” (let us call them terms too) whose syntax is:

> | ⊥ | x | p | t ∧ s | t ∨ s | ◇t | �t | xt

Simple and safe terms are defined as in Def. 4.9. In particular, p is a safe but not simple term.
Furthermore, we will have to consider “mixed” expressions of the form Ψ(~x) → y: t(~x), where Ψ is an ordinary modal

expression (see Def. 2.3) and t is a term (possibly with variables). In particular, y: t(~x) can be regarded as a “mixed” expression.
Semantics for them (the notions of truth in a model and validity in a frame, on a given tuple of worlds) can be given just by
combining Definitions 2.4 and 4.7. For these expressions, we introduce the following notion.

Definition 4.19. Two expressions E(~x) and E′(~x) are called equi-valid if, for every frame F and all its points ~a, we have: F |= E(~a)
⇐⇒ F |= E′(~a).

Now we are ready to prove our theorem. By induction on the number of occurrences of nominals in t, we prove a slightly
more general statement: a “mixed” expression Φ(~x, y) of the form

(x1:ϕ1 ∧ . . . ∧ xn:ϕn)→ y: t(~x) (4)

where t(~x) is a safe term, can be transformed into an equi-valid modal expression of the form (3).
Induction base. If the term t in (4) contains no nominals, then (since t is safe) it contains nox’s either and thus is an ordinary

modal formula. Therefore, Φ is already of the form (3).
Induction step. It suffices to show, given an expression Φ(~x, y) of the form (4), how to reduce the number of occurrences of

nominals in t by 1. We need an auxiliary notion.
Usually, the depth of an occurrence of a subterm in a term is defined as the number of operators in the scope of which this

subterm lies. Here we need a similar measure, which however ignores the operators ∧ and x. Formally, the x∧-ignoring depth
of an occurrence9 of a nominal x in a term t is denoted by d(x, t) and defined by induction:

d(x, x) := 0,
d(x, t ∧ s) = d(x, s ∧ t) := d(x, t), where x is in t,
d(x, t ∨ s) = d(x, s ∨ t) := d(x, t) + 1, where x is in t,
d(x,�t) = d(x,◇t) := d(x, t) + 1,

d(x,xt) := d(x, t).

For example, for a term t = x(◇x∧xy∧ (xxz∨�x)) we have d(x, t) = 1 for the first occurrence of x, d(y, t) = 0, d(z, t) = 1
and d(x, t) = 2 for the second occurrence of x.

Now, given an expression Φ(~x, y) of the form (4), let us run the following procedure.

1. Find in t the deepest with respect to d(·, t) occurrence of a nominal; let it be x ∈ ~x.
2. Find in t the maximal (with respect to the subterm–term relation) simple subterm s = s(x) containing this occurrence of x

and no other occurrences of any nominals (including x). Such a term s exists, since x itself is simple.
3. Replace in t this occurrence of s with a fresh variable p, thus obtaining a term t′ = t′(~x, p) = t[s 7→ p].
4. Solve the “equation” s(x) ⇒ p, i.e., transform it into x ⇒ ϕ(p), where ϕ is a modal formula, as described in Sect. 4.4.1

below.
5. Finally, transform Φ(~x, y) as follows: add x:ϕ into its premise and replace t with t′ in its conclusion. The resulting

expression Φ′(~x, y) looks as follows:

(x1:ϕ1 ∧ . . . ∧ xn:ϕn) ∧ x:ϕ(p) → y: t′(~x, p)

It is of the form (4), but with a fewer number of occurrences of nominals in t′ than in t.

9Below, we deal with occurrences of subterms, nominals, etc., although we do not introduce special notation for occurrences, and even omit the word
‘occurrence’ sometimes.
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It remains to show that the term t′ obtained at Step 3 is safe (see Lemma 4.20), explain how to “solve equations” at Step 4 (see
Sect. 4.4.1), and finally prove that the expressions Φ(~x, y) and Φ′(~x, y) are equi-valid (see Lemma 4.23).

Lemma 4.20. The term t′ obtained at Step 3 is safe.

Proof. Assume on the contrary that t′ has a non-simple subterm of the form xr. Clearly, xr contains p, since otherwise xr is
inherited from t, where all subterms of this form are simple. So, the subterm xr(s) of t is simple, but the subterm xr(p) of t′ is
not. Let us consider the syntactic trees of t and t′.

Claim. The path from xr(s) to the chosen occurrence of x is a x∧-path.

Assume the contrary. Since the term xr(s) is simple, by Lemma 4.10 there is a x∧-path γ from it to some occurrence
of nominal, say y (possibly, y = x). This occurrence of y is outside s, because s contains no occurrences of any nominals
other than the chosen occurrence of x, and the path from xr(s) to x is not a x∧-path, by our assumption. But then the
substitution [s 7→ p] does not affect the path γ. Thus, γ is ax∧-path in t′ fromxr(p) to y, and soxr(p) is simple, contrary
to its choice.

Let us call a subterm of t nice if it is simple, contains the chosen occurrence of the nominal x and no other occurrences of
any nominals (including x). So, by assumption, s is the maximal nice subterm of t.

Consider the immediate superterm σ of s in t. Since s is a proper subterm of xr(s), the term σ is a subterm of xr(s). By
the Claim, the main connective of σ is either x or ∧, because it is on the x∧-path from xr(s) to x. But the case σ = xs is
impossible, since otherwise σ is nice and bigger than s. Hence σ = s ∧ s′, for some term s′. Then s′ contains a nominal, say
y (possibly, y = x), for otherwise σ is nice and bigger than s. The path from xr(s) to y is not a x∧-path, since otherwise we
would have the same path in t′ and hence xr(p) would be simple. At the same time, the path from xr(s) to x is a x∧-path,
by the Claim. Therefore, y is deeper than x with respect to the x∧-ignoring depth measure d(·, t), which contradicts the choice
of x.

4.4.1. Solving “equations”
Suppose that s(x) is a simple term with a single occurrence of a single nominal x, and p is a propositional variable. By solving

the “equation” s(x)⇒ p we mean transforming it into an “equation” of the form x⇒ ϕ(p), where ϕ is a modal formula, using
the following rules (we omit the other rule for conjunction with ψ ∧ t in the premise):

(t ∧ ψ) ⇒ ϕ

t ⇒ (ψ→ ϕ)
xt ⇒ ϕ

t ⇒ �ϕ

Since the term s is simple, these rules are sufficient to transform s(x)⇒ p into x⇒ ϕ(p). The following lemma reveals the
meaning of these rules.

Lemma 4.21. For any model M, any term t, and any modal formulas ϕ, ψ, we have:

(A) M |= (t ∧ ψ)→ ϕ ⇐⇒ M |= t → (ψ→ ϕ)
(B) M |= xt → ϕ ⇐⇒ M |= t → �ϕ.

Proof. (A) is trivial. Let us prove (B).
(⇒) For any point a ∈ M assume that a |= t. To prove that a |= �ϕ, take any point b ∈ M with aRb. Then we have b |= xt and
hence b |= ϕ.
(⇐) For any point b ∈ M assume that b |= xt. This means that, for some a ∈ M with aRb, we have a |= t. Then we have a |= �ϕ
and hence b |= ϕ.

Corollary 4.22. If the equation s(x)⇒ p is transformed into x⇒ ϕ(p) using the above rules, then for any model M and any its
point a, we have

M |= s(a)→ p ⇐⇒ M, a |= ϕ(p). (5)

So, the term s(x) always represents the minimal valuation of the variable p under which the formula ϕ(p) is true at x.

By now, we have explained Step 4 of our algorithm that transforms safe terms into modal expressions, and thus the modal
expression Φ′(~x, y) at Step 5 is well defined.

Lemma 4.23. The expressions Φ(~x, y) and Φ′(~x, y) are equi-valid.

Proof. Denote Ψ(~x) := (x1:ϕ1 ∧ . . . ∧ xn:ϕn). Then Φ and Φ′ look as follows:

Φ(~x, y) = Ψ(~x) → y: t(~x)
Φ′(~x, y) = x:ϕ(p) ∧ Ψ(~x) → y: t′(~x, p).

Take any frame F and any its points ~a, b. We need to prove the equivalence:

F |= Φ(~a, b) ⇐⇒ F |= Φ′(~a, b).
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Below a ∈ ~a is the point that is assigned to the chosen nominal x ∈ ~x.

(⇒) Assume that F |= Φ(~a, b). Take any model M = (F, θ) based on F in which the premise of Φ′(~a, b) is true: M |=

a:ϕ(p) ∧ Ψ(~a). Then M |= s(a)→ p by (5), and M |= b: t(~a) due to M |= Φ(~a, b). Finally, since θ(s(a)) ⊆ θ(p) by the above and
t′ = t[s 7→ p], we obtain M |= b: t′(~a, p), by monotonicity of terms (as they are built using monotonic operators ∧, ∨, ◇, �, x
and hence replacing in t a smaller s(a) with a larger p preserves the truth of the term).

(⇐) Assume that F |= Φ′(~a, b). Take any model M = (F, θ) based on F in which the premise of Φ(~a, b) is true: M |= Ψ(~a). Since
p does not occur in Ψ, we can freely change the valuation of p in M. Let us put θ(p) := θ(s(a)); this is well-defined, since p does
not occur in s(x) either. Now, M |= s(a)→ p and hence M |= a:ϕ(p), by (5). Thus, the premise of Φ′(~a, b) is true in M. Then so
is its conclusion: M |= b: t′(~a, p). Finally, we can substitute [p 7→ s] in t′ and conclude that M |= b: t(~a), because the valuations
of p and s(a) are equal.

5. Undefinable ∃&-formulas

This section is devoted to the proof of undefinability results stated in Sect. 3.1. In Sect. 5.1 we establish some properties of
∃&-formulas. Sect. 5.2 contains simple results on modal undefinability of ∃&-formulas. In Sect. 5.3, we recall the well-known
notion of ultrafilter extension and the related anti-preservation result (and slightly generalize it). Finally, in Sect. 5.4 we use this
technique in order to obtain our most difficult result on modal undefinability of ∃&-formulas.

In this section we assume that we are given a diagram D = (V,V•,V◦, ~Π = (Π`)`∈L), where V = V• ∪ V◦, V• = {x1, . . . , xn},
V◦ = {y1, . . . , ym}, V• ∩ V◦ = ∅, and Π` ⊆ V×V for each ` ∈ L. Also recall that D gives rise to the FO formulas BD(~x, ~y) and AD(~x)
defined in Sect. 3 and the frame FD = (V, (Π`)`∈L) defined in Sect. 3.1. Lemmas below must be understood in this context.

Also note that, in order to facilitate the notation, elements of V play a dual rôle here: on the one hand, they are variables in
the formulas AD and BD, on the other hand, they are points of the frame FD. The meaning is clear from context. In particular,
when we are talking about the formulas AD and BD per se, ~x and ~y are just variables, whereas when we write FD |= BD(~x, ~y), we
mean that ~x and ~y are points of FD substituted for the corresponding variables.

5.1. Properties of ∃&-formulas
Lemma 5.1. FD |= BD(~x, ~y) and hence FD |= AD(~x).

Lemma 5.2. Let B(~x, ~y) be any conjunction of atoms of the form zR`z′ with z, z′ ∈ (~x, ~y).
Then FD |= B(~x, ~y) iff each conjunct of B(~x, ~y) occurs in BD(~x, ~y).

Proof. By definition of FD and BD, we have: FD |= xR`y iff 〈x, y〉 ∈ Π`, iff the formula BD(~x, ~y) contains the conjunct xR`y.

Lemma 5.3 says that AD(~x) is the strongest ∃&-formula true in FD.

Lemma 5.3. Let A(~x) be any ∃&-formula with free variables among ~x.
If FD |= A(~x), then AD(~x) implies A(~x).

Proof. Let AD(~x) = ∃~y BD(~x, ~y) and A(~x) = ∃~z B(~x,~z). Suppose that FD |= A(~x). Then FD |= B(~x,~v) for some elements ~v of FD.
To prove that AD(~x) implies A(~x), assume that F |= AD(~a) for some frame F and its points ~a. Then F |= BD(~a, ~b) for some points
~b of F. We need to show that F |= A(~a); to this end, we will find points ~c of F such that F |= B(~a, ~c).

For convenience, let us denote xF
i := ai and yF

j := b j. Now we put ck := vF
k (recall that each vk is either xi or y j, so that vF

k is
well-defined). We claim that F |= B(~a, ~c). Indeed, since FD |= B(~x,~v), Lemma 5.2 implies that each conjunct of B(~x,~v) occurs in
BD(~x, ~y). Therefore, since F |= BD(~a, ~b), we conclude that B(~a, ~c).

Combining the above results, we obtain the following equivalences (cf. [11, Lemma 13]):

FD |= B(~x, ~y) ⇐⇒ BD(~x, ~y) implies B(~x, ~y),
FD |= A(~x) ⇐⇒ AD(~x) implies A(~x).

Lemma 5.4. Let D be a minimal accessible diagram with V• = {x1, . . . , xn}, V◦ = {y1, . . . , ym}. Assume FD |= BD(~x,~z), for some
variables ~z = (z1, . . . , zm) from V = V• ∪ V◦. Then
(a) {z1, . . . , zm} = {y1, . . . , ym} (hence ~z is a permutation of ~y);
(b) 〈zi, z j〉 ∈ Π` iff 〈yi, y j〉 ∈ Π`, for each i, j ∈ {1, . . . ,m} and ` ∈ L.

Proof. (a) Denote Z := {z1, . . . , zm}. We need to prove that Z = V◦. Assume the contrary: Z , V◦. Since |Z| = |V◦|, this implies
Z ∩ V◦ ( V◦. Without loss of generality, Z ∩ V◦ = {y1, . . . , yk} for some k < m.

So, the free variables of the formula BD(~x,~z) are ~x and {y1, . . . , yk}. Denote this formula by B′(~x, y1, . . . , yk), let A′(~x) =

∃y1 . . .∃yk B′ be the corresponding ∃&-formula, and let D′ be the diagram associated to A′(~x). Since FD |= B′(~x, y1, . . . , yk), by
Lemma 5.2, each conjunct of B′ occurs in BD; in other words, D′ is a subgraph of D. Moreover, since D is accessible, it has no
isolated white nodes; but D′ lacks ym, therefore, D′ is obtained from D by removing at least one edge.

Now let us prove that A′(~x) implies AD(~x), which will contradict the minimality of D. By Lemma 5.3, it suffices to show
that FD′ |= AD(~x). But this is easy: by Lemma 5.1, FD′ |= B′(~x, y1, . . . , yk), in other words, FD′ |= BD(~x,~z), which implies
FD′ |= AD(~x).
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(b) By (a), the function f : V◦ → V◦ defined by f (yi) = zi is a bijection. It induces a bijection f ′: V◦×V◦ → V◦×V◦ defined by
f ′(〈yi, y j〉) = 〈zi, z j〉.

As shown in (a), each conjunct of BD(~x,~z) occurs in BD(~x, ~y). In particular, if yiR`y j is in BD(~x, ~y), then, by substitution, ziR`z j

is in BD(~x,~z) and hence in BD(~x, ~y) by the above. Denoting S ` := Π` ∩ (V◦×V◦), we have that if 〈yi, y j〉 ∈ S ` then 〈zi, z j〉 ∈ S `.
Thus, f ′ maps S ` into S `. But f ′ is injective and S ` is finite. Hence f ′ is a bijection from S ` to S `. Therefore, 〈yi, y j〉 ∈ S `

iff 〈zi, z j〉 ∈ S `, as required.

Given a diagram D = (V,V•,V◦, ~Π), denote Π =
⋃
`∈L Π`. A covering relation for D is a binary relation S ⊆ V×V that satisfies

the following three conditions (where S ∗ stands for the reflexive-transitive closure of S ):
(1) S ⊆ Π;
(2) S is acyclic (i.e., the graph (V, S ) has no cycles, even undirected);
(3) ∀y ∈ V◦ ∃x ∈ V•: xS ∗y (i.e., all white nodes are S -reachable from black nodes).

By definition, in an accessible diagram, white nodes are Π-reachable from black nodes. Lemma 5.5 says that the same can be
achieved by an acyclic relation S ⊆ Π.

Lemma 5.5. Every accessible diagram has a covering relation.

Proof. We build a sequence of binary relations S 0 ⊂ S 1 ⊂ . . . ⊂ S r, where each S i satisfies (1) and (2) and the last one, S r, also
satisfies (3) and hence is a covering relation for D. Induction base: S 0 := ∅ trivially satisfies (1) and (2).

Induction step. Assume that S i satisfies (1) and (2), but not (3). This means that some white node y is not S i-reachable from
black nodes: y < S ∗i (V•), where S ∗i (V•) = {z ∈ V | ∃x ∈ V•: xS ∗i z}.

Let Γ be the set of all directed paths in D from S ∗i (V•) to y. Since D is accessible, there is a path from V• to y; but V• ⊆ S ∗i (V•),
thus Γ , ∅. Then pick a path γ ∈ Γ of a minimal length, and let 〈z, z′〉 ∈ Π` be its first edge.

Now put S i+1 = S i ∪ {〈z, z′〉}. Since S i ⊆ Π and 〈z, z′〉 ∈ Π`, we have S i+1 ⊆ Π. Moreover, z′ < S ∗i (V•) due to the minimality
of γ, hence S i ( S i+1 and S i+1 has no cycles. Thus, S i+1 satisfies (1) and (2). Since W is finite and S i are all distinct, the above
process will eventually terminate. The resulting relation S r will satisfy (1), (2), and (3).

Lemma 5.6. For every accessible diagram D with an undirected white cycle C, there is an edge e in C such that, after removing e,
the diagram remains to be accessible.

Proof. By Lemma 5.5, D has a covering relation S . Then let e be any edge that belongs to the cycle C but not to S (it exists, since
S is acyclic). Now, if we remove e from D, the remaining diagram will be accessible, since all white nodes are still S -reachable
from black nodes (as removing the edge e does not affect the relation S ).

5.2. Simple cases of undefinability

Lemma 5.7. Every minimal inaccessible ∃&-formula is not modally expressible (and hence not modally definable).

Proof. Let AD(~x) = ∃~y BD(~x, ~y) be a minimal inaccessible ∃&-formula, and D = (V,V•,V◦, ~Π) be its diagram. Then there is
a variable yi0 ∈ V◦ unreachable from black nodes V• in D. In order to prove that AD(~x) is not modally expressible, assume the
contrary, i.e., that it corresponds to a modal expression Φ(~x). This means that, for any frame F and any tuple of its points ~e,

F |= AD(~e) ⇐⇒ F |= Φ(~e). (6)

Consider the frame FD = (V, ~Π) and the tuple of its points ~x. By Lemma 5.1, FD |= AD(~x). Hence, by (6), we have FD |= Φ(~x).
Recall that the validity of modal formulas (and hence expressions) is preserved under taking generated subframes ([5, The-

orem 3.14]). Let F′ be the subframe of FD generated by the set of black nodes V•. Denote the set of its worlds by V ′. Note that
yi0 < V ′, since the variable yi0 is unreachable from V•, by assumption.

So, F′ |= Φ(~x). Then F′ |= AD(~x), by (6). Hence F′ |= BD(~x,~z), for some z1, . . . , zm ∈ V ′. The formula BD is a conjunction of
atomic formulas, and F′ is a FO submodel of FD, so we also have FD |= BD(~x,~z). Since the diagram D is minimal, we can apply
Lemma 5.4 and conclude that {z1, . . . , zm} = V◦. This contradicts the fact that yi0 ∈ (V◦ \ V ′) ⊆ V◦ \ {z1, . . . , zm}.

Lemma 5.8. The ∃&-formula associated to the disjoint union of two (or more) diagrams is not modally definable.

Proof. The proof is an easy generalization of the argument given in Example 2.2. Let D = D1 ∪ D2, where the diagrams D1 and
D2 are disjoint (and both have edges), and let ~x and ~x′ be the lists of black nodes in D1 and D2 respectively. Clearly, AD(~x, ~x ′)
is equivalent to AD1 (~x) ∧ AD2 (~x ′). We need to prove that AD is not modally definable. Assume the contrary: there are tuples of
modal formulas ~ϕ and ~ϕ′ such that, for any frame F and its worlds ~e and ~e′,

F |= AD(~e, ~e′) ⇐⇒ F |=
∨

i ei:ϕi ∨
∨

j e′j:ϕ
′
j. (7)

Consider a frame10 F1 = FD1 ∪ (~x ′,∅). Clearly, F1 6|= AD(~x, ~x ′), since D2 has edges, whereas F1 does not have any edges
related to ~x ′. Then by (7), there is a valuation θ1: {~x, ~x ′} → PV such that, denoting M1 = (F1, θ1), we have M1, xi 6|= ϕi for all i.

10Here (~x ′,∅) is a frame whose worlds are all the variables x′j and all relations are empty.
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Similarly, a frame F2 = (~x,∅) ∪ FD2 does not satisfy AD(~x, ~x ′), hence by (7) there is a valuation θ2: {~x, ~x ′} → PV such that,
denoting M2 = (F2, θ2), we have M2, x′j 6|= ϕ′j for all j.

Now consider the frame FD = FD1 ∪ FD2 . Define a valuation θ by putting θ(xi) := θ1(xi) and θ(x′j) := θ2(x′j), for all i, j. Let
M := (FD, θ). Then observe that the following bisimulations hold: M, xi ∼ M1, xi and M, x′j ∼ M2, x′j. Hence M, xi 6|= ϕi and
M, x′j 6|= ϕ′j. Therefore, M (and hence FD) does not satisfy

∨
i xi:ϕi ∨

∨
j x′j:ϕ

′
j. However, FD satisfies AD(~x, ~x ′), by Lemma 5.1.

This contradicts (7).

5.3. Ultrafilter extension
It is known [5] that the validity of modal formulas (and hence the truth of modally definable FO formulas with one free

variable) is anti-preserved under taking ultrafilter extensions of frames (i.e., whenever a modal formula is valid in Fue defined
below, it is valid in F). Here we generalize this result to FO formulas with several free variables (see Theorem 5.14 below). Let
us recall necessary definitions.

Definition 5.9. A set u ⊆ 2W is an ultrafilter over a set W if, for all X,Y ⊆ W,

(1) if X,Y ∈ u, then X ∩ Y ∈ u;
(2) if X ∈ u and X ⊂ Y , then Y ∈ u;
(3) X < u iff X ∈ u, where X = W \ X.

From the definition it follows that ∅ < u and W ∈ u, for any ultrafilter u over a set W.

Definition 5.10. Given a frame F = (W, (R`)`∈L), its ultrafilter extension is defined as the frame Fue = (Wue, (Rue` )`∈L), where
Wue is the set of all ultrafilters over W, and uRue` u′ holds for ultrafilters u and u′ iff R−1

` (X) ∈ u for all X ∈ u′. Here R−1
` (X) = {z |

zR`x for some x ∈ X}.
Given a model M = (F, θ), its ultrafilter extension is the model Mue = (Fue, θue), where u ∈ θue(p) iff θ(p) ∈ u, for every

variable p and every ultrafilter u over W.

Given a world a ∈ W, the set πa = {X ⊆ W | a ∈ X} is obviously an ultrafilter; it is called the principal ultrafilter generated
by a. A frame F can be seen as a (not necessarily generated) subframe of Fue, if we identify worlds a of F with their principal
ultrafilters πa, as the following lemma shows.

Lemma 5.11 ([5], p. 95). For all worlds a, b in every frame F, we have aR`b iff πaRue` πb.

The next lemma says that (i) a point a in M and the corresponding point πa in Mue are indistinguishable by any modal formula,
and hence (ii) validity of modal formulas is anti-preserved under taking ultrafilter extension of frames.

Lemma 5.12 ([5], p. 96, 142). For all frames F, models M, worlds a, formulas ϕ:
(i) Mue, πa |= ϕ ⇐⇒ M, a |= ϕ;
(ii) Fue, πa |= ϕ =⇒ F, a |= ϕ.

We generalize this result to modal expressions11 (introduced in Def. 2.3).

Lemma 5.13. For all frames F, models M, worlds ~a, modal expressions Φ(~x):
(i) Mue |= Φ(πa1 , . . . , πan ) ⇐⇒ M |= Φ(a1, . . . , an);
(ii) Fue |= Φ(πa1 , . . . , πan ) =⇒ F |= Φ(a1, . . . , an).

Proof. Item (i) follows immediately from Lemma 5.12(i). As for item (ii), denote ~e = (πa1 , . . . , πan ). To prove that F |= Φ(~a),
take any valuation θ on F and put M = (F, θ). By assumption, Fue |= Φ(~e), so Mue |= Φ(~e). Using (i), we conclude that M |= Φ(~a)
as desired.

We are ready to prove that modally expressible first-order formulas are anti-preserved under ultrafilter extensions.

Theorem 5.14 (Anti-preservation). Let A(~x) be a modally expressible first-order formula. Then for any frame F and its worlds
~a, the implication holds:

Fue |= A(πa1 , . . . , πan ) =⇒ F |= A(a1, . . . , an).

Proof. Denote ~e = (πa1 , . . . , πan ). By assumption, A(~x) corresponds to some modal expression Φ(~x). Then the claim follows from
the chain of implications:

Fue |= A(~e)
(∗)

=⇒ Fue |= Φ(~e)
(∗∗)
=⇒ F |= Φ(~a)

(∗)
=⇒ F |= A(~a),

where implications (∗) hold since A(~x) corresponds to Φ(~x), and implication (∗∗) is due to Lemma 5.13(ii).

Thus, in order to show that a FO formula A(x1, . . . , xn) is not modally expressible, it suffices to find a frame F and its points
a1, . . . , an such that F 6|= A(a1, . . . , an), but Fue |= A(πa1 , . . . , πan ).

11Since modal expressions are hybrid formulas in the languageH(@), this follows from a similar result for this language [8, Prop. 4.2.6].
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5.4. Proof of undefinability
This subsection is devoted to the proof of the following theorem.

Theorem 5.15. If an ∃&-formula A(~x) is minimal, accessible, and white-cyclic, then it is not modally expressible.

Assume that we are given an ∃&-formula A(~x) = ∃~y B(~x, ~y) such that its diagram D = (V,V•,V◦, (Π`)`∈L) is minimal, accessible,
and contains a white cycle12 C. To prove that A(~x) is not modally expressible, taking into account Theorem 5.14, we will build
a frame F and its worlds a1, . . . , an such that

F 6|= A(a1, . . . , an) and Fue |= A(πa1 , . . . , πan ). (8)

By Lemma 5.6, the cycle C contains a white edge13 e = 〈z, z′〉`0 such that the diagram D′ obtained from D by removing this
edge is accessible. Denote by Vz the white connected component of the node z in D, i.e., the set of white nodes that are reachable
from z through (undirected) white paths. Obviously, z′ ∈ Vz and Vz contains the cycle C. Let us denote by V◦′ := V◦ \ Vz the set of
the remaining white nodes in D. We need a simple lemma.

Lemma 5.16. In the diagram D, every two distinct nodes from Vz are connected by a path contained in Vz and not containing the
edge e.

Proof. Let ε be the path obtained by removing the edge e from the cycle C. Clearly, ε connects z and z′ and is contained in Vz.
Since the set Vz is connected, any two distinct nodes from Vz are connected by a path inside Vz. If that path contains the edge e,
then replace e with ε in it, thus obtaining a path inside Vz that connects the same nodes and does not contain the edge e.

Now we are ready to build a frame F = (W, (R`)`∈L). Put W := (V• ∪ V◦′) ∪ (Vz×N), and for each ` ∈ L, put R` := R`
(1) ∪ R`

(2) ∪

R`
(3) ∪ R`

(4) ∪ R`
(5), where

R`
(1) = { 〈x, y〉 | xΠ`y; x, y ∈ (V• ∪ V◦′) } = Π`�(V•∪V◦)

R`
(2) = { 〈x, (y, i)〉 | xΠ`y; x ∈ V•; y ∈ Vz; i ∈ N }

R`
(3) = { 〈(x, i), y〉 | xΠ`y; x ∈ Vz; y ∈ V•; i ∈ N }

R`
(4) = { 〈(x, i), (y, i)〉 | xΠ`y; x, y ∈ Vz; i ∈ N; 〈x, y〉` , 〈z, z′〉`0 }

R`
(5) = { 〈(z, i), (z′, j)〉 | i < j; i, j ∈ N }, if ` = `0; otherwise R`

(5) = ∅.

Intuitively, the frame F is obtained from the diagram D as follows:

• edges within V• ∪ V◦′ are inherited from D, see the definition of R`
(1);

• every edge 〈x, y〉 from V• to Vz turns into a countable family of edges 〈x, (y, i)〉 from V• to Vz×N, see the definition of R`
(2);

• similarly for edges from Vz to V•, see the definition of R`
(3);

• all edges within Vz, except for the edge 〈z, z′〉`0 , are reproduced at every i-th level of the set Vz×N, see the definition of R`
(4);

• the edge 〈z, z′〉`0 turns into a countable family of the corresponding edges from the i-th to the j-th layer, for all i < j, see
the definition of R`

(5).

Consider a natural projection p: W → V defined, for any w ∈ W, as follows:

p(w) =

{
w, if w ∈ V• ∪ V◦′,
y, if w = (y, i) ∈ Vz×N.

Observe that p is a monotone function from the frame F to the frame FD, in the sense that if 〈w,w′〉 ∈ R` in F, then 〈p(w), p(w′)〉 ∈
Π` in FD. Indeed, for 〈w,w′〉 ∈ R`

( j) with j ≤ 4, this is due to the presence of xΠ`y in their definition; for 〈w,w′〉 ∈ R`
(5), the claim

is trivial, since 〈z, z′〉 ∈ Π`0 .

Example 5.17. Let us consider again the diagram D shown in Figure 1. We apply Lemma 5.6 and find an edge 〈z, z′〉, see
Figure 3 (left). Thus the set of white nodes V◦ is partitioned into Vz and V◦′. Then we build an infinite frame F shown in Figure 3
(right). The subgraphs on V• and V◦ are the same as in the diagram D, whereas the subgraph on Vz is copied countably many times,
except for its edge 〈z, z′〉. The edge 〈z, z′〉 turns into a countable set of edges that connect (z, i) to (z′, j), for all i < j.

Finally, let us prove (8) for the formula A = AD(~x), the frame F, and its worlds ~x (since each xi is a black node of D, it
belongs to the domain W of F).

Lemma 5.18. F 6|= A(~x).

Proof. Assume the contrary. Then F |= BD(~x, ~a), for some elements ~a ∈ W. Since the formula BD is a conjunction of atomic
formulas and the projection p: F → FD is monotone, we obtain:

FD |= BD(p(x1), . . . , p(xn), p(a1), . . . , p(am)).

12In this section, all cycles and paths are assumed to be undirected.
13It is convenient to denote by 〈x, y〉` the edge 〈x, y〉 in D that belongs to the relation Π`.
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z′ z

Vz V◦′

V•

...
...

Vz × N

V◦′

V•

Figure 3: On the left: the diagram D with a white cycle (the edge e = 〈z, z′〉 is dashed); its set of nodes is partitioned into V•, Vz, and V◦′. On the right: the Kripke
frame F built from the diagram D.

Recall that p(xi) = xi. Denote z j := p(a j), so that z j ∈ V . So, FD |= BD(~x,~z). By Lemma 5.4(a), {z1, . . . , zm} = {y1, . . . , ym}. Take
those a j whose projection is in Vz:

H = { a j | z j ∈ Vz, 1 ≤ j ≤ m }.

Clearly, H ⊆ Vz×N, since only elements from Vz×N may have their projection in Vz. Hence, each a j ∈ H has the form a j = 〈z j, n j〉,
for some n j ∈ N.

Claim 1. All points of H lie in the same layer of Vz×N, i.e., all the numbers n j are equal.
Indeed, take any distinct elements ai = 〈zi, ni〉 and a j = 〈z j, n j〉 from H and let us show that ni = n j. By Lemma 5.16, the

nodes zi and z j are connected by a path γ1 inside Vz not containing the edge e. By Lemma 5.4(b), for each edge 〈zs, zt〉` in γ1,
there is a corresponding edge 〈ys, yt〉` in the diagram D. These edges constitute a path γ2 connecting yi and y j.

By the definition of BD, the formula BD(~x, ~y) contains the conjuncts ysR`yt that correspond to edges in γ2. Since F |= BD(~x, ~a),
the corresponding conjuncts asR`at are true in F. Therefore, F contains a path γ3 connecting our chosen elements ai and a j.
Note that the projection of γ3 is exactly the path γ1, which does not contain the edge e.

By construction of R`
(4), if a, b ∈ Vz×N and 〈a, b〉` is an edge in F such that its projection does not coincide with the edge e,

then 〈a, b〉 ∈ R`
(4), and hence a and b belong to the same layer. As shown above, all edges in γ3 are of this kind. Therefore, all

points in the path γ3, including its ends ai and a j, belong to the same layer.

Claim 2. The set H contains two points that lie in different layers of Vz×N.
Indeed, the diagram D contains the edge e = 〈z, z′〉`0 . Recall that z, z′ ∈ Vz. Pick those points ai, a j ∈ H whose projections

are p(ai) = z and p(a j) = z′. This means that ai = 〈zi, ni〉 and a j = 〈z j, n j〉, where zi = z, z j = z′, for some numbers ni, n j ∈ N. We
claim that ni < n j.

Indeed, since 〈z, z′〉 ∈ Π`0 , or equivalently, 〈zi, z j〉 ∈ Π`0 , we have 〈yi, y j〉 ∈ Π`0 by Lemma 5.4(b). Hence the formula BD(~x, ~y)
contains the conjunct yiR`0 y j. Since F |= BD(~x, ~a), the conjunct aiR`0 a j is true in F. Thus we have an edge 〈ai, a j〉`0 in F whose
projection is the edge e. This implies that 〈ai, a j〉 ∈ R`0

(5), which means that ni < n j, so we are done.
Obviously, Claim 1 contradicts Claim 2, so this completes the proof of the lemma.

Lemma 5.19. Fue |= A(πx1 , . . . , πxn ).

Proof. It suffices to show that Fue |= BD(πx1 , . . . , πxn , u1, . . . , um), for some ultrafilters u1, . . . , um over W. Fix any non-principal14

ultrafilter u over N.
If yi ∈ V◦′, we simply put ui = πyi .
Now take any yi ∈ Vz. For any X ⊆ W, define the set fi(X) ⊆ N as follows: k ∈ fi(X) iff 〈yi, k〉 ∈ X, for every k ∈ N. Then fi

has the following properties, for all X,Y ⊆ W:
• fi(X ∩ Y) = fi(X) ∩ fi(Y);
• if X ⊆ Y then fi(X) ⊆ fi(Y);
• fi(X) = fi(X).
Finally, we define ui as follows: X ∈ ui iff fi(X) ∈ u, for any X ⊆ W.

Claim 1. Each ui is an ultrafilter over W.

14An ultrafilter is called non-principal if it is not principal, i.e., not of the form πa. It exists over any infinite set. It is an easy exercise that ∅ does not belong
to any ultrafilter, and no finite set is a member of any non-principal ultrafilter.
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Figure 4: Examples of ∀∃-diagrams.

We need to check the three conditions from the definition of an ultrafilter.
(1) If X,Y ∈ ui, then fi(X), fi(Y) ∈ u. Hence fi(X ∩ Y) = fi(X) ∩ fi(Y) ∈ u and so (X ∩ Y) ∈ ui.
(2) If Y ⊇ X ∈ ui, then fi(X) ∈ u, hence fi(X) ⊆ fi(Y) ∈ u, thus Y ∈ ui.
(3) X ∈ ui iff fi(X) ∈ u iff fi(X) < u iff fi(X) < u iff X < ui.

Claim 2. Fue |= BD(πx1 , . . . , πxn , u1, . . . , um).
To show this, consider any conjunct αR`β from BD, where α, β ∈ V are variables and αΠ`β is an edge in the diagram D. Then

one of the following five cases takes place:
1) α, β ∈ (V• ∪ V◦′). Then 〈α, β〉 ∈ R`

(1) ⊆ R`, so 〈πα, πβ〉 ∈ Rue` , by Lemma 5.11.
2) α ∈ V•, β ∈ Vz. Let α = xi, β = y j. To prove that 〈πxi , u j〉 ∈ Rue` , take any X ∈ u j. Then f j(X) ∈ u, hence f j(X) , ∅. Fix any
k ∈ f j(X), so that (y j, k) ∈ X. Since xiΠ`y j, we have 〈xi, (y j, k)〉 ∈ R`

(2) ⊆ R`. So xi ∈ R`
−1(X), or equivalently, R`

−1(X) ∈ πxi .
3) α ∈ Vz, β ∈ V•. Let α = y j, β = xi. To prove that 〈u j, πxi〉 ∈ Rue` , take any X ∈ πxi . Then xi ∈ X. Since y jΠ`xi, we have
〈(y j, k), xi〉 ∈ R`

(3) ⊆ R`, hence (y j, k) ∈ R`
−1(X) and k ∈ f j(R`

−1(X)), for all k ∈ N. Thus, f j(R`
−1(X)) = N ∈ u, and so R`

−1(X) ∈ u j.
4) α, β ∈ Vz and 〈α, β〉` , e. Let α = yi, β = y j. To prove that 〈ui, u j〉 ∈ Rue` , take any X ∈ u j. Then f j(X) ∈ u. Let us show that
f j(X) ⊆ fi(R`

−1(X)), for then fi(R`
−1(X)) ∈ u and thus R`

−1(X) ∈ ui. For every k ∈ f j(X), we have (y j, k) ∈ X. We also have that
yiΠ`y j, hence 〈(yi, k), (y j, k)〉 ∈ R`

(4) ⊆ R`. Therefore, (yi, k) ∈ R`
−1(X) and so k ∈ fi(R`

−1(X)).
5) 〈α, β〉` = e. So, α = yi, β = y j, ` = `0. To prove that 〈ui, u j〉 ∈ R`0

ue, take any X ∈ u j. Then f j(X) ∈ u and hence f j(X) is infinite.
Since yiΠ`0 y j, we have 〈(yi, k), (y j, k′)〉 ∈ R`0

(5) ⊆ R`0 for every k, k′ ∈ N with k < k′. As shown above, (y j, k′) ∈ X for infinitely
many k′. Hence (yi, k) ∈ R`0

−1(X) for all k. Therefore, fi(R`0
−1(X)) = N ∈ u and so R`0

−1(X) ∈ ui.

6. Application to classical modal definability of ∀∃-formulas

Many (closed) first-order formulas considered in modal logic can be represented by pictures of a certain kind, which we will
call ∀∃-diagrams (see Def. 6.2 below and examples in Fig. 4 and 5). Informally, these pictures contain black and white points
(corresponding to the universally and existentially quantified variables, respectively) linked by solid and dashed arrows, and are
read as follows: “if there exist black points connected by solid arrows, then there exist white points such that all points are
connected by dashed arrows”.

Such diagrams are of particular use in multi-dimensional modal logics [14]. For example, quite complicated modifications of
cubifying property were used in [27, 28] to prove that ≥3-dimensional products of modal logic are neither finitely axiomatizable,
nor axiomatizable by any set of modal formulas using finitely many variables. The diagrams were also used in [21] for similar
purposes. Moreover, [27] contains a first-order axiomatization for the class of frames for the n-dimensional modal logic Kn,
given in terms of such diagrams.

Since ∀∃-diagrams are a natural way of reasoning about many-dimensional structures, it seems interesting to study the
question when they give rise to modally definable FO properties. It turns out that Theorem 4.1 together with a theorem of
M. Kracht from [25] provide us with a sufficient condition for modal definability of ∀∃-diagrams, covering all cases from Figs. 4
and 5.
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(x1R2y12 ∧ x1R3y13 ∧ x2R1y12 ∧ x2R3y23 ∧ x3R1y13 ∧ x3R2y23 ∧ y23R1y123 ∧ y13R2y123 ∧ y12R3y123)
)

Figure 5: The “cubifying” property as an ∀∃-diagram.

Theorem 6.1 (Theorem 5.4.6 in [25]). Every first-order formula with one free variable A(x) obtained from modally definable
formulas (with several free variables) using conjunction, disjunction, and restricted universal quantification ∀y (xR`y → . . .) is
modally definable.

Definition 6.2. An ∀∃-diagram is a tuple
D = (V,V•, (S `)`∈L,V◦, (Π`)`∈L),

where V = V• ∪ V◦, V• = {x1, . . . , xn} , ∅ (black nodes), V◦ = {y1, . . . , ym} (white nodes), V• ∩ V◦ = ∅, and S ` ⊆ V•×V• (solid arrows)
and Π` ⊆ V×V (dashed arrows) are binary relations, for each ` ∈ L. By D we denote the ∃-diagram obtained fromD by throwing
away solid arrows (S `)`∈L (in words, D is the existential part of D). Recall from Sect. 3 that every ∃-diagram gives rise to an
∃&-formula AD(x1, . . . , xn). Now, to every ∀∃-diagramD we associate the following FO formula with one free variable x1:

AD(x1) = ∀x2 . . .∀xn

((∧
〈x,x′〉∈S `

xR`x′
)
→ AD(x1, . . . , xn)

)
.

A closed FO formula A is said to be (globally) modally definable if there is a modal formula ϕ such that F |= A iff F |= ϕ, for
every frame F. It is easily seen that if A(x) is (locally) modally definable, then ∀x A(x) is globally modally definable. Here is the
main result of this section.

Theorem 6.3. LetD be an ∀∃-diagram satisfying the following conditions:

(a) (V•, (S `)`∈L) is a tree with the root x1, i.e., x1 has no incoming arrows and every other node from V• has exactly one incoming
arrow;

(b) its existential part D is accessible and white-acyclic (see Def. 3.1).

Then the formula AD(x1) is locally modally definable, and consequently, the formula ∀x1AD(x1) is globally modally definable.
Moreover, the formula AD(x1) corresponds to a modal generalized Sahlqvist formula.

Proof. Condition (a) means that we can assume that x’s are enumerated in such a way that for every i ≥ 2 there is a number
p(i) ≤ i and an index `(i) ∈ L such that xp(i) is the only predecessor of xi in (V•, (S `)`∈L), and 〈xp(i), xi〉 ∈ S `(i). Hence the formula
AD(x1) can be equivalently rewritten as

∀x2 (x1R`(2)x2 → ∀x3 (xp(3)R`(3)x3 → . . .∀xn (xp(n)R`(n)xn → AD(~x)) . . .)).

By (b) and Theorem 4.1, AD(~x) is a conjunction of modally definable first-order formulas that correspond to the connected
components of D. Therefore, by Theorem 6.1, AD(x1) is locally modally definable.

In addition, since D is accessible and white-acyclic, its ∃&-formula AD(~x) is equivalent to a conjunction of connected such
∃&-formulas. By Theorem 4.12, each of these conjuncts corresponds to an expression of the form xi: t(~x), for some safe term t.
Since the above formula AD(x1) is built up from these formulas using conjunction and restricted universal quantification, it is
a generalized Kracht formula introduced in [20, Def. 29]. Therefore, by Theorem 30 from [20], it corresponds to some modal
generalized Sahlqvist formula.

It is known from [22] that the cubifying property displayed in Fig. 5 does not correspond to any ordinary Sahlqvist modal
formula. Thus, Theorem 6.3 gives us a family of modally definable FO formulas which is not covered by the classical Sahlqvist
– Kracht correspondence theory.

It would be interesting to investigate whether our undefinability results for ∃-diagrams (see Sect. 5) can be generalized to
∀∃-diagrams. For example, for many white-cyclic ∀∃-diagrams we can prove modal undefinability using a modification of the
construction from Theorem 5.15. This class of diagrams can be roughly described as “diagrams that do not have unexpected
consequences”, but formalization of this concept is rather cumbersome. At the same time, the problem of determining, given
two ∀∃-diagramsD1 andD2, whether AD1 implies AD2 is undecidable [2]. This leaves little hope for an algorithmic criterion of
modal definability of ∀∃-diagrams.
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7. Application to query answering

Description Logics (DLs) are knowledge representation formalisms. They provide, for example, the logical underpinning of
the Web Ontology Language OWL [26, 1]. The problem of answering conjunctive queries in DL knowledge bases, which is a
standard task in databases, has recently gained significant attention for expressive DLs (see, e.g., [31, 7, 13, 16, 29, 32, 23, 17, 15]
and references therein). Here we show that the results obtained above can be used for answering efficiently a wide class of
conjunctive queries.

In few words, the result obtained below can be presented as follows. Given a theory T and a first-order formula q(~x), called
a query in this context, consider the task of finding all answers to it, i.e., tuples of constants ~c such that T |= q(~c). Assume that
additionally we know that q(~x) is modally definable, i.e., it corresponds to a tuple of modal formulas 〈ϕ1, . . . , ϕn〉. Then the
Reduction Theorem (see Theorem 7.2 below) guarantees that the query q(~x) has the same answers as the disjunction ϕ∗1(x1) ∨
. . . ∨ ϕ∗n(xn), where ϕ∗(x) is the so-called standard translation of a modal formula ϕ into the FO language [5, Sect. 2.4]. This
reduction was first obtained in [36] for ordinary modal formulas and in [37] for extended modal formulas, but in both cases only
for queries q(x) with one free variable. So, here we generalize these results to the case of several variables.

Why such a reduction is useful? The reason is that we are going to apply this method to theories T of a special kind (so-
called knowledge bases). Only special types of axioms are admissible in these theories, in particular, those of the form ϕ∗(c),
i.e., obtained by substituting a constant in the standard translation of some modal formulas. For such theories it is known that
the consistency problem (“Given a theory, determine whether it is consistent”) is decidable, and efficient algorithms are already
implemented. Now observe that, for a given tuple of constants ~c, the entailment T |= ϕ∗1(c1) ∨ . . . ∨ ϕ∗n(cn) is equivalent to
inconsistency of the theory T ∪ {¬ϕ∗1(c1), . . . ,¬ϕ∗n(cn)}, which is itself a knowledge base, and hence whether it is (in)consistent
can be verified by well-known algorithms.

We proceed as follows. In Sect. 7.1, we prove the Reduction Theorem in a general form that is suitable for applying to a wide
spectrum of description logics. Sect. 7.2 introduces necessary notions from description logic and indicates their relationship to
modal and first-order logic. Sect. 7.3 contains definitions related to query answering, as well some known results in the area.
Finally, in Sect. 7.4, we prove the main theorem that allows us to “easily” answer a certain family of conjunctive queries using
our modal definability results obtained in the first part of the paper (in Sect. 4).

7.1. Query answering in theories
Below, the term an n-ary query is a synonym for a FO formula with n free variables. Here we describe a method of reducing

the problem of answering some n-ary queries (with respect to FO theories) to the problem of answering disjunctions of n unary
queries of a simple kind (standard translations of modal formulas). To this end, we need two FO signatures:

• Σquery = {=} ∪ {R` | ` ∈ L} is a binary relational signature in which queries are formulated;

• Σmodal = Σquery ∪ {P0, P1, . . .} is the signature in which the standard translation of a modal formula is written; here Pi are
unary predicate symbols.

Observe that a FO Σquery interpretation is essentially a Kripke frame, whereas a FO Σmodal interpretation can be seen as a
Kripke model, once we read the interpretation of Pi as the valuation θ(pi). Furthermore, ∃&-formulas defined in Sect. 3 are FO
Σquery formulas.

Given a modal formula ϕ, we denote by ϕ∗(x) its standard translation [5, Sect. 2.4] defined as follows (Boolean cases are
treated as usual, the variable y is fresh):

p∗i (x) := Pi(x), (�`ϕ)∗(x) := ∀y ( xR`y→ ϕ∗(y) ).

Note that ϕ∗(x) is a FO Σmodal formula. Since the standard translation “mimics” the semantics of modal formulas, we have
M |= ϕ∗(e) iff M, e |= ϕ, for every Kripke model M (i.e., a Σmodal interpretation) and every point e in M. The standard translation
extends naturally to modal expressions Φ(~x). Below, we will sometimes write x:ϕ as a shortcut for ϕ∗(x), and so Φ(~x) may stand
for a modal expression or for its standard translation (semantically, they are equivalent).

Let Σ = (Pred,Const) be a countable FO signature consisting of some predicate symbols (of arbitrary arities) and constants.
A signature Σ will be called admissible if it does not contain the symbols {P0, P1, . . .} (which are reserved for translating modal
formulas into the FO language). Now comes the main notion of this section, first introduced in [36] for the case n = 1.

Definition 7.1 (Queries answered by modal formulas). An n-ary query q(x1, . . . , xn) is answered by an n-tuple of modal formulas
〈ϕ1, . . . , ϕn〉 if, for every admissible signature Σ, every first-order theory T in Σ, and all constants c1, . . . , cn in Σ, the following
equivalence holds:

T |= q(c1, . . . , cn) ⇐⇒ T |= c1:ϕ1 ∨ . . . ∨ cn:ϕn.

In this case we use notation: q(~x) ≈ 〈ϕ1, . . . , ϕn〉. Intuitively, this means that the query q(~x) has always the same answers as the
query x1:ϕ1 ∨ . . . ∨ xn:ϕn.

Notice the difference with Def. 2.1. There, we quantified over arbitrary frames F and its worlds ~e; here we quantify over any
FO theories T (in admissible signatures) and constants ~c in them. In the definition of validity F |= e1:ϕ1 ∨ . . . ∨ en:ϕn, the frame
F interprets only modalities (i.e., binary relations), whereas we universally quantify over valuations of propositional variables
that occur in ϕi. Similarly, here in the entailment T |= c1:ϕ1 ∨ . . . ∨ cn:ϕn, the theory T does not contain the predicate symbols
P0, P1, . . . that occur to the right of |=, and hence they are actually universally quantified (although these monadic second-order
quantifiers are not explicitly written).
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Theorem 7.2 (Reduction Theorem). Let q(x1, . . . , xn) be an n-ary query in Σquery and ϕ1, . . . , ϕn be modal formulas. If q(~x)
corresponds to 〈ϕ1, . . . , ϕn〉, then q(~x) is answered by 〈ϕ1, . . . , ϕn〉. In symbols:

q(~x)! 〈ϕ1, . . . , ϕn〉 =⇒ q(~x) ≈ 〈ϕ1, . . . , ϕn〉.

Proof. Let Φ(~x) be a shortcut for x1:ϕ1 ∨ . . .∨ xn:ϕn. Suppose that q(~x) corresponds to 〈ϕ1, . . . , ϕn〉, i.e., to Φ(~x). Then for every
frame F and all worlds ~e in F, we have

F |= q(~e) ⇐⇒ F |= Φ(~e). (!)

We need to prove that, for every theory T and all constants ~c in every admissible signature Σ,

T |= q(~c) ⇐⇒ T |= Φ(~c). (≈)

(⇒) Assume that T |= q(~c). In order to prove that T |= Φ(~c), let us take any Σ ∪ Σmodal interpretation I (i.e., any interpretation of
both T and Φ) such that I |= T and show that I |= Φ(~c). Let F be the frame underlying I, and denote ~e := ~cI. From I |= T and
T |= q(~c) we infer I |= q(~c), or equivalently, F |= q(~e), since q is a Σquery formula. By (!), we have F |= Φ(~e). Hence I |= Φ(~e),
because I contains a model based on F, or equivalently, I |= Φ(~c), as desired.

(⇐) Assume that T |= Φ(~c). In order to prove that T |= q(~c), let us take any Σ ∪ Σquery interpretation I (i.e., any interpretation of
both T and q) such that I |= T and show that I |= q(~c). Since q is a Σquery formula, this is equivalent to showing that F |= q(~e),
where F is the frame underlying I and ~e := ~cI. By (!), it suffices to prove that F |= Φ(~e).

To this end, let us take any Kripke model (i.e., a Σmodal interpretation) M based on F and show that M |= Φ(~e). Let J be a
Σ ∪ Σmodal interpretation whose restriction to Σ is I and the restriction to Σmodal is M. Such an interpretation exists (and is even
unique), since I and M agree on their common signature Σquery and Σ does not contain symbols from Σmodal \ Σquery. Then we
have J |= T . Now recall that T |= Φ(~c). Hence J |= Φ(~c), or equivalently, M |= Φ(~e), since Φ is a Σmodal formula, thus we are
done.

Remark 7.3. The converse of this theorem does not hold in general; however, if we exclude a simple reason for its failure, then
the problem is open. More exactly, let ω

! stand for the countable correspondence of first-order and modal formulas, i.e., instead
of saying ‘for every frame F’ in Def. 2.1, now we say ‘for every at most countable frame F’. Then the picture looks as follows:

q(~x)! 〈ϕ1, . . . , ϕn〉 =⇒ q(~x) ω
! 〈ϕ1, . . . , ϕn〉 =⇒ q(~x) ≈ 〈ϕ1, . . . , ϕn〉

The implication from ! to ω
! is trivial. The converse implication fails even in case n = 1, due to a counterexample by

Doets (see [10, p. 186]). The implication from ω
! to ≈ can be proved by a simple modification of the proof of the Reduction

Theorem 7.2, since first-order entailment T |= A is equivalent to the entailment over countable structures, by Löwenheim–Skolem
theorem. Finally, whether the implication from ≈ to ω

! holds is an open problem.

7.2. Description logic knowledge bases
Syntax. The basic DL ALC is introduced as follows. Its vocabulary Σ = (CN,RN, IN) consists of finite sets of concept names
CN, role names RN, and individual names IN (also called constants). Concepts (analogues of formulas) of ALC are built up
according to the following syntax:

C,D ::= A | ¬C | C u D | ∀R.C,

where A is a concept name, R a role name, C and D concepts. Other connectives are taken as shortcuts, e.g. (CtD) := ¬(¬Cu¬D),
∃R.C := ¬∀R.¬C.

A TBox (or a terminology) is a finite set of axioms of the form C v D, where C,D are arbitrary concepts. An ABox is a finite
set of assertions of the form a: C and aRb, where C is a concept, R a role name, and a, b ∈ IN. Finally, a knowledge base (KB)
K = 〈T ,A〉 consists of a TBox T and an ABoxA.

Semantics. An interpretation is a pair I = (∆I, ·I), where ∆I is a nonempty set called a domain, and ·I is an interpretation
function that maps:

• each constant a ∈ IN to an element aI ∈ ∆I,
• each concept name A ∈ CN to a subset AI ⊆ ∆I,
• each role name R ∈ RN to a binary relation RI ⊆ ∆I × ∆I,

and is extended to all concepts (so that CI is always a subset of ∆I) as follows:

(¬C)I = ∆I \CI,
(C u D)I = CI ∩ DI,
(∀R.C)I = {e ∈ ∆I | ∀d ∈ ∆I. 〈e, d〉 ∈ RI ⇒ d ∈ CI}.

The satisfaction relation is defined as follows: I |= C v D iff CI ⊆ DI; I |= a: C iff aI ∈ CI; I |= aRb iff 〈aI, bI〉 ∈ RI.
Furthermore, I is called a model of a knowledge baseK (notation: I |= K) if it satisfies all its TBox axioms and ABox assertions.
A knowledge base K is called consistent if it has a model.
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Relationship to modal logic. The DL ALC is known (cf. [34]) to be a notational variant of the modal logic discussed above
(see Sect. 2 for its syntax). Namely, any modal formula ϕ can be rewritten into a DL concept Cϕ by replacing pi with Ai, ∧ with
u, �` with ∀R` (and hence ∨ with t and ◇` with ∃R`). Conversely, one can translate any DL concept into a modal formula.

Moreover, this translation respect semantics. A DL interpretation I can be seen as a Kripke model, where the interpretations
of role names RI

`
serve as accessibility relations and interpretations of concept names AIi as valuations of propositional vari-

ables pi. Conversely, any Kripke model yields a DL interpretation. In this setting, for any model I and its world e, for any modal
formula ϕ, we have: I, e |= ϕ iff e ∈ CIϕ .

We leave the discussion on the modal counterpart of knowledge bases beyond this paper.

Relationship to first-order logic. The standard translation maps any ALC concept C into a FO formula C∗(x) with one free
variable in the signature Σ = (Pred,Const), where Pred consists of unary predicates from CN and binary predicates from RN, and
Const = IN. It is defined by induction on the syntax of concepts: a concept name A ∈ CN turns into A(x), Boolean connectives
¬ and u map into ¬ and ∧, and finally (∀R`.C)∗(x) = ∀y (R`(x, y)→ C∗(y)), where y is a fresh variable.

Furthermore, a TBox axiom C v D is translated into the closed formula ∀x (C∗(x)→ D∗(x)); ABox assertions a: C and aRb
are translated into the closed formulas C∗(a) and R(a, b), respectively. Thus, a knowledge base K is translated into a collection
of closed formulas, i.e., a first-order theory K∗.

This translation respects semantics. Any DL interpretation I can be seen as a first-order (Pred,Const)-structure. Then, for
any concept C and any element e in I, we have: e ∈ CI iff I |= C∗(e). Similarly, for any TBox axiom or ABox assertion E, we
have I |= E (in the DL sense) iff I |= E∗ (in the FO sense).

Expressive description logics. The DLALC has been extended in various ways to meet the needs of practical applications; let
us recall some of them. According to the tradition of naming these extensions, the letters I,O,Q,H ,S in the name of a logic
refer to the presence of the following features:

I: inverse roles: if R is a role, the R− is a role; semantics: (R−)I = {〈e, d〉 | 〈d, e〉 ∈ RI};
O: nominals: if a ∈ IN, then {a} is a concept; semantics: {a}I = {aI};
Q: qualified number restrictions: if R is a role, C a concept, and n > 0, then the (≥n R.C) is a concept; semantics:

(≥n R.C)I =

{
e ∈ ∆I | there are at least n elements d ∈ ∆I

such that 〈e, d〉 ∈ RI and d ∈ CI

}
.

H : role hierarchy: axioms of the form R v S are allowed in a special part of a TBox called an RBox; semantics: I |= R v S
iff RI ⊆ S I;

S: transitivity axioms: axioms of the form Trans(R) are allowed in an RBox; semantics: I |= Trans(R) iff RI is a transitive
relation.

To be more precise, the letters I,O,Q,H are appended to the name of the logic ALC, whereas the letter S replaces the
three letters ALC. To maintain decidability, in presence of S and Q together, the restriction is imposed on the syntax of
concepts: expressions of the form (≥n R.C) are regarded as well-formed concepts only if the role R is simple (i.e., has no transitive
subroles) with respect to a given RBox. For instance, SHIQ extendsALC with inverse roles, qualified number restrictions, role
transitivity and role inclusion axioms, and has the above mentioned restriction on the syntax of concepts.

Reasoning. For DLs extendingALC the following is the central decision problem:

Knowledge base consistency problem:
given a knowledge base K , decide whether it is consistent.

For all DLs described above, this problem is decidable, and its complexity was extensively studied. Let us summarize some
known results.

Theorem 7.4 ([33, 34, 35]). The knowledge base consistency problem is
• ExpTime-complete for any logic betweenALC and SHIQ;
• NExpTime-complete for any logic betweenALCOIQ and SHOIQ.

7.3. Query answering in knowledge bases

To formulate queries, we need individual variables Var (the same that are used in first-order formulas, see Sect. 2).

Definition 7.5. A (conjunctive) query q(~x) is an expression of the form ∃~y Q(~x, ~y), where ~x = (x1, . . . , xn) and ~y = (y1, . . . , ym)
are its free and bound variables from Var, Q is a conjunction of atomic formulas of the form z: C and uRv, with C a concept, R a
role name, z a variable from Var, and u, v either variables from Var or constants from IN. The number of free variables n is called
the arity of the query. Queries of arity 0 are called Boolean.
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A query can be seen as a FO formula, if we equivalently rewrite conjuncts of the form z: C as C∗(z); and if the query contains
neither constants nor conjuncts of the form z: C, it is an ∃&-formula (see Sect. 3). Therefore, given a knowledge base K (which
can be seen as a FO theory) and a tuple of constants ~a = (a1, . . . , an) from IN, the entailmentK |= q(~a) is well-defined. If it holds,
we say that ~a is an answer to the query q(~x) in K . The following algorithmic problems are central in this area.

Query entailment problem:
given a knowledge base K , a conjunctive query q(~x), and a tuple of constants ~a from IN, decide whether ~a is an answer to q(~x)
in K .

Query answering problem:
given a knowledge base K and a conjunctive query q(~x), find all tuples of constants ~a from IN that are answers to q(~x) in K .

The query answering problem is trivially reduced to the query entailment problem by searching through all tuples of constants.
However, in many cases, even the query entailment problem is computationally harder than the problem of knowledge base
consistency, as the following recent results illustrate.

Theorem 7.6 ([29, 15]). Query entailment problem is
• ExpTime-complete for any logic betweenALC and SHQ;
• 2ExpTime-complete for any logic betweenALCI and SHIQ;
• co-N2ExpTime-hard (but decidable) for the logicALCOIQ.

In these results for logics that allow for transitivity axioms, atomic formulas of the form uRv in conjunctive queries may only
involve simple roles R.

Notably, the KB consistency problem for the DLs mentioned above can be handled by numerous modern reasoners, while
query answering algorithms are still waiting for their efficient implementations. In this context the cases when the query answer-
ing problem is polynomially reducible to the KB (in)consistency problem are especially interesting, because the query answering
algorithm can be implemented easier than in general. Such a reduction is almost trivial for acyclic queries (and known as the
rolling up technique). In [36] a reduction based on classical modal corresponding theory was suggested for unary queries q(x)
without cycles that involve only bound variables.

Here we extend this technique to queries of arbitrary arity. Before we present it, we need a lemma that allows us to consider
only queries that are essentially ∃&-formulas (with constants).

Lemma 7.7. The conjunctive query answering problem is linearly reducible to the same problem for queries that do not involve
conjuncts of the form z: C.

Proof. Suppose that we are given a knowledge base K and a conjunctive query q(~x) of the form:

q(~x) = ∃~y (Q(~x, ~y) ∧ x1: C1 ∧ . . . ∧ xn: Cn ∧ y1: D1 ∧ . . . ∧ ym: Dm),

where Q consists only of conjuncts of the form uRv. Let q′(~x) be a query obtained from q(~x) by replacing each xi: Ci with
xi:∃Ri.> and each y j: D j with y j:∃S j.>, where Ri and S j are fresh role names. Consider a knowledge base

K ′ = K ∪ {Ci ≡ ∃Ri.> | 1 ≤ i ≤ m } ∪ {D j ≡ ∃S j.> | 1 ≤ j ≤ m }.

Then one can easily prove that the query q has the same answers in K as q′ in K ′; that is, K |= q(~a)⇔K ′ |= q′(~a), for any tuple
of constants ~a. Now observe that xi:∃Ri.> is equivalent to ∃zi (xiRizi), and similarly for y j:∃S j.>. Therefore, the query q′(~x) is
equivalent to the query

q′′(~x) = ∃~y∃~z∃~v (Q(~x, ~y) ∧ x1R1z1 ∧ . . . ∧ xnRnzn ∧ y1S 1v1 ∧ . . . ∧ ymS mvm),

which has the desired form.

7.4. Main result for query entailment

Now we are ready to apply the Reduction Theorem 7.2 to our modal definability result (Theorem 4.1) and thus obtain the
following result that enables us to answer “easily” a wide family of conjunctive queries.

Theorem 7.8. (a) Suppose that q(~a) is a Boolean conjunctive query, where ~a is an n-tuple of constants and q(~x) is a query
without constants whose graph satisfies the following conditions:

(1) it is connected;
(2) each bound variable is reachable from some free variable via a directed path;
(3) it has no cycles (even undirected) containing only bound variables.

Then, in any description logic extending ALC, the query entailment problem for queries of this kind is reducible, in time
polynomial in the size of a query, to the problem of knowledge base inconsistency.

(b) If only conditions (1) and (3) are satisfied, then a similar reduction is available in any description logic extendingALCI.
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Proof. (a) By Lemma 7.7, without loss of generality we can assume that q(~x) contains no concept names. Note that the
application of Lemma 7.7 preserves conditions (1–3). Then q(~x) is an ∃&-formula (see Sect. 3) and is connected, accessible, and
white-acyclic (see Def. 3.1).

Therefore, by Theorem 4.1, the first-order formula q(~x) corresponds to a tuple of modal formulas 〈ϕ1, . . . , ϕn〉 with n = |~x|,
which can be built in time polynomial (in fact, at most quadratic) in the size of the query q, according to the procedure described
in Sect. 4.3–4.4.

Let theALC-concepts C1, . . . ,Cn be the notational variants of the modal formulas ϕ1, . . . , ϕn, where we assume that propo-
sitional letters pi are translated into fresh concept names Pi, i.e., which cannot occur in any KB against which we answer queries.
The concept names Pi serve as internal (local) variables in our query answering algorithm.

Now we apply the Reduction Theorem 7.2, which implies that q(~x) is answered by the tuple of modal formulas 〈ϕ1, . . . , ϕn〉.
This means that, for any first-order theory, in particular, for any knowledge base K not involving the concept names Pi, the
equivalence holds:

K |= q(a1, . . . , an) ⇐⇒ K |= a1:ϕ1 ∨ . . . ∨ an:ϕn

⇐⇒ K |= a1: C1 ∨ . . . ∨ an: Cn

Using notation similar to that from Def. 7.1, we can write this fact as q(~x) ≈ x1: C1 ∨ . . . ∨ xn: Cn. It remains to note that the
following equivalence holds:

K |= a1: C1 ∨ . . . ∨ an: Cn ⇐⇒ K ∪ {a1:¬C1, . . . , an:¬Cn} is inconsistent.

Thus we reduced query entailment to the KB inconsistency problem:

K |= q(a1, . . . , an) ⇐⇒ K ∪ {a1:¬C1, . . . , an:¬Cn} is inconsistent.

(b) Intuitively, “forgetting” the direction of edges in the graph of a query makes condition (2) redundant, as in this case it
follows from (1). Repeating the argument from (a) yields ALC-concepts C j in which some roles are inverted, i.e., ALCI-
concepts.

More precisely, it is easily seen that a query q(~x) satisfying (1) and (3) can be transformed into a query satisfying (1–3) by
inverting some of its edges. Simply, for every white node we can find a minimal undirected path to it from black nodes and turn
it into a directed path (note that different paths will not conflict).

Having this in mind, take every edge (i.e., conjunct) zi R`i vi in q(~x) involved in the above transformation and replace it with
the edge vi S i zi, where S i is a fresh role name. This way we obtain a new query p(~x) that satisfies conditions (1–3) and involves
the original role names {R` | ` ∈ L} and the fresh ones {S i | i ∈ I}.

By (a), we have p(~x) ≈ x1: C1 ∨ . . .∨ xn: Cn, for someALC-concepts C j involving role names R` and S i. Now let us replace
here S i with R−`i

, for all i ∈ I, and then rewrite every conjunct of the form v R−` z into an equivalent one z R` v. On the left-hand side
of ≈, we will obtain the original query q(~x). On the right-hand side of ≈, the ALC-concepts C j will turn into ALCI-concepts
D j. Since ≈ is preserved under substituting (inverse) roles for roles (an easy exercise), we obtain that q(~x) ≈ x1: D1∨ . . .∨ xn: Dn,
as desired.

Note that conditions (1–3) can be verified in polynomial time. Thus, given a query, we can check in polynomial time whether
our technique is applicable (or we give up), and if so, we have a polynomial reduction of the problem of answering this query to
the problem of knowledge base inconsistency.

It is important to emphasize the uniformity of this technique: concepts C1, . . . ,Cn used for answering a query are not only
independent of a KB against which the query is answered, but also independent of a DL in which a KB is formulated (and does
not impose restrictions such as those at the end of Theorem 7.6). Therefore, extending the expressive power of a DL does not
destroy this query answering algorithm, in contrast to other approaches.

Remark 7.9. The connectedness condition (1) is not an obstacle, since answering an unconnected query is equivalent to answer-
ing its connected components independently and then intersecting the results: ~a is an answer to q1(~x) ∧ q2(~x) iff it is an answer
to both q1(~x) and q2(~x).

7.5. Discussion

Let us summarize the essence of our query answering method. We start with a conjuctive Boolean query q(a1, . . . , an), which
is essentially a first-order formula. Then, if we are lucky and the query has the required form, we replace it with a second-order
formula ∀P1 . . .∀Pm(C∗1(a1) ∨ . . . ∨ C∗n(an)) and, curiously enough, win in complexity, because, given a KB K , the search for
a model in which K holds and this second-order formula fails is equivalent to checking the consistency of the knowledge base
K ∪ {a1:¬C1, . . . , an:¬Cn}.

We believe that, for deciding entailment of modally definable CQs, this method is perfect in practice, because

• it can be easily implemented using any off-the-shelf reasoner that supports KB consistency checking;
• implemented once, it will work for any description logic extendingALC;
• it works as fast as a KB consistency check; the latter can be done, as numerous experiments with modern reasoners show,

in a fraction of a second.
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However, if we are interested in query answering, i.e., in retrieving all tuples of constants ~a that satisfy a query q(~x), the
only way to do this is to search through all tuples of constants and check if they are answers to q(~x), which is still hard for
modern computers. So, a possible direction for future research is to look for ways of reducing this search. For some light-
weight DLs (in particular, for EL [30] and dialects of DL-Lite [7, 23]) this search can be delegated to the Relational Database
Management Systems using the technique called “query rewriting”. It would be interesting to study how far these two methods
can be combined for expressive DLs.

8. Conclusion and future work

In this paper, we presented an algorithm for checking modal definability of first-order ∃&-formulas with several free variables
and producing the corresponding modal formulas. We used this criterion for describing a large family of first-order ∀∃-formulas
with one free variable that are modally definable, some of which lie beyond the so-called Kracht’s fragment. As an application
of these theoretical investigations, we used our definability results to obtain an efficient algorithm for answering a certain family
of conjunctive queries, by providing a polynomial-time reduction of the problem of answering these queries to the problem of
knowledge base consistency.

The research induced further questions, some of which we formulate below.

1. Can our criterion (Sect. 3.1) of modal definability of ∃&-formulas be extended to ∀∃-formulas (Def. 6.2)? Will it be
algorithmically efficient?

2. More generally, can we classify fragments of the first-order logic with respect to the decidability of the modal definability
problem for FO formulas? This question is inspired by the well-known classification of fragments of FOL with respect to
the decidability of the satisfiability problem for FO formulas [6].

3. Which ∀∃-formulas (Def. 6.2) are equivalent to formulas from Kracht’s fragment?
4. Safe terms are modally definable (Theorem 4.13). What other terms are modally definable? Is it decidable to check whether

a term is modally definable? We conjecture that a term is modally definable iff it is equivalent to a safe term. Equivalence
is not avoidable here: the terms ◇x◇> and ◇(x ∧x◇x) are not safe, but they are equivalent to the safe terms ◇> and
◇x, respectively, and so are modally definable.

5. Is there a reasonable explanation to the choice of the operators ∧,∨,◇,�,x in the syntax of terms (Def. 4.6)? Why are
simple terms defined with the help of x∧-paths (Def. 4.9)? If we add ⊟ to the syntax of terms, how can the notions of
simple and safe terms be generalized to this case so that simple terms are still modally definable?

6. Terms are temporal hybrid formulas of a special kind (see Def. 4.6). The notion of modal definability of terms introduced
in Def. 4.11 can be naturally extended to arbitrary (temporal) hybrid formulas (without propositional variables), once we
regard nominals occurring in a formula as first-order free variables. Then the question is: which (temporal) hybrid formulas
are modally definable in this sense?

7. Does the converse of the Reduction Theorem 7.2 hold? More precisely, does q(x) ≈ ϕ always imply q(x) ω
! ϕ? See

Remark 7.3 in Sect. 7.1 for details.
8. Can we improve the efficiency of answering conjunctive queries (at least for modally definable queries for which we

formulated Theorem 7.8) so that to reduce the search through all tuples of constants? See Sect. 7.5 for details.
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