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Readers having a passing familiarity with re-
search on transfer and expertise might think it
somewhat -odd to find these two topics cov-
ered in a single chapter. After all, one of the
most common generalizations from research
on expertise is that expertise is domain and
task specific: experts in a domain are excep-
tional at performing familiar tasks within that
domain, but often poor at transferring that ex-
pertise to other domains or evem, in many
cases, to novel tasks within the same domain
(see, e.g., Ericsson & Charness, 1994). How-
ever, there are at least three ways in which
transfer and expertise ‘are related. First, trans-
fer is a basic process in learning (perhaps syn-
onymous with it; Gick & Holyoak, 1987), and
therefore experts must use transfer in acquir-
ing their expertise. Second, as we will see,
level of expertise affects the degree and qual-
ity of subsequent transfer (Chi, Feltovich, &
Glaser, 1981). Third, there appear to be types
of expertise that do involve transfer of learn-

ing to novel tasks and domains; Hatano and
Inagaki (1986) have termed such types “adap--

tive” expertise, which they contrast with the

of a broader discussion of both fields. We first
discuss transfer, providing a theoretical frame-
work and outlining major research findings in
the field. We then take up expertise, discuss-
ing the theories and empirical research regard-
ing routine and adaptive expertise as they
affect basic memory processes, knowledge
representation, and transfer.

Transfer

Definitions and Taxonomy

Transfer is theoretically indistinguishable
from learning, as can be seen by its definition:
transfer is the degree to which prior perfor-
mance of a task (the training task) affects per-
formance on a second task (the transfer task)
that varies in similarity to the training fask
(Gick & Holyoak, 1987). The two tasks may be
identical (self-transfer), highly similar (near

‘transfer); or-very-different- (far transfer). While . .

self-transfer may be regarded as the prototypi-
cal example of learning, it is also arguably are

“routine” expertise associated with perioI-
mance of familiar, domain-specific tasks. Most
research to date has focused on routine exper-
tise, perhaps because it is more conducive to
exploration in the laboratory.

In this chapter, we touch on these related -

aspects of transfer and expertise in the context

o Tonexistent; for-at-a-minirum;-the-tempo-———— —— — —

ral, spatial, and other contextual conditions
surrounding the two tasks always vary in
some respect (Estes, 1955).

Closely related to the proximity of transfer
is its generality. Transfer may be either spe-
cific, selectively influencing performance on a
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particular transfer task, or general, influencing
a broader range of transfer tasks. Variations

in generality of transfer are related to the dis- -

tinction between the two types of expertise
mentioned earlier: routine expertise, with its
emphasis on domain- and task-specific knowl-
edge, and adaptive expertise, with its empha-
sis on the development of general reasoning
skills. We will return to this aspect of transfer
in our discussion of expertise.

Transfer may be either positive or negative,
depending on whether performance of the

_training task benefits or hinders performance

of the transfer task. For example, learning to
classify a small animal with a tail as a dog may
result in positive transfer upon encountering a
spaniel, but in negative transfer (overgeneral-
ization) upon encountering a cat. Of course,
often there will be no transfer at all, especially
if the learning and transfer stimuli are very
unrelated (e.g., learning to classify a small ani-
mal as a dog is unlikely to have any impact on
classifying vehicles).

Factors Influencing the
Magnitude and Direction
of Transfer

In the preceding example, the existence and
direction of transfer depend both on the char-
acteristics of the two situations that are salient
to the classifying person—the animal’s size
and shape of tail, perhaps, rather than the
sound it may utter—as well as on the nature
of the person’s task—classifying animals into
subclasses, rather than on some other basis
(e.g., classifying them all as animals). These
considerations exemplify the two main princi-
ples that determine magnitude and direction
of transfer. First, the greater the overall per-
ceived similarity between the training and
transfer tasks, the greater will be the magni-
tude of transfer—that is, the more likely it is
that transfer will be attempted. The theoretical
basis for similarity is controversial, but the
concept generally refers to the sharing of fea-
tures and relations between the iraining and
transfer tasks (see Twversky, 1977; Medin,
Goldstone, & Gentner, 1993). However, per-
ceived similarity may not correspond to objec-
tive similarity, because psychological factors
such as context, knowledge, and expertise in-

fluence perceptions of similarity. For exam-
ple, novice problem solvers in physics are

as similar on the basis of surface (nonfunc-
tional, goal-irrelevant) similarities, resulting
in inappropriate attempts to transfer solution
methods from the training to the transfer prob-
lems (Chi et al., 1981).

Once transfer is attempted, the direction of
transfer is determined by the degree of objec-
tive structural similarity between the training
and transfer tasks—the extent to which the
two tasks share features or relations that are
causally relevant to the goal or required
response. Thus, in the physics example, nega-

- tive transfer -will result to the extent two prob-- -

lems differ in objective structural characteris-
tics yet surface similarities lead the physics
novices to attempt to transfer the solution. On
the other hand, physics experts accurately
perceive the objective structural dissimilarit-
ies between the two problems and do not at-
tempt transfer. By contrast, experts exhibit
positive transfer on problems that do share
structural components, as do novices when
the surface and objective structural character-
istics of the two problems are both similar.

Empirical Evidence
Regarding Transfer

Because transfer depends on the application
of previously acquired knowledge, it is inher-
ently dependent on memory. Accordingly, the
following discussion of transfer is organized
into two major sections, each representing an
aspect of memory: episodic encoding effects
and episodic retrieval effects.

Encoding of the
Training Task

Degree of Learning. In some cases, subjects
fail to induce the operative rule during train-
ing. For example, in a problem-solving para-
digm, the training task may be undercon-
strained, in that subjects are able to solve a
category of problems by using a strategy such
as trial and error that is simpler than the com-
plex rule that the experimenter intends to
define the category (Sweller, 1980). In such
cases, positive transfer to a problem requiring
use of the complex rule is extremely unlikely.

Barring failure of learning, so long as the

‘training and transfer tasks require structurally. _

similar responses, positive transfer increases
with the degree of original learning (Ellis,

often . unaware_of. structural (functional,-goal- _..1965). However, . when_the_tasks_differ struc-

relevant) similarities and dissimilarities be-
tween problems and therefore judge problems

turally, the relationship between degree of
learning and transfer is more complex: trans-
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fer initially becomes more and more negative
as the degree of learning increases, but as
Jearning continues to grow stronger, transfer
begins to become less negative and eventually
even becomes positive (Mandler, 1962). This
reversal in the direction of transfer with in-
creasingly strong learning may seem to contra-
dict the principle that negative transfer results

- when training-and transfer tasks are. structur-

ally inconsistent. However, ‘what seemis to
happen in some cases is that additional train-
ing boosts learning of very general compo-
nents of the training task that in fact are struc-
turally similar to those of the transfer task,
such as general problem-solving strategies
common to both tasks (e.g., “win-stay, lose-
shift” in discrimination learning) and higher
order similarities between training and trans-
fer Tesponses (e.g., the relevance of color
rather than other stimulus dimensions, even
though the specific colors differ in the two
tasks). Thus learning of the training task oc-
curs at different levels of abstraction, and the
content at some of the levels may be structur-
ally consistent with the transfer task.

Learning Strategies. The optimal learning
strategy for maximizing transfer depends upon
characteristics of the training task. For exam-
ple, when a category of problems is defined
by a group of interdependent rules, none of
which alone is sufficient for solving the prob-
lem, some form of implicit learning (e.g., Ob-
serving or memorizing instances in the ab-
sence of instructions to leamn rules) may
sometimes be superior to an explicit hypothe-
sis-testing strategy (for reviews, see Reber,
1993; Seger, 1994). Another example of the
influence of learning strategy on tramsfer in-
volves the use of means-ends versus forward-
search problem-solving strategies. A means-
ends strategy involves working backwards
from the goal, whereas a forward-search strat-
egy involves working forward from the givens.
Sweller, Mawer, and Ward (1983) manipu-
lated the specificity of the goal stated in a
problem and found that more specific goal

~ statements encouraged. use of a means-ends
strategy, and less specific goal statements en-

couraged forward search. Subjects who used
forward search showed better transfer to new
problems, apparently having induced rules
connecting givens to problem-solving opera-
tions (also see Vollmeyer, Burns, & Holyoak,
1996). As we will see later, in many problem

domains forward search is one of the hall-
marks of expertise. '

Number and Variability of Examples. Posi-
tive transfer increases with the number of ex-
amples provided during training (e.g., Homa &
Cultice, 1984), but optimizing transfer also de-
pends on the representativeness and variabil-
ity of the training examples. Varying the sur-
face features of the examples during training,
thereby more completely representing a cate-

_ gory, permits abstraction of increasingly accu-
rate tules for determining category rember-

ship on the basis of shared structural
components (e.g., Anderson, Kline, & Beasley,
1979). For example, Bassok and Holyoak
(1889) found that students who learned arith-
metic progression problems in algebra exhib-

ited more positive transfer to an isomorphic’

problem category—constant acceleration
problems in physics—than did students who
learned the physics problems and were tested
for transfer with the algebra problems. Bassok
and Holyoak attributed this asymmetry in
transfer in part to the exposure of the algebra-
trained students to a wider range of examples
during training, in contrast to the physics-
trained students, whose training problems all
involved objects in motion. However, Bassok
(1990) found evidence that a more basic cause
of the failure of transfer from physics to alge-
bra was that subjects represented the accelera-
tion problems as rate problems rather than
more generally as constant-increase problems.
This view is consistent with the principle dis-
cussed earlier, according to which transfer
will fail if the perceived similarity of the train-
ing and transfer tasks is low.

As another example, Gick and Holyoak
(1983) manipulated the number of problems
used as training examples. They used analo-
gous “convergence” problems as training and
transfer tasks. Convergence problems are
based on Duncker’s (1945) “radiation prob-
lem,” in which the reasoner must find a way
to destroy a stomach tumor without destroy-
ing surrounding healthy tissue, by using a
type of ray that at sufficiently high intensity
will destroy the tumor, but at that same inten-
sity would also destroy the surrounding tissue
through which the ray must pass to reach the

tumior.”The convergencersolution,requires, di-

recting multiple, converging rays toward the
tumor at different angles, with the intensity of
each rdy being sufficiently low- to- avoid-de-

struction of the surrounding tissue, but the
combined intensity of the rays being suffi-
ciently high to destroy the tumor.

Gick and Holyoak (1983) trained subjects
on either one or two convergence problem an-
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alogs and tested for transfer with a second an-
alog. An example of an analog for the radia-
tion problem involves a general who wants to
amass his forces to attack a fortress, but all the
roads leading to the fortress contain mines
that will detonate if a sufficiently large group
traverses the road. Subjects provided with two
source analogs exhibited substantially more
transfer than did subjects seeing only one
source analog. Gick and Holyoak argued that
providing multiple-source analogs permitted
abstraction of a generalized schema for the
problem category, improving the likelihood

- -that subjects will spontaneously Tecognize-the —-

structural similarities among the problems,
thereby facilitating transfer (see also Ross &
Kennedy, 1990).

Order of Examples. Positive transfer may
also depend on the ordering of low-variability
and high-variability examples, as well as the
use of an implicit or explicit mode of learning.
Elio and Anderson (1984) found that when
people use an explicit strategy, actively seek-
ing a single, deterministic rule, they benefit
from presentation of high-variability examples
first. Presentation of high-variability examples
early makes it less likely that learners will un-
duly restrict the rule they induce to a limited
set of features. However, when people adopt
an implicit mode of learning, they seem to
benefit more from early presentation of low-
variability examples, which may serve to es-
tablish a strong memory representation for the
examples most central to the category.

Roles of Abstract Training and Examples.
Presentation of examples and abstract rules or
schemata during training both appear neces-
sary to optimize transfer. Even when abstract
rules or schemata are presented, providing ex-
amples appears to facilitate transfer by show-
ing how an abstract concept can be instanti-
ated, especially if the concept is not part of the
intuitive repertoire of the learner. Conversely,
presenting an abstract rule or schema along
with fraining examples appears to facilitate
transfer to novel examples, especially when
the rule is difficult to induce from examples
alone (see Nisbett, Fong, Lehman, & Cheng,
1987), or when the training and transfer exam-

—ples-are superficially dissimilar (Gick & Holy-""

oak, 1983). Surface and structural similarity
also appear to jointly affect the efficacy of

an abstract principle is presented separately
from a training problem, transfer is worse for
a transfer problem that reverses the structural
roles of objects in the problem than for a trans-
fer problem that uses dissimilar objects. How-
ever, when the abstract principle is instead
embedded in the training problem, transfer is
worse for the dissimilar-object problem than
for the role-reversed problem. Thus, present-
ing an abstract principle separately from the
training problem benefits transfer to a problem
that has different surface features altogether,
but impairs transfer to. a problem using the

‘same-surface” components in~ different strug. =~

tural roles.

Summary. In general, the conditions at en-
coding influence whether or not the training
task is encoded in terms of structural compo-
nents that are shared with the transfer task.
Manipulations that foster the acquisition of
generalized rules, sufficiently abstract to char-
acterize both the training task and the subse-
quent transfer task, will increase positive
transfer. The rules acquired must be well
learned, and based on an overall set of exam-
ples diverse enough to allow generalization
mechanisms to abstract the common structural
components from surface differences. Direct
abstract training in rules embodying appro-
priate solution procedures is likely to be use-
ful, but rules for classifying novel instances
into the category must also be acquired to en-
sure successful transfer. Unless such rules
have been acquired earlier, it will be neces-
sary to augment training in abstract rules with
exposure to concrete examples.

Retrieval of Training Task
at Transfer

Similarity of Surface and Structural Compo-
nents. As might be expected from the princi-
ples discussed earlier, transfer is affected by
manipulating similarity of training and trans-
fer tasks. Varying the similarity of surface and
structural components has different effects.
For example, using the convergence-problem
paradigm described earlier, Holyoak and Koh
(1987} increased surface similarity to the radi-
ation problem by using another analog involv-

‘ing the same type of critical object (rays), in

which converging lasers were used to repair
the filament of a light bulb. They found that

presentingabstract rules; but in a complex
way. Ross and Kilbane (1997) found that when

increased surface similarity significantly im-
proved spontaneous transfer (i.e., retrieval of




ingthe glass surrounding the filament—struc- . o onon - that has ‘been - termed “transfer-

- how subjects use pre-experimental knowledge
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the relevant analog), but did not affect use of
the analogy after a hint to access the source
analog was given (see also Keane, 1986; Ross &
Bradshaw, 1994).

Holyoak and Koh also manipulated struc-
tural similarity by using two different versions
of the light bulb analog, one in which the ra-
tionale for convergence was to avoid damag-

turally analogous to avoiding destruction of
healthy tissue in the radiation problem—and
the other in which the convergence rationale
was the unavailability of a sufficiently strong
single laser source. Transfer was greater for
the structurally analogous problem both be-
fore and after a hint was provided (see discus-
sion below of uninformed versus informed
transfer). The positive effect of structural simi-
larity on spontaneous transfer suggests that
similarity of relations as well as similarity of
objects guides retrieval and hence transfer
(also see Wharton, Holyoak, & Lange, 1996).
Procedural learning can also be influenced
by the degree to which the training and trans-
fer tasks can be characterized by structurally
similar production rules. For example, Kieras
and Bovair (1986) trained subjects to perform
a series of procedures on a control panel de-
vice, manipulating the order of training to
vary the degree to which previously learned
production rules were included in new proce-
dures either in original or modified form. Mul-
tiple regression analysis revealed that a new
rule added approximately 70% more time to
total training time on average than a pre-
viously encountered rule, and that the number

- of new production rules required by the new

procedure was the best predictor of total train-
ing time for it. Thus, learning is faster and pre-
sumably easier to the extent that the training
and transfer tasks are based on shared produc-
tion rules.

Structural similarity between training and
transfer tasks can in turn be influenced by pre-
experimental knowledge, thereby affecting
transfer. Bassok, Wu, and Olseth. (1995) found
that transfer in problem solving depends on

to interpret the structure of the training and
"transfer problems. Using isomorphic problems
inveolving- random -assignment -of -elements.
from one set to another, Bassok et al. found
that subjects induced a symmetric structure
{“pair”) if the two sets were similar types of
people (e.g., doctors and doctors), but they in-
duced an asymmetric structure (“get”) if one
set was objects and the other people (e.g.

- -transfer-was-PoeoE: - ——- - —mme
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prizes and students). Transfer was facilitated
if the interpreted structures matched, but was
impaired if they mismatched (see also Bas-
sok & Olseth, 1995).

Similarity of Processing. Positive transfer is
more likely when the training and transfer
tasks Tequire use of similar processing, a phe-

appropriate processing” (Morris, Bransford, &
Franks, 1977). For example, McDaniel and
Schlager (1990) trained subjects either by hav-
ing them both generate a problem-solving
strategy and implement it with specific opera-
tions (discovery condition), or by providing
them with the strategy and simply having
them implement it (implementation-only con-
dition). Subjects were then tested on transfer
problems that required either applying the
learned strategy in a new context or generat-
ing a new strategy. Discovery subjects outper-
formed implementation-only subjects on the
transfer problem requiring generation of a new
strategy, but the two groups did not differ in
performance of the transfer problem requiring
only application of the learned strategy. Thus,
transfer is improved when the training and
transfer problems both require the same type
of processing.

In another problem-solving study, Weis-
berg, Di Camillo, and Phillips (1978) had sub-
jects attempt to solve Duncker’s (1945) candle
problem, which requires finding a way to at-
tach a candle to a wall using given materials.
On an earlier paired-associate task, some sub-
jects had studied the word pair box-candle,
which paired elements of the correct solution
(emptying a box of tacks, tacking it to the wall,
and putting the candle on the box). However,
these subjects were no better at solving the
problem than were subjects who had not seen
the word pair. Weisberg et al. suggested that
subjects use the goal, and not the separate
problem elements, as the primary cue when
searching memory. The processing required
for the two tasks in this case, memorization
and problem solving, were dissimilar, so

Informed vs. Uninformed Transfer. Using

the convergence problem paradigm, Gick and
Holyoak (1980, 1983) established the general
finding that informed transfer—transfer after
subjects are given a hint as t0 the structural
similarity of the tasks—is markedly more fre-
quent than uninformed, spontaneous transfer,
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demonstrating that people can transfer learn-
ing if they are made aware of the structural
similarities between training and transfer
tasks. However, the hint may not be as effec-
tive after the subject has failed to transfer
learning from the training task during an un-
successful attempt to perform the transfer
task. In such a case, the representation of the
transfer task may become sufficiently dissimi-
lar from that of the training task that retrieval
of information about the training task after the
hint will not increase the perception of struc-

. _tural similarity (Perfetto, Bransford, & Franks;

1983).

Expertise also affects transfer. For example,
as mentioned earlier, experts generally tend to
classify tasks on the basis of structural similar-
ity more often than do novices, who use sur-
face similarity more often (Chi et al., 1981).
We now turn to expertise, examining it in a
broader context before returning at the end of
the discussion to consider the mutual effects
of transfer and expertise in more detail.

Expertise

Focusing on the role of memory in expertise,
we first examine research on routine exper-
tise, involving memory for information related
to typical tasks within the expert domain, and
then the more limited body of research on
adaptive expertise, involving the transfer of
expert knowledge to novel tasks and domains.

Routine Expertise:
Memory for Expert
Domain Information

Routine experts differ from novices both in
the structure of domain-related knowledge
and in the ability to retrieve episodic domain-
related information. Evidence indicates that
experts represent domain information in long-
term memory (LTM) in the form of schemas,
knowledge structures that are hierarchically
organized and highly interconnected semanti-
cally. With certain exceptions, experts exhibit
superior episodic memory for domain-typical
information largely because they can directly

_.__access LTM. to rapidly and reliably encode..

and retrieve the information, rather than
maintaining it in short-term memory (STM)

schematic organization of knowledge within
the expert domain, and then the evidence and

alone.-We first-discuss-the-evidence regarding—-
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theories regarding the respective roles of STM
and LTM in experts’ domain-specific episodic
memory performance.

Schematic Representation of
Expert Domain Knowledge

Evidence supporting the schematic represen-
tation of knowledge in experts’ LTM is largely
indirect, arising from studies using episodic
memory tasks, and is based on instances of
both superior and inferior memory perfor-

and recognition than do novices for episodic
information related to the expert domain, but
this superiority is even more exaggerated for
information that is related to the central goals
within the domain. For example, Spilich, Ves-
onder, Chiesi, and Voss (1979) found that
baseball experts recalling a baseball passage
included more propositions and a higher pro-
portion of both goal-related propositions and
relations among the propositions than did
novices. Spilich et al. interpreted these data

as indicative of the experts’ superior situation
model, an instantiation of a well-developed
schema. There is also evidence that experts
use retrieval structures—instantiations of sche-
mas—in episodic processing, as assumed in

the theories of Ericsson and Kintsch (1995)
and Gobet and Simon (1996c), discussed fur-
ther below. '

Even in cases in which expertise does not
yield uniformly superior memory perfor-
mance, performance may depend on the use of
schemas in LTM. For example, Adelson (1984)
found that, following a programming task, ex-
pert computer programmers had worse inci-
dental recall than novices for details of code.
This performance decrement resulted from the
experts’ paying greater attention to the goal
structure of the programming task than to
code details. Similarly, Schmidt and Boshu-
izen (1993) found that recall of patient infor-
mation following a medical diagnosis task
varied nonmonotonically with the level of ex-
pertise, exhibiting an inverted U function:
subjects with an intermediate level of exper-
tise recalled more than did those with either
more or less expertise. Schmidt and Boshu-
izen attributed the poorer recall of the most
-expert. subjects_to_an .increase_in selectivity_.
and abstraction, consistent with the hierarchi-
cal, goal-driven nature of schemas (also see
Patel- & -Groen,-1991).-Studies-such- as -these

_-mance. Experts generally exhibit better recall: =

i
!

show that experts tend to pay more attention
to goal-relevant information, consistent with
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processes of schema abstraction and instantia-
tion, which often results in poorer memory for
goal-irrelevant details.

Roles of LTM and
STM in Expert Episodic
Memory Performance

__Theories-seeking to explain the mechanisms

underlying experts’ generally superior episo-
dic memory within the expert domain have
differed in the degree to which they assume
experts store and retrieve episodic informa-
tion in STM versus LTM. We discuss three of
these theories—the chunking theory of Chase
and Simon (1973), the mutiple template hy-
pothesis of Gobet and Simon (1996c), and the
long-term working memory theory of Ericsson
and Kintsch (1995)—and the evidence regard-
ing STM and LTM involvement in experts’ ep-
isodic memory.

Chunking Theory. A frequently cited exam-
ple of superior domain-related memory is the
finding by Chase and Simon (1973) that chess
masters recall more piece locations from
briefly presented boards reflecting actual
middle-game and end-game positions than do
novices, but that when the pieces are arranged
randomly, this advantage disappears {or at
least is extremely small; Gobet & Simomn,
1996a). The masters’ superior memory solely
for game positions appears to be largely attrib-
utable to recognition of patterns previously
encountered by the masters and stored in LTM
{Gobet & Simon, 1996b). The finding of supe-
rior memory of experts for domain-typical but
not domain-atypical stimuli holds in many
domains other than chess, including bridge,
music, medicine, computer programming, and
open motor skills (see Ericsson & Lehmann,
1996, for a review).

Chase and Simon (1973) proposed a chunk-
ing theory of expertise to explain their find-
ings. As elaborated by Gobet and Simon
(1996c), this theory assumes that a chunk con-
~ sists of a recurring pattern reflecting a charac-

“feristic relation (e.g., attack, defense) amonga —

set of a few pieces. When a chunk is recog-
nized in a newly encountered board position,

A R

a pointer is placed in STM referencing the
LTM representation of the chunk, thereby re-
ducing the effects of STM capacity limitations.
The theory assumes, however, that there is no
direct storage of the memory trace in LTM. Be-
cause chess masters have stored more and
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larger chunks in LTM, they can use the
pointers in STM to access more information
than novices about piece locations from a
given board—at least when the board contains
chunks corresponding to representations stored
in LTM. However, when the pieces are ran-
domly arranged, eliminating all but the occa-
sional random chunk, masters cannot use
their storehouse of chunks effectively, and
their.recall advantage over novices virtually -

disappears. Thus, the chunking theory ac- S

counts for the Chase and Simon results, and
similar findings.

Evidence Challenging the Chunking Theory.
Evidence has accumulated contesting the
chunking theory’s assumption that experts
store episodic traces solely in STM (see Erics-
son & Kintsch, 1995, for a review). For exam-
ple, Charness (1976) found that chess masters’
memory for briefly presented chess positions
was not adversely affected by a delay, regard-
less of whether subjects rehearsed during the
interval or performed a distractor task, even a
visual chess task. Mnemonists capable of ex-
traordinary digit spans also exhibit negligible
decrements in recall after interference tasks
(see Ericsson & Staszewski, 1989). As STM is
presumably emptied of studied material dur-
ing such delays, these findings call into ques-
tion the assumption that STM alone is used to
store the episodic trace.

. Other evidence against exclusive STM stor-
age includes the finding by Gobet and Simon
(1996¢) that chess masters who briefly viewed
multiple boards recalled more chunks than
STM is usually assumed to hold, and exhib-
ited not only recency effects, indicative of
STM storage, but also primacy effects, typi-
cally viewed as reflecting LTM storage. In ad-
dition, the largest chunks were larger than as-
sumed by chunking theory and differed in size
depending on the number of boards presented,
contrary to the chunking theory's assumption
that chunk size should not vary. Other studies
indicate that experts also appear to store epi-
sodic information in LTM during incidental
memory tasks, indicating that episodic storage

in-LTM takes place in.the normal course of

their activities. For example, Lane and Robert-
son (1979) found that incidental memory of
chess positions-is related-to-level.of expertise

and so long as the study-phase task involves
domain-relevant goals, incidental memory is
as good as intentional memory.

The evidence indicating a direct role for
LTM in experts’ episodic storage and retrieval
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has given rise to two recent, similar theories,
to which we now turn.

Multiple Template Hypothesis. Gobet and
Simon (1996c) have proposed a theory of
chess expertise that assumes that chess mas-
ters accumulate multiple “templates” in LTM
during an episode involving presentation of
multiple boards. The templates are essentially
instantiations of LTM schemas and each com-
prises a substantial number of core piece loca-

... {ions.and.a number.of variable slots.. The.slots. .

can be filled by different configurations of less
central pieces, as well as other information
such as possible future moves and antecedent
opening strategies, and may have revisahle de-
faults. The authors note the similarity between
their templates and other schematic memory
structures such as frames (Minsky, 1977) and
scripts (Schank & Abelson, 1977).

Gobet and Simon (1996c) view their hy-
pothesis as a modification of the chunking
theory, with the templates being more com-
plex chunks in that they include variable
slots. The hypothesis retains the chunking
theory’s assumption that pointers to LTM
chunks and templates are placed in STM at
encoding. Gobet and Simon note that filling
the variable slots requires the use of some
STM capacity, which they offer as an explana-
tion for the decrease they observed in maxi-
mum chunk size as the number of studied
boards increases. The hypothesis thus as-
sumes that STM capacity limits the number of
templates that can be reliably stored and re-
trieved in a given episode, barring the use of
a deliberately acquired mnemonic retrieval
structure that subsumes several templates. Go-
bet and Simon describe an example of a re-
trieval structure, comprising the list of world
chess champions, that was used by a master in
deliberate training to expand his memory for
multiple boards.

Richman, Staszewski, and Simon (1995)
applied a theory similar to the multiple tem-
plate hypothesis to simulate extraordinary
digit span using a revised version of the Ele-
mentary Perceiver and Memorizer computer
program, EPAM IV. The program included re-
trieval structures in LTM similar to those re-

- ----ported-by-mnemonists- in. verbal protocols,-as-

well as a discrimination net for recognition
processes and an associative semantic mem-
ory. During-encoding;-the program-associated-
the presented digits with aspects of both the

IN THE LABORATORY

retrieval structure and semantic memory. The
program was able to simulate a mnemonist
subject’s learning curve in extending the digit
span, as well as his free and cued recall per-
formance, including overall accuracy, proac-
tive inhibition with multiple lists, and the
timing pattern for various operations. Espe-
cially critical to the simulation performance
was the redundant storage of information in
both the retrieval structure and semantic
memory during encoding and rehearsal.

Kintsch (1995) have proposed a theory, the
long-term working memory theory, that is sim-
ilar to the multiple template hypothesis in
several respects, but is intended to apply more
generally to a broader range of routine exper-
tise. The theory assumes that experts develop
skill in the rapid storage and retrieval of
domain-specific information in and from
LTM, using what Ericsson and Kintsch have
described as long-term working memory
(LT-WM). The experts’ extensive domain
knowledge facilitates the identification of the
studied items that are most likely to require
retrieval and the association of those items
with the most effective retrieval cues. Experts
are assumed to develop retrieval structures to
aid in this process, either in the natural course
of performing domain-related tasks or as a
consequence of deliberate mnemonic effort.
For example, one mnemonist with an extraor-
dinary digit span associated the presented dig-
its with long-distance running times (e.g.,
3596 became 3 minutes 59.6 seconds or just
under 4 minutes for running a mile; Chase &
Ericsson, 1981). The association in LT-WM of
the cues in these retrieval structures with the
studied items during encoding facilitates the
reinstatement of the cues in STM at retrieval,
which in turn facilitates retrieval of the stud-
ied items from LTM. Because this association
of cues and items takes place in LTM, interfer-
ence tasks that are effective in preventing re-
trieval from STM have little or no effect on ex-
perts’ memory.

Ericsson and Kintsch (1995) propose that
two mechanisms, recency and elaboration,
help experts overcome the proactive and retro-

_active interference. that one might expect from ..

association of multiple items with the same
retrieval structures and cues. If the intertrial
spacing-at-encoding-is-long -enough,- experts

Long-Term Working Memory. FEricsson and

can take advantage of temporal distinctiveness
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by using recency in encoding and retrieving quirements. Such retrieval efficiency is partic-
the information. Elaboration involves interas- ularly evident in text processing within an ex-
sociation of items processed during a single pert domain, as revealed, for example, in the
trial or task, sometimes through use of higher study of baseball expertise by Spilich et al.
order relations among chunks, thus providing (1979).

redundant retrieval pathways. For example,

Chase and Ericsson (1982) reported that a Comparison of Template Hypothesis and LT-
digit-span mnemonist elaborated higher order WM Theory. Both the LT-WM theory and the
" _"relations among sets of digits within'alist to" . ‘multiple template.theory assume experts.en- .. .
avoid interference effects from processing code episodic information directly into LTM,
multiple lists of digits. : using retrieval structures to increase effective
Ericsson and Kintsch (1995) surveyed re- memory capacity and processing efficiency.
search in five expert domains—mental abacus However, the two theories differ in some re-
calculation, mental multiplication, dinner-or- spects. The multiple template hypothesis con-
der memory, medical expertise, and chess. ALl templates two varieties of retrieval structures,
domains except one (mental abacus calcula- operating at different levels: templates that
tion) yielded evidence of substantial inciden- gerve as chunks with variable slots; and delib-
tal recall and/or postsession recall by experts, erately acquired, mnemonic retrieval struc-
indicating the encoding of new structures in  tures that subsume several templates and that
LTM. For example, as noted above, Lane and  experts use to overcome interference effects.
Robertson (1979) found that incidental recall Use of the latter is the only mechanism Gobet
of chess positions is substantially equivalent and Simon (1996c) offer for circumventing
to intentional recall. The exception to this pat- STM capacity limits when storing multiple
tern, mental abacus calculation, is a task re- templates. The LT-WM theory does not explic-
quiring continuous updating of digits, result- itly distinguish between these types of re-
ing in severe retroactive inhibition (Hatano & trieval structures, but is more explicit in sug-
Osawa, 1983). Experts in all five domains . gesting that retrieval structures may develop
used retrieval structures. For example, medi- naturally in the course of acquiring domain
cal experts reorganized randomly presented experience, as well as through deliberate
medical diagnosis information into a standard mnemonic acquisition. Ericsson and Kintsch
format for recall (e.g., Groen & Patel, 1988), (1995) also offer temporal and elaborative en-
and similarly a waiter with exiraordinary coding as two additional mechanisms that
memory for multiple dinner orders recalled allow experts to overcome proactive and retro-
the orders in a clockwise fashion regardless of active interference when using the same te-
input order (Ericsson & Polson, 1888). trieval structure repeatedly, and therefore they
Ericsson and Kintsch (1995) argue that LT-  apparently assume that use of an overarching
WM is a hallmark of expertise generally. To retrieval structure subsuming several retrieval
underscore that point, they offer text compre-  structures is not necessary, although its use is
hension as an example of a domain in which possible. While the template hypothesis also
expertise is common and in which they assert contemplates elaborative associations based
use of LT-WM is instrumental. They discuss on semantic memory, Gobet and Simon have
the importance of LT-WM in Kintsch’s (1988) not explicitly suggested that such elaborations
computational construction-integration model, would be sufficient to overcome interference
which assumes that both a propositional text effects.
base and an elaborated situation model are
constructed during text processing through an

. ; Summar
alternating sequence of unconstrained seman- y

<o ._.._tic association and.inference generation. (con- - The research reviewed here indicates that ex-_.

struction] followed by coustraint satisfaction perts use schemas to represent expert domain
(integration). Retrieval structures in LT-WM information in LTM. The evidence is also con-

are-used-to-store-and continuouslyupdate-the— sistent with-the direct encoding-into-LTM by

text base and situation models during text pro- experts of episodic information within the ex-
cessing. Experienced readers become adept at  pert domain, and the association of that infor-
building efficient retrieval structures based on  mation with elements of retrieval structures.
accumulated domain knowledge that allows These structures, which amount to instanti-
accurate anticipation of future retrieval re- ated schemas, are acquired by experts natu-
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rally through domain-related experience or
deliberately through mnemonic effort, and as-
sist in the maintenance of rapid, flexible, and
reliable access to the episodic information.

Adaptive Expertise:
Transfer to Novel Tasks
and Domains

Relative to the substantial amount of empiri-
cal and theoretical work that has been done on

- _routine expertise within a task domain, con-
siderably less research has focused on adap-

tive transfer of expertise. Nonetheless, some
general themes have emerged. The key differ-
ence between routine and adaptive experts is
the greater capacity of the latter to transfer
learning to novel tasks within and beyond
the initial domain (Hatano & Inagaki, 1986).
Adaptive experts have a deeper conceptual
understanding of the domain, possessing not
just “know-how” and “know-what” but also
“know-why.” One might expect adaptive ex-
pertise to develop to a greater degree for tasks
that are variable rather than stereotyped in na-
ture, and to emerge from free exploration more
than from direct focus on achieving highly
specific goals (Sweller et al., 1983). Such con-
ditions would be conducive to the develop-
ment of more abstract, structural representa-
tions of domain knowledge, which would
in turn better enable application of domain
knowledge to novel situations that vary in sur-
face characteristics from previously encoun-
tered situations.

It is readily apparent that experts in one do-
main do not necessarily exhibit comparable
performance levels in other domains (see, e.g.,
Chiesi, Spilich, & Voss, 1979). There is even
evidence that experts in a domain can be im-
paired relative to novices when both attempt
a task outside the domain. For example, Wiley
(1998) found that people with a high degree of
baseball knowledge were impaired, relative to
people with less baseball knowledge, at solv-
ing a “remote associates” task that required
accessing non-baseball-related associates of
baseball terms. For example, people with high
knowledge of baseball were less likely than
those with low knowledge to find a common

__associate linking the words plate, broken, shot

(where the intended answer is glass), appar-
ently because the competing baseball associa-

tions.to_the first word, plate, interfered with

finding non-baseball associations.
Nonetheless, other studies have found posi-
tive transfer effects. For example, Gott, Hall,

Pokorny, Dibble, and Glaser (1993} found that
avionics technicians who represented the
functions of testing devices more abstractly
showed greater flexibility in transferring their
knowledge to new testing devices. Barnett and
Koslowski (1997) presented unusual restau-
rant management problems to novice under-
graduates, restaurant managers, and general
business, consultants. The authors coded the
verbal protocols of these three groups for evi-
dence of “deep reasoning,” which was con-
strued as an indicator of adaptive expertise.

' Deep reasoning involved the use of theoretical

business concepts, the use of justifications
and explanations to support recommenda-
tions, and discussion of complementary alter-
native solutions. Barnett and Koslowski found
evidence of more deep reasoning among the
general business consultants, compared to the
restaurant managers and undergraduates, who
did not differ in their use of deep reasoning.
The authors suggested that the variation in
business scenarios previously encountered by
the comsultants was crucial to the develop-
ment of their adaptive expertise. The business
consultants would have had more opportunity
to abstract a.schema applicable to general
business problems, rather than those applica-
ble only to restaurants.

Adaptive expertise may also involve shifts
in problem-solving strategies. Experts often
use forward search of the problem space, rea-
soning forward from the givens, whereas
novices use backward search, reasoning back-
wards from the goal (Chi et al., 1981). How-
gver, some studies have found that experts
adapt their search strategies to the constraints
of the task. For example, expert computer pro-
grammers use backward search because the
initial state places few constraints on the task
(Anderson, Farrell, & Sauers, 1984; Jeffries,
Turner, Polson, & Atwood, 1981). Neverthe-
less, the experts do still use a breadth-first
search strategy in search of the goal structure,
unlike novices, who use a depth-first strategy.
More generally, expertise in complex tasks of-
ten is distinguished not by some single cancn-
ical search strategy but by flexible switching
among alternative strategies (Dorner & Schol-
kopf, 1991). The determinant of strategy selec-

__tion appears to be the goal structure of the

task, which is consistent with schematic rep-

resentation of expert knowledge and with
adaptive transfer of that knowledge to novel

situations.
These types of studies show that adaptive
transfer can occur, given the appropriate train-
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ing conditions. It also appears likely that
certain abstract skills are candidates as wide-
spread mediators of adaptive transfer. Meta-
cognitive skills are perhaps the most impor-
tant of these, as they facilitate reasoning from
first principles and play a key role in assessing
when understanding is lacking, when the

. strategy currently in use is unlikely to suc-.
ceed, and when the task requires restructuring

(Dorner & Scholkopf, 1991). Abstract mathe-
matics skills may also have broad applicabil-
ity in facilitating transfer (Novick, 1988;
Novick & Holyoak, 1991). Abstract training in
statistics and everyday deductive reasoning
has been shown to facilitate transfer to novel
problems (see Nisbett et al., 1987). Causal rea-
soning is another potential candidate as a me-
diator of adaptive transfer (e.g., Cheng, 1997).

In summary, there is evidence that exper-
tise can sometimes be transferred to novel
tasks within and beyond the initial domain.
Broad-based experience with a variety of re-
lated situations allows the development of ab-
stract knowledge representations and skills,
which in turn facilitate transfer of the knowl-
edge to novel situations.

Conclusions

Transfer generally, and transfer of expertise in
particular, is influenced by a number of fac-
tors. The likelihood that transfer will be at-
tempted at all is determined by the overall
perceived similarity between the training and
transfer tasks. Given that transfer is attempted,
the degree of positive transfer is determined
by the objective structural similarity of the
tasks. The degree of transfer is determined
jointly by whether encoding conditions permit
abstraction of rules that are sufficiently gen-
eral to cover both tasks (e.g., as a result of ex-
periencing a variety of examples); whether the
two tasks share surface and/or structural com-
ponents; whether similar processing is used in
the tasks; and whether prior experience affects
_the perception of the tasks.

An important way in which prior experi-
ence affects transfer is by the development of
expertise. Existing theories provide a better
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involve the organization of domain knowledge
into relatively specific schemas and the use of
schema instantiations and domain-specific re-
trieval structures to expand working memory
by facilitating the rapid and reliable encoding
and retrieval of episodic domain information
into and from LTM. By contrast, adaptive ex-
pertise. seems to_require the development of

‘more flexible and abstract learning mecha- ~

nisms and schemas to promote a deeper con-
ceptual understanding of the expert domain
and the transfer of knowledge to novel tasks
and domains.
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