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Abstract

Kracht formulas are first-order correspondents of modal Sahlqvist formulas. In this paper we present
a model-theoretic characterization of Kracht formulas similar to Van Benthem’s theorem saying that a
first-order formula is equivalent to a modal formula iff it is invariant under bisimulation. Our character-
ization yields a method to prove that a given first-order formula is not equivalent to any Kracht formula.
In particular, we prove that the first-order formula, expressing the ‘cubic property’ of a 3-dimensional
modal frame does not have a Kracht equivalent.
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1 Introduction

Sahlqvist theorem on completeness and correspondence [12] is one of the basic tools in
modal logic. Completeness and decidability of many modal calculi can be proved using
this theorem together with other methods.

Kracht’s theorem [8],[9] gives a syntactic characterization of first-order correspon-
dents of Sahlqvist formulas; they are called Kracht formulas. 1 This theorem also de-
scribes an algorithm constructing a Sahlqvist correspondent for a given Kracht formula.

However, we do not know any sufficiently general method to decide whether a given
first-order formula is equivalent to a Kracht formula. In general this problem is unde-
cidable [3], and even particular cases of this problem may be hard.

For instance, recall a standard argument showing that not all first-order definable
modal formulas are Sahlqvist. It is based on the fact that unlike Sahlqvist formulas, the
formula (3p→ 33p) ∧ (23p→ 32p) is locally undefinable.

1 Correspondence Theory and, in particular, Krachts formulas are applicable to knowledge base query
answering, cf. [13].
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When generalized Sahlqvist formulas appeared [5], there was a question if they really
semantically extend the class of standard Sahlqvist formulas. The question was solved
positively by D. Vakarelov and V. Goranko in [6], where they introduced the notion of
a-persistence, showed that all standard Sahlqvist formulas are a-persistent and gave an
example of a generalized Sahlqvist formula without this property.

In [13] some syntactic extensions of Kracht’s fragment were proposed, and there is a
question if these new formulas extend Kracht formulas semantically.

This paper proposes a general method for distinguishing Kracht formulas and thus
for proofs that certain first-order formulas do not have Kracht equivalents. We point
out that unlike [6], we use the methods of classical first-order model theory (elemen-
tary chains, ultraproducts and ω-saturated models) and deal with classical first-order
formulas.

Our characterization is obtained as a combination of two well-known ideas. The first
is Van Benthem’s theorem [1] — a first-order formula is equivalent to a modal formula
iff it is bisimulation-invariant. The second is preservation of first-order positive formulas
under homomorphisms.

2 Kracht formulas.

Let Λ be a set of indices. We use the standard first-order language LfΛ containing
countably many individual variables xi, binary predicates Rλ for every λ ∈ Λ, equality,
boolean connectives ∧,∨,→,¬ and quantifiers ∃xi, ∀xi. To avoid subscripts, we often
denote individual variables by x, y, . . ..

The definitions from this section are almost the same as in [2] and originate from [8],
[9].

Definition 2.1 We use the following abbreviations

(∀xi .λ xj)A ≡ ∀xi(xjRλxi → A);

(∃xi .λ xj)A ≡ ∃xi(xjRλxi ∧A).

(∀xi .λ xj), (∃xi .λ xj) are called restricted quantifiers.

To define Kracht formulas, we need a fragment RfΛ of LfΛ. Informally, to obtain
RfΛ we take the positive fragment of LfΛ, add new relation symbols for compositions
of Rλ and use only restricted quantifiers. We consider the symbols .λ as elements of our
language.

Formally, the formulas of RfΛ are defined by recursion [9]:

• ⊥,> are formulas of RfΛ;
• if ε = λ1 . . . λn, where n ≥ 0, λi ∈ Λ, and xi, xj are individual variables, then xiRεxj

is a formula of RfΛ (if ε is empty, we obtain equality);
• if A,B are formulas of RfΛ, then (A ∧B), (A ∨B) are formulas of RfΛ;
• if xi, xj are individual variables, λ ∈ Λ and A is a formula of RfΛ, then (∀xi .λ xj)A

and (∃xi .λ xj)A are formulas of RfΛ.
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Definition 2.2 A formula A of RfΛ is called clean if A does not contain variables
occurring both free and bound and every two different occurrences of quantifiers in A

bind different variables.

Henceforth we consider only clean formulas.
φ[t/x] denotes the substitution of the term t for all free occurrences of the variable

x in φ. In general φ[t/x] is not necessary clean (even if φ is clean), but in this paper all
such substitutions generate clean formulas.

Consider an LfΛ-structure M = (W, (RMλ : λ ∈ Λ)). RfMΛ denotes the language
obtained from RfΛ by adding the constants cw for all w ∈ W . A formula φ of RfMΛ
is called an RfMΛ -sentence if φ does not contain free variables. The truth of RfMΛ -
sentences in M is defined in a standard way. In particular, the formula cwRεcv, where
ε = λ1 . . . λn, is true in M iff there is a sequence of points w0, w1, . . . , wn of M such that
w0 = w, wn = v and for all i from 1 to n we have xi−1R

M
λi
xi. In particular, if n = 0 (i.e.

ε is an empty sequence), then cwR
εcv ⇐⇒ w = v.

Definition 2.3 A variable x in a formula φ is called inherently universal for φ if either
x is free, or x is bound by a universal quantifier, which is not within the scope of an
existential quantifier.

A formula φ of RfΛ is called a parametrized Kracht formula if in every its atomic
subformula of the form xiR

εxj at least one of the variables xi and xj is inherently
universal for φ.

A parametrized Kracht formula with a single free variable is called a Kracht formula.

Definition 2.4 Consider an LfΛ-structure T̂ = (WT , (RTλ : λ ∈ Λ)), where for all
λ ∈ Λ RTλ ⊆ WT × WT . A sequence x1, λ1, x2, λ2, . . . xn, where xi ∈ WT , λi ∈ Λ
and (xi, xi+1) ∈ RTλi

for 1 ≤ i ≤ n − 1 is called a path from x1 to xn in T̂ . A tuple
T = (T̂ , rT ) is called a tree with a root rT if the following holds:

• rT ∈WT ,
• WT is finite;
• (RTλ )−1(rT ) = ∅ for all λ ∈ Λ,
• for every point xT 6= rT there exists a unique path from rT to xT .

Consider a tree T = (WT , (RTλ : λ ∈ Λ), rT ) and an LfΛ-structure F = (WF , (RFλ :
λ ∈ Λ)). A mapping f : WT → WF is called monotonic if for all x, y ∈ WT , λ ∈ Λ,
xRTλ y implies f(x)RFλ f(y).

3 Semantic Characterization

Definition 3.1 Consider two LfΛ-structures G = (WG, (RGλ : λ ∈ Λ)) and F =
(WF , (RFλ : λ ∈ Λ)), a tree T = (WT , (RTλ : λ ∈ Λ)), monotonic mappings g : T → G

and f : T → F . A relation Z ⊆ WG ×WF is called a Kracht-simulation if Z satisfies
the following conditions:

(KB1) For every t ∈WT , (g(t), f(t)) ∈ Z;
(KB2) For any xG ∈ WG, xF ∈ WF , t ∈ WT , for arbitrary sequence ε ∈ Λ∗ if
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Fig. 1. Some examples of Kracht-simulations.

(xG, xF ) ∈ Z and g(t)(RG)εxG, then f(t)(RF )εxF .
(KB3) For any points xF ∈ WF and xG ∈ WG such that (xG, xF ) ∈ Z for any

(x′)G ∈ RGλ (xG) there exists a point (x′)F ∈ RFλ (xF ) such that (x′G, x′F ) ∈ Z.
(KB4) For any points xF ∈ WF and xG ∈ WG such that (xG, xF ) ∈ Z, for any

(x′)F ∈ RFλ (xF ) there exists a point (x′)G ∈ RGλ (xG), such that (x′G, x′F ) ∈ Z.
In this case we say that the triple (G,T, g) is Kracht-reducible to (F, T, f) by Z, in

symbols: (G,T, g)�Z (F, T, f).

Note that this notion generalizes modal bisimulations. (KB3) and (KB4) are the
classical “forth” and “back” properties of bisimulations. (KB2) replaces the additional
property of bisimulation saying that bisimilar worlds satisfy the same proposition letters.
Note that unlike classical modal bisimulations, the relation �Z is not symmetric, since
(KB2) acts only in one direction.

Examples of Kracht-simulations can be found in Figures 1 and 2.

Definition 3.2 A tuple G◦ = (G, xG0 ) is called an LfΛ-structure with a designated

point if G = (WG, (RGλ : λ ∈ Λ)) is an LfΛ-structure and xG0 ∈WG.

Definition 3.3 Consider two LfΛ-structures with designated points G◦ = (G, xG0 ) and
F◦ = (F, xF0 ). We say that G◦ is Kracht-reducible to F◦ (notation: G◦ ≫ F◦) if for
any tree T = (WT , (RTλ : λ ∈ Λ), xT0 ) for all monotonic mappings f : T → F sending xT0
to xF0 , there exists a monotonic mapping g : T → G, sending xT0 to xG0 , and a relation
Z ⊆WG ×WF such that (G,T, g)�Z (F, T, f).

The intuition underlying this definition is the following. For LfΛ-structures with
designated points G◦ and F◦ we can regard a tuple (T, f), where T is a tree, and f : T →
F is a monotonic mapping, sending xT0 to xF0 , as a test checking if F◦ really simulates G◦.
The pair (G◦, F◦) passes the test if there exist g and Z such that (G,T, g)�Z (F, T, f).
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Fig. 2. The left-hand picture is not a Kracht-simulation while the right-hand picture is.

And G◦ ≫ F◦ if the pair (G◦, F◦) passes all possible tests.

Definition 3.4 We say that a formula φ(x0) of LfΛ is preserved under Kracht-

reducibility if for every pair of LfΛ-structures with designated points G◦ = (G, xG0 )
and F◦ = (F, xF0 ) if G◦ ≫ F◦ and G |= φ[xG0 /x0], then F |= φ[xF0 /x0].

Theorem 3.5 A formula φ(x0) of LfΛ is equivalent to a Kracht formula iff φ(x0) is
preserved under Kracht-reducibility.

This theorem is proved in Sections 4 – 6.

4 Soundness

The aim of this section is to prove that every Kracht formula is preserved under Kracht-
reducibility.

To begin with, we give the definition of a local Kracht formula. The idea of this
definition is to characterize a point in any frame ‘up to K-reducibility’. To define these
formulas we use the following convention. We assume that every local Kracht formula
φ has a fixed free variable v (however, v may be dummy in φ), and v differs from
x0, x1, x2, . . .. The notation φ(t) denotes the substitution of t for v in φ.

These formulas are similar to standard translations of modal formulas STx(χ) [2],
where x is a fixed variable. To emphasise this similarity, for a point w of an LfΛ-
structure F = (WF , (RFλ : λ ∈ Λ)) and a local Kracht formula φ it is tempting to write
F,w |= φ instead of F |= φ[w/v].

But there is yet another difference between local Kracht formulas and the stan-
dard translation. In STx(χ) the only free variable is x. Local Kracht formulas may
contain some additional free variables x0, x1, . . . xn. Suppose that in addition to an
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LfΛ-structure F we have a tree T = (WT , (RTΛ : λ ∈ Λ)) and a monotonic mapping
f : WT → WF . Suppose also that WT = {xT0 , xT1 , . . . , xTn}. In this case the notation
(F, T, f), w |= φ(v) means F |= φ[f(xTi )/xi][w/v].

Definition 4.1 Local Kracht formulas are defined recursively:

• >, ⊥ and xiRεv are local Kracht formulas;
• if φ(v) is a local Kracht formula, then (∃v′.λv)φ(v′) and (∀v′.λv)φ(v′) are local Kracht

formulas. As in the standard translation, here v′ is a new variable not occurring in
φ. This restriction is crucial, e. g. the formula (∀v1 . v)(∀v2 . v)(v1Rv2) is not a local
Kracht formula, while (∀v2 . v)(x1Rv2) is.

• if φ(v) and ψ(v) are local Kracht formulas, then φ(v)∧ψ(v) and φ(v)∨ψ(v) are local
Kracht formulas.

Example 4.2 Here are some examples of local Kracht formulas: x1R
εv, ∃v1 .λ

v(x1R
εv1), (∃v1 .λ v(x1R

ε1v1)) ∧ (x2R
ε2v).

Lemma 4.3 If (G,T, g) �Z (F, T, f) and (xG, xF ) ∈ Z, then for any local Kracht
formula ψ(v) (G,T, g), xG |= ψ(v) implies (F, T, f), xF |= ψ(v).

Proof. The proof by induction on the length of ψ.
The base of induction follows from (KB2); the cases ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2

are trivial.
The case ψ(v) = ∃v′ .λ vψ′[v′/v] follows immediately from (KB3).
Consider the case ψ(v) = ∀v′ .λ vψ′[v′/v]. Suppose that (G,T, g), xG |= ψ, but

(F, T, f), xF 6|= ψ. The latter means that there exists a point x′F ∈ RFλ (xF ), such that
(F, T, f), x′F 6|= ψ′. By (KB4), there is a point x′G ∈ RGλ (xG), such that (x′G, x′F ) ∈ Z.
By the induction hypothesis, (G,T, g), x′G 6|= ψ′. This contradicts (G,T, g), xG |= ψ.
Thus the claim holds. 2

Now we reduce arbitrary Kracht formulas to local Kracht formulas.

Definition 4.4 If a formula φ is built from formulas of the form ψ(xi), where ψ is a
local Kracht formula, using ∧, ∨ and restricted universal quantifiers, we say that φ is a
parametrized decomposed Kracht formula.

Lemma 4.5 Let ξ(x1, . . . , xn, y1, . . . , yr) be a formula of RfΛ. Suppose that any sub-
formula of ξ of the form v1R

εv2 contains at least one x-variable. Then there exist local
Kracht formulas ψ1(v), . . . , ψk(v), not containing y-variables, such that ξ is equivalent
to a formula built from ψi(x′i) (x′i ∈ {x1, . . . , xn, y1, . . . , yr}) using only ∧ and ∨.

Proof. At first we replace each subformula of φ of the form zRεx, where ε = λ1 . . . λn,
and the variable x (but not z) is inherently universal, with an equivalent formula (∃z1.λ1

z)(∃z2 .λ2 z1) . . . (∃zn .λn
zn−1)(x = zn), where all zi are new variables. This operation

gives us a formula with all atoms of the form xiR
εz.

Then we argue by induction on the length of ξ.
If ξ = xjR

εz, then ξ = ψ(z) for ψ(v) = xjR
εv. The cases of booleans are trivial.

Suppose ξ = (∃z .λ xj)ξ′(x1, . . . , xn, z). By the induction hypothesis and dis-
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tributivity, ξ′ is of the form K1 ∨ . . . ∨ Km, where Ki = ψi1(xi1) ∧ . . . ∧ ψimi
(ximi

)
(xil ∈ {x1, . . . , xk, z}). So, ξ ≡ (∃z .λ xj)K1 ∨ . . . ∨ (∃z .λ xj)Km. But

(∃z .λ xj)Ki =
∧
xi

l 6=z

ψil(x
i
l) ∧ ψ(xj)

for the local Kracht formula

ψ(v) = (∃v′ .λ v)
∧
xi

l=v

ψil(v
′).

The case of universal quantifier is proved dually. 2

Lemma 4.6 Every parametrized Kracht formula φ is equivalent to a parametrized de-
composed formula.

Proof. By induction on the length of φ relying upon Lemma 4.5 for atoms and for
formulas beginning with an existential quantifier. 2

Example 4.7 Kracht formula

(∀x2 .1 x1)(x1R2x2 ∨ x1R3x2) ∧ (∀x3 .1 x1)(∃x4 .1 x1)x3R1x4

is equivalent to a decomposed Kracht formula

(∀x2 .1 x1)(ψ1(x2) ∨ ψ2(x2)) ∧ (∀x3 .1 x1)ψ3(x1)

for local Kracht formulas ψ1(v) = x1R2v, ψ2(v) = x1R3v, ψ3(v) = (∃v′ .1 v)x3R1v
′.

Definition 4.8 Consider a model F and a parametrized decomposed Kracht formula φ.
Suppose that we substitute points xFi ∈ WF for all free variables xi in φ. The result of
such substitution is called a Kracht F -sentence. A local Kracht F -sentence is defined
in a similar way.

Definition 4.9 We say that a set of F -sentences S witnesses the falsity of an F -sentence

φ if S satisfies the following conditions:

(i) φ ∈ S;

(ii) if φ1 ∨ φ2 ∈ S, then φ1 ∈ S and φ2 ∈ S;

(iii) if φ1 ∧ φ2 ∈ S, then φ1 ∈ S or φ2 ∈ S;

(iv) if (∀xi .λ xFj )φ′ ∈ S, then there exists a point xFi in F such that xFj R
F
λ x

F
i and

φ′[xFi /xi] ∈ S;

(v) if ψ(v) is a local Kracht sentence and ψ(xFi ) ∈ S, then F 6|= ψ(xFi ).

Lemma 4.10 Let φ be a Kracht F -sentence. Then
F 6|= φ⇐⇒ there exists a set of Kracht F -sentences Sφ witnessing the falsity of φ.

Proof. (=⇒) Suppose that F 6|= φ. We argue by induction on the length of φ.
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• if φ is of the form ψ(xFk ) for a local Kracht formula ψ(v), put Sφ = {φ};
• if φ = φ1 ∨ φ2, then both φ1 and φ2 are false, so we put Sφ = {φ} ∪ Sφ1 ∪ Sφ2 ;
• if φ = φ1 ∧ φ2, then one of φ1 or φ2 is false so we can put either Sφ = {φ} ∪ Sφ1 or
Sφ = {φ} ∪ Sφ2 depending on the falsity of φ1 or φ2;

• if φ = (∀xi .λ xFj )φ′ ∈ S, then there is a point xFi in a model F such that xFj R
F
λ x

F
i

and F 6|= φ′[xFi /xi], hence we can put Sφ = {φ} ∪ Sφ′[xF
i /xi].

(⇐=) A trivial induction shows that if S witnesses the falsity of any F -sentence,
then for all φ′ ∈ S F 6|= φ′. But φ ∈ S. 2

Now we are ready to prove that every Kracht formula φ(x0) is preserved under
Kracht-reducibility, that is the soundness part of Theorem 3.5.

Proof. According to Lemma 4.6, without any loss of generality we can assume that
φ(x0) is decomposed.

Assume that φ(x0) is not preserved under Kracht-reducibility, that is there are LfΛ-
structures with designated points G◦ and F◦ such that G◦ ≫ F◦ and

G |= φ[xG0 /x0],(1)

but F 6|= φ[xF0 /x0]. By Lemma 4.10 there exists a set of F -sentences SF witnessing the
falsity of φ[xF0 /x0] in F .

Let Γ = {ψ(xFk ) | ψ(v) be a local Kracht sentence and ψ(xFk ) ∈ SF }. By WT we
denote the set of all inherently universal variables xk such that the corresponding con-
stants xFk occur in Γ. In other words, WT consists of those inherently universal variables
of φ, whose valuations are essential for the falsity of φ[xF0 /x0] in F . Consider the tree
T = (WT , (RTλ : λ ∈ Λ), x0), where xjRTλxi iff the variable xi is bound by a quantifier
of the form (∀xi .λ xj).

The construction of SF gives us a monotonic mapping f : T → F sending each point
xi ∈ WT to a point xFi ∈ F . By Definition 3.3, there exists a monotonic mapping
g : T → G, sending x0 to xG0 such that (G,T, g) �Z (F, T, f) for some Z. Let SG be
the set of G-sentences obtained by replacing all xFi with xGi in all formulas of SF .

We claim that SG witnesses the falsity of the G-sentence φ[xG0 /x0] in G. In fact,
the items (i)–(iii) of Definition 4.9 hold by the construction of SG. The item (v) is
true due to Lemma 4.3. Let us show that the item (iv) holds for SG. Suppose that
(∀xi .λxGj )φ′ ∈ SG. This may happen only in the case when (∀xi .λxFj )φ′[xFk /x

G
k ] ∈ SF .

So there exists xFi ∈ F such that (F, T, f), xFi 6|= φ′[xFk /x
G
k ]. Put xGi = g(xi). By

(KB1), (xGi , x
F
i ) ∈ Z, hence due to (KB2), (G,T, g), xGi 6|= φ′. And xGj R

G
λ x

G
i by the

monotonicity of g.
Therefore, by Lemma 4.10, we conclude that G 6|= φ[xG0 /x0]. This contradicts our

initial assumption (1). 2

5 Model-theoretic background

In the next section we assume that the reader is familiar with standard model-theoretic
tools such as elementary extensions, ω-saturated models and ultrapowers. However, we
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recall the latter two notions and their basic properties.

Definition 5.1 An LfΛ-structure F = (W, (Rλ : λ ∈ Λ)) is called n-saturated, if
for any set Γ of first-order formulas with at most n free variables γ(x1, x2, . . . , xn) the
following holds:

IF x0
1, . . . , x

0
n−1 is a sequence of points from W such that for all finite ∆ ⊆ Γ there

is a point (x0
n)∆ such that

F |= γ(x0
1, x

0
2, . . . , x

0
n−1, (x

0
n)∆)

for all formulas γ ∈ ∆,
THEN there exists a point x0

n such that F |= γ(x0
1, x

0
2, . . . , x

0
n−1, x

0
n) for all formulas

γ ∈ Γ.
A model F is called ω-saturated if it is n-saturated for all n.

Definition 5.2 Consider a model F = (W, (Rλ : λ ∈ Λ)) and a non-principal ultrafilter
u over the set of all natural numbers N.

We say that two sequences of points from W ᾱ = (α1, α2, α3, . . .) and β̄ =
(β1, β2, β3, . . .) are u-equivalent (denoted by ᾱ ∼u β̄), if {i | αi = βi} ∈ u. The equiva-
lence class of a sequence α is denoted by dαe.

The LfΛ-structure F = (W ′, (R′λ : λ ∈ Λ)), where

W ′ = { all sequences of points from W}/ ∼u

and
dᾱeR′λdβ̄e ⇐⇒ {i | αiRλβi} ∈ u.

is called an ultrapower of F (with respect to u) and denoted by
∏
u F .

Proposition 5.3 A natural embedding i : F →
∏
u F such that

i(w) = d(w,w,w,w, . . .)e,

is elementary.

Proposition 5.4 For any LfΛ-structure F = (W, (Rλ : λ ∈ Λ)) and any non-principal
ultrafilter u over N the ultrapower

∏
u F is ω-saturated.

6 Completeness

We follow the plan of the proof of van Benthem’s theorem from [2]. The keystone of
the proof is Lemma 6.5 (an analogue of Detour lemma from [2]). Its proof is carried out
step by step in Lemmas 6.1 – 6.4. After that the theorem is proved in a standard way.

Lemma 6.1 Consider LfΛ-structures with designated points G◦ = (G, xG0 ) and F◦ =
(F, xF0 ) such that for any Kracht formula φ(x0) G |= φ[xG0 /x0] implies F |= φ[xF0 /x0].
Suppose there is a tree T and a monotonic mapping f : T → F sending rT to xF0 .
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Then there exists an elementary extension G′ of G and a monotonic mapping g :
T → G′ sending rT to xG0 , such that for any local Kracht formula ψ(v) for any point
t ∈WT G′ |= ψ(g(t)) implies F |= ψ(f(t)).

Proof. Let WT = {x0, x1, . . . , xn}, let xp(i) be the unique predecessor of xi in T , and
let xp(i)Rλi

xi. Suppose that for all 0 ≤ i ≤ n

Ψi = {ψ(v) | ψ(v) is a local Kracht formula and F 6|= ψ(f(xi))}.

We enumerate all formulas of Ψi:

Ψi = {ψi1(v), ψi2(v), . . .}.

Fix m ∈ N. Consider the formula

γm = (∃x1 .λ1 x0) . . . (∃xn .λn
xp(n))

∧
xi∈WT

((¬ψi1 ∧ . . . ∧ ¬ψim)(xi)).

It is clear that F |= γm[xF0 /x0] and γm is a negation of a Kracht formula.
Hence, due to the assumption of the lemma, G |= γm[xG0 /x0], that is there exist

points gm0 , . . . , g
m
n ∈WG (here gm0 = xG0 for all m) such that the mappings gm : T → G

gm(xi) = gmi are monotonic and for all 0 ≤ i ≤ n

G, gmi |= (¬ψi1 ∧ . . .¬ψim).

Let u be a non-principal ultrafilter over N. Put G′ = ΠuG.
This guarantees that G′ is an elementary extension of G.
Now define g(xi) as the equivalence class of the sequence (g1

i , g
2
i , g

3
i , . . .).

It is clear that if xiRTλxj , then for all m gmi R
G
λ g

m
j , therefore, g(xi)RG

′

λ g(xj).
Now we show that for any local Kracht formula ψ(v) for any point xi ∈ WT if

G′ |= ψ(g(xi)) then F |= ψ(f(xi).
In fact, suppose that F 6|= ψ(f(xi)) for some i. Then ψ ∈ Ψi, hence there is m0 such

that ψ = ψm0
i . Then for all m ≥ m0 g

m
i |= ¬ψ. This contradicts G′ |= ψ(g(xi)). 2

Lemma 6.2 Consider LfΛ-structures with designated points G◦ and F◦ such that WF

is countable and for any Kracht formula φ(x0) G |= φ[xG0 /x0] implies F |= φ[xF0 /x0].
Then there is an elementary extension G∗ of G, such that

for any tree T for any monotonic mapping f : T → F , sending rT

to xF0 , there exists a monotonic mapping g : T → G∗ sending rT

to xG0 , such that for any local Kracht formula ψ(v) for any point
xi ∈WT G∗ |= ψ(g(xi)) implies F |= ψ(f(xi))

(2)

Proof. Consider all possible pairs (T, f) consisting of a tree T and a monotonic mapping
f : T → F sending rT to xF0 . There are countably many such pairs, we enumerate them
as (T1, f1), (T2, f2), . . ..
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We construct an elementary chain G0 ≺ G1 ≺ G2 ≺ . . ., where G0 = G, and for
i > 0 Gi is obtained by applying Lemma 6.1 to frames Gi−1, F and the pair (Ti, fi).
The condition of Lemma 6.1 holds due to the elementarity of Gi−1 over G0.

Put G∗ to be the limit of this chain. By the elementary chain principle, G∗ is an
elementary extension of G0, so (2) obviously holds. 2

Lemma 6.3 Consider LfΛ-structures with designated points G◦ and F◦ such that WF

is countable and for any Kracht formula φ(x0), G |= φ[xG0 /x0] implies F |= φ[xF0 /x0].
Then there exist elementary embeddings G ≺ Ḡ and F ≺ F̄ such that Ḡ and F̄ are
ω-saturated and satisfy 6.2 (2).

Proof. Due to Lemma 6.2, there exists an elementary embedding G ≺ G∗, such that
(2) holds.

Take a non-principal ultrafilter u over N and put Ḡ = ΠuG
∗, F̄ = ΠuF . Let us

verify that (2) still holds for Ḡ and F̄ .
In fact, consider f : T → F̄ . Suppose that f(xi) = d(f1

i , f
2
i , f

3
i , . . .)e. Then for each

monotonic mapping f j : T → f we find a corresponding monotone mapping gj : T → G∗,
and finally we put g(xi) = d(g1(xi), g2(xi), . . .)e. It is clear that g is well defined. Let
us prove that for any local Kracht formula ψ(v) for any point t of T Ḡ |= ψ(g(xi))
implies F |= ψ(f(xi)). If Ḡ |= ψ(g(xi)), then A = {j | G |= ψ(gj(xi))} ∈ u, therefore
A ⊆ {j | F |= ψ(f j(xi))}, and so {j | F |= ψ(f j(xi))} ∈ u, hence F̄ |= ψ(f(xi)).

Due to Proposition 5.4, the LfΛ-structures Ḡ and F̄ are ω-saturated. 2

Lemma 6.4 Let Ḡ, F̄ be ω-saturated LfΛ-structures. Suppose there is a tree T and
monotonic mappings g : T → Ḡ and f : T → F̄ . Suppose also that WT = {x1, . . . , xn}.
Let us define a relation Z ⊆WG ×WF , by putting for x ∈ Ḡ and y ∈ F̄

(x, y) ∈ Z ⇐⇒
for any local Kracht formula ψ(v) such that all its free variables

except v are in WT , (Ḡ, T, g) |= ψ(x) implies (F̄ , T, f) |= ψ(y).

Then the relation Z satisfies (KB2)–(KB4).

Proof. (KB2) follows readily from the definition of Z.
Let us check (KB3). Suppose that xF ∈ WF , xG ∈ WG, xGZxF and there exists

(x′)G ∈ RGλ (xG). Let Ψ be the set of all local Kracht formulas true at the point (x′)G

of the frame G under the valuation [g(xi)/xi]. Consider the set of formulas Ψ′ =
{xFRλv} ∪ {ψ[f(xi)/xi] | ψ ∈ Ψ} in the first-order language LfΛ enriched with the
constants naming the points of WF . Let us show that every set of the form Ψ′m =
{xFRλv} ∪ {ψ1, . . . , ψm | ψi ∈ Ψ} is realized in F . Consider the local Kracht formula
φm = (∃v′ .λ v)(ψ1(v′) ∧ . . . ∧ ψm(v′)). It is clear that G |= φm(xG), therefore F |=
φm(xF ), that is there exists a point x′F realizing Ψm. Hence, due to the saturation of
F , we can conclude that the frame F realizes the whole set Ψ′, that is there is a point
(x′)F ∈ RFλ (xF ) such that (x′G, x′F ) ∈ Z.

Let us check (KB4). Suppose that xF ∈WF , xG ∈WG, and xGZxF . Take a point
(x′)F ∈ RFλ (xF ).
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Let Ψ = {¬ψ | ψ is a local Kracht formula and F |= ¬ψ[f(xi)/xi][(x′)F /v]}. Con-
sider the set of formulas Ψ′ = {xGRλv} ∪ {ψ[g(xi)/xi] | ψ ∈ Ψ} in the first-order
language LfΛ enriched with the constants from WG. Let us show that any set of the
form Ψ′m = {xGRλv} ∪ {¬ψ1, . . . ,¬ψm | ¬ψi ∈ ψ} is realized in G.

Suppose the contrary, i. e. the formula ψ1∨. . .∨ψm is true at every point v ∈ Rλ(xG).
Then the local Kracht formula φm(v) = ∀v′ .λ v(ψ1 ∨ . . . ∨ ψm) is true at the point xG

. Hence φm is true at the point xF of the frame F . This means that the formula
ψ1 ∨ . . . ∨ ψm is true at (x′)F . This contradicts the definition of Ψ.

Due to the saturation of G, we conclude that the whole set Ψ′ is realized in G. This
means that there is a point (x′)G ∈ RGλ (xG) such that (x′G, x′F ) ∈ Z. 2

Lemma 6.5 Consider LfΛ-structures with designated points G◦ and F◦ such that WF

is countable and for any Kracht formula φ(x0) G |= φ[xG0 /x0], implies F |= φ[xF0 /x0].
Then there exist elementary embeddings G ≺ Ḡ and F ≺ F̄ , such that (Ḡ, xG0 ) ≫
(F̄ , xF0 ).

Proof. Apply Lemma 6.3 and then Lemma 6.4. 2

Proof. [The proof of theorem 3.5 (completeness)] Consider an arbitrary first-order for-
mula with a single free variable φ(v) which is preserved under Kracht-reducibility. Let
us show that φ(v) is equivalent to some Kracht formula.

To this end we following the plan in [2], consider the set of first-order formulas with
a single free variable v KC(φ) = {ψ(v) | φ(v) |= ψ(v), ψ(v) is a Kracht formula}.

(1) Note that if KC(φ) |= φ, then φ is equivalent to a Kracht formula. In fact, if
KC(φ) |= φ, then there exist ψ1, . . . , ψn such that `PC ψ1 ∧ . . . ∧ ψn → φ. Therefore
the formula φ is equivalent to ψ1 ∧ . . . ∧ ψn.

(2) Let us show that KC(φ) |= φ. To this end, take a countable model N , a point
y ∈ N and suppose that N |= KC[y/v]. Consider the set of formulas

NKT (N, y) = {¬δ | δ is a Kracht formula and N |= ¬δ(y)}.

(3) We claim that the set NKT (N, y) ∪ {φ} is consistent. In fact, suppose the
contrary. Then there is a finite subset NKT0 ⊂ NKT (N, y) such that `PC φ →
¬ ∧ NKT0. This means that there are Kracht formulas δ1, . . . , δn such that `PC φ →
δ1∨ . . .∨ δn. Then δ1∨ . . .∨ δn ∈ KC(φ), therefore N, y |= δ1∨ . . .∨ δn. This contradicts
the fact that N, y |= ¬δi for all i.

(4) Hence, due to the Gödel Completeness Theorem, there is a model M and a point
x ∈ M such that (M,x) |= NKT (N, y) ∪ {φ}. We claim that for every Kracht formula
ψ if M,x |= ψ then N, y |= ψ. In fact, if N, y |= ¬ψ, then ¬ψ ∈ NKT (N, y), therefore
M,x |= ¬ψ. This is the contradiction.

(5) Now we apply Lemma 6.5. It states that there exist elementary extensions M̄
and N̄ of the models M and N such that M̄ ≫ N̄ . But M |= φ, therefore M̄ |= φ,
hence N̄ |= φ, and so N |= φ. So we have proved that KC(φ) |= φ. 2
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7 “Cubic” property

In this section we apply our semantic characterization of Kracht formulas to show that
a certain formula fc (well-known in many-dimensional modal logic) does not have a
Kracht equivalent.

Consider unimodal Kripke frames F1 = (W1, R̂1), . . . , Fn = (Wn, R̂n). Recall that
their product F1 × . . .× Fn is the frame (W1 × . . .×Wn, R1, . . . , Rn), where

(x1, . . . , xn)Ri(y1, . . . , yn)⇐⇒ xj = yj for i 6= j and xiR̂iyi.

All 3-modal frames of the form F1×F2×F3, satisfy [4] the “cubic” formula ∀x0fc(x0),
where

fc(x0) = ∀x1∀x2∀x3(x0R1x1 ∧ x0R2x2 ∧ x0R3x3 →
∃y12∃y13∃y23∃y123(x1R2y12 ∧ x1R3y13 ∧
∧ x2R1y12 ∧ x2R3y23 ∧ x3R1y13 ∧
x3R2y23 ∧ y23R1y123 ∧ y13R2y123 ∧ y12R3y123)). R1

R2

R3 R3

R2
R1

R1
R2

R3
R2

R3
R1

x0

x1

x2

x3

y
13

y
12

y
23

y
123

In [10] and [11] modifications of the formula fc are used to obtain negative results
on axiomatizing modal logics of dimensions ≥ 3.

Theorem 7.1 The formula fc(x0) is not equivalent to any Kracht formula.

To prove Theorem 7.1, we fix Λ = {1, 2, 3} and construct two LfΛ-structures with
designated points G◦ and F◦ such that G◦ ≫ F◦, G |= fc[xG0 /x0], but F 6|= fc[xF0 /x0].

Put F◦ = (F, r) where F = (W,R1, R2, R3), (see Fig. 3)

W = {r} ∪ {a1, a2, a3} ∪ {bij | i, j = 1, 2, 3} ∪ {c1, c2, c3},

and Rl are defined by the following conditions:

rRlai ⇐⇒ l = i;

aiRlb
j
k ⇐⇒ i 6= l, i 6= k, k 6= l, j 6= l

bjkRlci ⇐⇒ k = l and (j = i = k or (j 6= k and i 6= k)).

Put G◦ = (G, r), where G = (W ′, R′1, R
′
2, R

′
3) and

W ′ = W ∪ {b̄ij | i, j = 1, 2, 3} ∪ {c̄1, c̄2, c̄3, c̄123},

R′l = Rl ∪ {(ai, b̄jk) | aiRlbjk} ∪ {(b̄
j
k, c̄i) | b

j
kRlci} ∪ {(b̄

j
j , c̄123) | 1 ≤ j ≤ 3}.

One can see that F is a part of G, that is there exists a natural embedding ι : W →W ′.
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b̄1
1 b̄2

1 b̄3
1 b̄1

2 b̄2
2 b̄3

2 b̄1
3 b̄2

3 b̄3
3

c̄1 c̄2 c̄3

r

c̄123

a1 a2
a3

b1
1 b2

1 b3
1 b1

2 b2
2 b3

2
b1
3 b2

3 b3
3

c1 c2 c3

G

F

a1 a2 a3

b1
1 b2

1 b3
1 b1

2 b2
2 b3

2
b1
3 b2

3 b3
3

c1 c2 c3

r

Fig. 3. Frames G and F ; here R1 is shown in red, R2 in black and R3 in blue

Lemma 7.2 In LfΛ-structures F and G for all i, l ∈ {1, 2, 3} for all ε ∈ {1, 2, 3}∗

aiR
εcl ⇐⇒ ε = jk, where |{i, j, k}| = 3,(3)

rRεcl ⇐⇒ ε = ijk, where |{i, j, k}| = 3;(4)

In G for all h ∈ {1, 2, 3, 123} for all ε ∈ {1, 2, 3}∗ in G

aiR
εc̄h ⇐⇒ ε = jk and {i, j, k} = {1, 2, 3}.(5)

Proof. At first, we prove (3) for F and G simultaneously. Consider the point a1. One
can see that

a1R2b
1
3R3c1;

a1R3b
1
2R2c1;

a1R2b
1
3R3c2;

a1R3b
2
2R3c2;

a1R2b
3
3R3c3;

a1R3b
1
2R2c3;

and R1(a1) = ∅, R1((R2 ∪R3)(a1)) = ∅.
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For the points a2, a3 the statement (3) is true, due to the symmetry of F . The
statement (4) follows readily from (3); (5) can be checked similarly. 2

Lemma 7.3 In F

R3(R2(a1) ∩R1(a2)) ∩R2(R3(a1) ∩R1(a3)) ∩R1(R2(a3) ∩R3(a2)) = ∅

(and hence F 6|= fc[xF0 /x0]).

Proof. In fact, R2(a1) ∩ R1(a2) = b33, R3(a1) ∩ R1(a3) = b22, R2(a3) ∩ R3(a2) = b11,
therefore

R3(R2(a1) ∩R1(a2)) ∩R2(R3(a1) ∩R1(a3)) ∩R1(R2(a3) ∩R3(a2)) =

= R3(b33) ∩R2(b22) ∩R1(b11) = {c1} ∩ {c2} ∩ {c3} = ∅.
2

Lemma 7.4 G◦ is Kracht-reducible to F◦.

Proof. Take a tree T with a root xT0 and a monotonic mapping f : T → F sending xT0
to r. Our goal is to construct a monotonic mapping g : T → G sending xT0 to r and a
relation Z ⊆W ′ ×W such that (G,T, g)� (F, T, f).

To this end we use an embedding ι : W →W ′ and put g = ι · f . Then we construct
Z (uniformly for all (T, f)).

Put (α, β) ∈ Z if one of the following holds:

(i) α, β ∈W and α = β

(ii) α ∈W ′, β ∈W and α = β̄;

(iii) α = c̄123, β = ci, where i ∈ {1, 2, 3}.

Now our goal is to check the conditions KB1) – KB4).
KB1) Follows immediately from Item 1 of definition of Z.
KB2) Take t ∈WT and (α, β) ∈ Z. We have to ensure that for all ε ∈ {1, 2, 3}∗

if g(t)Rεα then f(t)Rεβ.(6)

Consider the following two possibilities.

(i) f(t) ∈ {r, a1, a2, a3}. Then g(t) = f(t) and the only non-trivial instance of (6)
(namely, for α = c̄123) holds by (3), (4), and (5).

(ii) f(t) ∈ {bji | i, j ∈ {1, 2, 3}}∪{ci | i ∈ {1, 2, 3}}. In this case if g(t)Rεα, then α ∈W .
Hence β = α, and (6) is evident, since F is a part of G.

KB3) Let α, α′ ∈ G, αRλα′, and αZβ. The only non-trivial case is when α′ = c̄123

(otherwise, we can take β′ = σ(α′), where σ(w) = w for w ∈ W and σ(b̄ji ) = bji ,
σ(c̄i) = ci). In this case β′ also depends on α. But in G there are only three points
seeing c̄123, namely, b̄11, b̄22 and b̄33. So we act as follows: if α = b̄kk, put β′ = ck.

KB4) Suppose that (α, β) ∈ Z and βRλβ
′. Consider the following two cases.
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• If α = β, then take α′ = β′;
• If α = β̄, β ∈ {bij | i, j ∈ {1, 2, 3}, then take α′ = β̄′.

2

So due to Lemma 7.4, G◦ ≫ F◦. But G |= fc(r) and F 6|= fc(r). Therefore the
formula fc is not equivalent to any Kracht formula.

8 Final Remarks

(i) The proposed characterization looks more transparent in terms of games.
Two players, ∀ and ∃, play over a pair of LfΛ-structures with designated points

(G, xG0 ) and (F, xF0 ). The player ∀ (he) wants to show that there exists a Kracht
formula φ(x0) such that G |= φ(xG0 ), but F 6|= φ(xF0 ), and the goal of ∃ is to prevent
it. A position in the game is a triple (T, g, f), where T is a tree with a root xT0 and
g : T → G,f : T → F are monotonic mappings sending xT0 respectively to xG0 and
xF0 .

When the game starts, ∀ announces the number of rounds n and constructs a
tree T0 and a monotonic mapping f : T0 → F sending xT0 to xF0 . His opponent
replies with a monotonic mapping g : T0 → G sending xT0 to xG0 . Then n round
follow indexed by numbers 1, . . . , n. Let Ti−1 be a tree at the position before round
i. The round i consists of the following actions. At first, ∀ adds a new leaf to Ti−1,
and obtains a tree Ti. Then he chooses either F or G and extends respectively f or
g to Ti. Then ∃ extends the other mapping to Ti (if she cannot, she looses). The
game is won by ∃ if in the final position (Tn, gn, fn) for all t ∈ T0, s ∈ Tn, ε ∈ Λ∗, if
gn(t)(RG)εgn(s), then fn(t)(RF )εfn(s). An infinite generalization of such a game is
obvious. In fact, these rules are easily extracted from the very definition of Kracht
formulas.

In these terms a Kracht-simulation is nothing but a winning strategy for ∃ in
a game with infinitely many rounds. Some lemmas from Section 6 can also be
reformulated in terms of games. For example, Lemma 6.5 states that if ∃ has a
winning strategy in every finite game between (G, xG0 ) and (F, xF0 ), then she has a
winning strategy in an infinite game between suitable elementary extensions Ḡ and
F̄ .

(ii) In [7] Kracht’s theorem was extended to generalized Sahlqvist formulas of D.
Vakarelov and V. Goranko [6]. The semantic characterization from the present
paper can be easily transferred to the generalized Kracht formulas from [7].

(iii) Besides our characterization, there is another semantic property of Sahlqvist for-
mulas [6]. A general frame (W, (Rλ : λ ∈ Λ),A) is called ample if A contains
the sets Rε(w) for all ε ∈ Λ∗, w ∈ W . A modal formula φ is called locally a-

persistent if for every ample general frame F = (F,A), for any world w in F ,
F, w |= φ ⇐⇒ F,w |= φ. Clearly, all Sahlqvist modal formulas are a-persistent,
and this fact is used in [6] to show that the first-order definable modal formula
p ∧ 2(3p → 2q) → 322q does not have a Sahlqvist equivalent. It is interesting
whether the converse holds:
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Question 8.1 Does a-persistence and first-order definability of a modal formula φ
imply its frame-equivalence to a Sahlqvist formula?

Anyway it is interesting to understand how these two properties (i.e., a-persistence
of a modal formula and Kracht-reducibility-invariance of its first-order equivalent)
are related.
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