Skip to main content
Log in

Maps of Surface Distributions of Electrical Activity in Spectrally Derived Receptive Fields of the Rat's Somatosensory Cortex

  • Published:
Brain and Mind

Abstract

This study describes the results of experiments motivated by an attempt to understand spectral processing in the cerebral cortex (DeValois and DeValois, 1988; Pribram, 1971, 1991). This level of inquiry concerns processing within a restricted cortical area rather than that by which spatially separate circuits become synchronized during certain behavioral and experiential processes. We recorded neural responses for 55 locations in the somatosensory (barrel) cortex of the rat to various combinations of spatial frequency (texture) and temporal frequency stimulation of their vibrissae. The recordings obtained from single and multi-unit bursts of spikes were mapped as surface distributions of local dendritic potentials. The distributions showed a variety of patterns that are asymmetric with respect to the spatial and temporal parameters of stimulation, and were, therefore, not simply reflecting whisker flick rate. Next, a simulation of our results showed that these surface distributions of local dendritic potentials can be described by Gabor-like functions much as in the visual system. The results provide support for a model of distributed cortical processing that imposes a physiologically derived frame (the limited extent of a dendritic patch) and an anatomically derived (axonal) sampling of the distributed process. This combination provides a complex Gabor wavelet that encodes phase, which is necessary to processing such details as edges and texture in a scene. The synchronization across cortical areas that make the Gabor wavelet processes within restricted cortical areas available to one another (the binding problem) proceed at a ''higher order'' level of integration. Both levels of distributed processing accomplish computation in the conjoint spacetime and spectral domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahissar, E., Alkon, G., Zacksenhouse, M. and Haidarliu, S., 1996: Cortical somatosensory oscillators and the decoding of vibrissal touch, Abstracts of the Society for Neuroscience 26th Annual Meeting 22(1), 18, Society for Neuroscience, Proc Abst 16.5, Washington, D.C.

    Google Scholar 

  • Armstrong-James, M., 1995: The nature and plasticity of sensory processing within adult rat barrel cortex, Journal of Neurophysiology 41(3), 333–373.

    Google Scholar 

  • Barcala, L.A., Nicolelis, M.A.L. and Chapin, J.K., 1993: Quantifying the connectivity properties underlying the dynamics of the rodent trigeminal network (Abstract), Society For Neuroscience Abstracts: 23rd Annual Meeting 19(1).

  • Barrett, T.W., 1973: Comparing the efficiency of sensory systems: A biophysical approach, Journal of Biological Physics 1(3), 175–192.

    Article  Google Scholar 

  • Barrett, T.W., 1969: The cortex as inferferometer: The transmission of amplitude, frequency, and phase in cortical structures, Neuropsychologia 7, 135–148.

    Article  Google Scholar 

  • Bell, A.J. and Sejnowski, T.J., 1996: Learning the higher-order structure of natural sound, Computation in Neural Systems 7, 261–266.

    Article  CAS  Google Scholar 

  • Bovik, A.C., Clark,M. and Geisler,W.S., 1990: Multichannel texture analysis using localized spatial filters, IEEE Trans. Pattern Analysis and Machine Intelligence 12(1), 55–73.

    Article  Google Scholar 

  • Bracewell, R.N., 1989: The Fourier transform, Scientific American, 86–95.

  • Bressler, S., 1994: Dynamic self organization in the brain as observed by transient cortical coherence, in K.H. Pribram (ed.), Origins: Brain and Self Organization, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.

    Google Scholar 

  • Carlton, E.H., 1988: Connection between internal representation of rigid transformation and cortical activity paths, Biological Cybernetics 59, pp. 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Carvell, G.E. and Simons, D.J., 1990: Biometric analyses of vibrissal tactile discrimination in the rat, Journal of Neuroscience 10, 2638–2648.

    PubMed  CAS  Google Scholar 

  • Chapin, J.K., Markowitz, R.S. and Nicolelis, M.A.L., 1996: Simultaneous neuronal ensemble recordings at multiple trigeminal system levels: selective cortical responsiveness to active discriminative whisking, Abstracts of the Society for Neuroscience 26th Annual Meeting 22(1), 18. Society for Neuroscience, Proc Abst 16.6, Washington, D.C.

    Google Scholar 

  • Chapin, J.K. and Nicolelis,M.A.L., 1995: Beyond single unit recording: Characterizing neural information in networks of simultaneously recorded neurons, in J.S. King and K.H. Pribram (eds), Scale in Conscious Experience: Is the Brain too Important to be Left to Specialists to Study?, Lawrence Erlbaum Associates, New Jersey, pp. 133–153.

    Google Scholar 

  • Churchland, P.S., 1986: Neurophilosophy: Toward a Unified Science of the Mind/Brain, MIT Press, Cambridge.

    Google Scholar 

  • Crick, F.H.C., 1994: The Astonishing Hypothesis: The Scientific Search for the Soul, Charles Scribner's Sons, New York.

    Google Scholar 

  • Daugman, J.G., 1993: Quadriture-phase simple-cell pairs are appropriately described in complex analytic form, Journal of the Optical Society of American 10(7), 375–377.

    Article  Google Scholar 

  • Daugman, J.G., 1990: An information-theoretic view of analog representation in striate cortex, in E. Schwartz (ed.), Computational Neuroscience, MIT Press, Cambridge, MA.

    Google Scholar 

  • Daugman, J.G., 1985: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America 2(7), 1,160–1,169.

    CAS  Google Scholar 

  • Daugman, J.G., 1980: Two-dimensional spectral analysis of cortical receptive field profile, Vision Research 20, 847–856.

    Article  PubMed  CAS  Google Scholar 

  • DeValois, R.L. and DeValois, K.K., 1988: Spatial Vision (Oxford Psychology Series No. 14), Oxford University Press, New York.

    Google Scholar 

  • Favorov, O.V. and Kelly, D.O., 1994a: Minicolumnar organization within somatosensory cortical segregates: I. Development of afferent connections, Cerebral Cortex 4(4), 408–427.

    PubMed  CAS  Google Scholar 

  • Favorov, O.V. and Kelly, D.O., 1994b: Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties, Cerebral Cortex 4(4), 428–442.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, R., 1999: Phase synchronization may reveal communication pathways in brain activity, Physics Today, March 18, 1999, pp. 17–19.

  • Gabor, D., 1948: A new microscopic principle, Nature 161, 777–778.

    PubMed  CAS  Google Scholar 

  • Gabor, D., 1946: Theory of communication, Journal of the Institute of Electrical Engineers 93, 429–441.

    Google Scholar 

  • Gaska, J.P., Jacobson, L.D., Chen, H.W. and Pollen, D.A., 1994: Space-time spectra of complex cell filters in the macaque monkey: A comparison of results obtained with pseudowhite noise and grating stimuli, Visual Neuroscience II, 805–821.

  • Georgopoulos, A.P., Taira, M. and Lukasin, A., 1993: Cognitive neurophysiology of the motor cortex, Science 260, 47–52.

    PubMed  CAS  Google Scholar 

  • Glezer, V.D., 1995: Vision and Mind, Lawrence Erlbaum Associates, Inc., Mahwah, NJ.

    Google Scholar 

  • Hashemiyoon, R. and Chapin, J., 1996: What visual stimulus parameters control the amplitude and spatiotemporal phase patterning of oscillations in the subcortical visual system? in Abstracts of the Society for Neuroscience 26th Annual Meeting 22(2), 1605. Society for Neuroscience, Proc Abst 631.2, Washington, D.C.

    Google Scholar 

  • Jones, J.P. and Palmer, L.A., 1987: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in the cat striate cortex, Journal of Neurophysiology 58, 1,233–1,258.

    CAS  Google Scholar 

  • Julez, B. and Pennington, K.S., 1965: Equidistributed information mapping: An analogy to holograms and memory, Journal of the Optical Society of America 55, 605.

    Google Scholar 

  • Kamen, E.W., 1990: Introduction to Signals and Systems (2nd ed.), MacMillian, Englewood Cliffs.

    Google Scholar 

  • King, J.S., SantaMaria, M.P., Hovis, S. and Pribram, K.H., in Prep.: An analysis of unit responses in the barrel cortex of rate to “passive” and “active” vibrissal stimulation.

  • Kjaer, T.W., Hertz, J.A. and Richmond, B.J., 1994: Decoding cortical neuronal signals: Network models, information estimation and spatial tuning, Journal of Computational Neuroscience 1, 109–139.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S.W., 1953: Discharge patterns and functional organization of mammalian retina, Journal of Neurophysiology 16, 37–69.

    PubMed  CAS  Google Scholar 

  • Lachaux, J., Rodriguez, E., Martinerie, J. and Varela, F., in press: Measuring phase-synchrony in brain signals, Human Brain Mapping.

  • Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., v.d. Malsburg, C., Wurtz, R.P. and Konen, W., 1993: Distortion invariant object recognition in the dynamic link architecture, IEEE Transactionson Computers 42(3), 300–311.

    Article  Google Scholar 

  • Lassonde, M., Ptito, M. and Pribram, K., 1981: Intracerebral influences on the microstructure of receptive fields of cat visual cortex, Experimental Brain Research 43, 131–144.

    Article  CAS  Google Scholar 

  • Lee, T.S., 1996: Image representation usng 2D Gabor wavelets, IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10), 959–971.

    Article  Google Scholar 

  • Lee, T.S., Mumford, D. and Yuille, A.L., 1992: Texture segmentation by minimizing vector-valued energy functionals: The couple-membrane model, in G. Sandini (ed.), Lecture Notes in Computer Science 588, 165–173, Computer Vision ECCV’ 92, Springer-Verlag.

  • Leith, E.N. and Upatnicks, J., 1965: Photography by laser, Scientific American 212, 24–35.

    Article  Google Scholar 

  • Marcelja, S., 1980: Mathematical description of the responses of simple cortical cells, Journal of the Optical Society of America 70, 1,297–1,300.

    Article  CAS  Google Scholar 

  • McLaughlin, D.F., Sonty, R.V. and Juliano, S.L., 1996: Multiple representations of ferret forepaw revealed by cortical evoked potentials: normal and reorganized cortex, Abstracts of the Society for Neuroscience 26th Annual Meeting 22(1), 18. Society for Neuroscience, Proc Abst 16.7, Washington, D.C.

    Google Scholar 

  • Motter, B.C., Steinmetz, M.A., Duffy, C.J. and Mountcastle, V.B., 1987: Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis, Journal of Neuroscience 7(1), 154–176.

    PubMed  CAS  Google Scholar 

  • Nicolelis, M.A.L., Carswell, B., Oliveira, L.M.O., Ghazanfar, A.A., Chapin, J.K., Lin, R.C.S., Nelson, R.J. and Kaas, J.H., 1996: Long-term simultaneous recordings of neuronal ensembles across multiple cortical areas in behaving primates, Abstracts of the Society for Neuroscience 26th Annual Meeting 22(3),2023. Society for Neuroscience, Proc Abst 795.10, Washington, D.C.

    Google Scholar 

  • Okajima, K., 1998: Two-dimensional Gabor-type receptive field as derived by mutual information maximization, Neural Networks 11, 441–447.

    Article  PubMed  Google Scholar 

  • Openheim, A.V. and Schafer, R.W., 1989: Discrete Time Signal Processing, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Paradisio, M.A., Kim, W. and Nayak, S., 1996: Cortical representation of surface brightness: influences from beyond the classical receptive field, Abstracts of the Society for Neuroscience 26th Annual Meeting 22(2), 951. Society for Neuroscience, Proc Abst 376.6, Washington, D.C.

    Google Scholar 

  • Pollen, D.A., 1971: How does the striate cortex begin the reconstruction of the visual world? Science 173, 74–77.

    PubMed  CAS  Google Scholar 

  • Pollen, D.A., and Gaska, J.P., 1997: Vision, visual cortex and conjoint space-spatial frequency analysis, in G. Adelman and B Smith (eds), Encyclopedia of Neuroscience.

  • Pollen, D.A. and Ronner, S.F., 1981: Phase relationship between adjacent simple cells in the visual cortex, Science 212, 1409–1411.

    PubMed  CAS  Google Scholar 

  • Pollen, D.A. and Taylor, J.H., 1974: The striate cortex and the spatial analysis of visual space, in F.O. Schmitt and F.G. Worden (eds), The Neurosciences Third Study Program, The MIT Press, Cambridge, pp. 239–247.

  • Pribram, K.H., 1998: Afterword. Brain and Values: Is a Biological Science of Values Possible, Lawrence Erlbaum Associates, Inc., Mahwah, Jew Jersey, pp. 551–558.

    Google Scholar 

  • Pribram, K.H., 1997: The deep and surface structure of memory and conscious learning: Toward a 21st century model, in Robert L. Solso (ed.), Mind and Brain Sciences in The 21st Century, MIT Press, Cambridge, pp. 127–156.

    Google Scholar 

  • Pribram, K.H., 1991: Brain and Perception: Holonomy and Structure in Figural Processing, Lawrence Erlbaum Associates, New Jersey.

    Google Scholar 

  • Pribram, K.H., 1971: Languages of the Brain: Experimental Paradoxes and Principles in Neuropsychology, Prentice-Hall, Englewood Cliffs, NJ; Brooks/Cole 1977, Monterey, CA; Brandon House, 1982, New York.

    Google Scholar 

  • Pribram, K.H., 1966: Some dimensions of remembering: Steps toward a neuropsychological model of memory, in J. Gaito (ed.), Macromolecules and behavior, Academic Press, New York, pp. 165–187.

    Google Scholar 

  • Pribram, K.H., 1969: Four R's of remembering, in K.H. Pribram (ed.), The Biology of Learning, Harcort, Brace & World, New York, pp. 191–225.

    Google Scholar 

  • Pribram, K.H. and Carlton, E.H., 1986: Holonomic brain theory in imaging and object perception, Acta Psychologica 63, 175–210.

    Article  PubMed  CAS  Google Scholar 

  • Pribram, K.H., Newer, M. and Baron, R.J., 1973: The holographic hypothesis of memory structure in brain function and perception, in R.C. Atkinson, D.H. Krantz, R.C. Luce and P. Suppes (eds), Contemporal Developments in Mathematical Psychology, W.H. Freeman, New York, pp. 416–457.

    Google Scholar 

  • Richmond, B.J. and Optican, L.M., 1987: Temporal encoding of two-dimensional patterns of single units in primate inferior temporal cortex. II. Quantifications of response waveform, Journal of Neurophysiology 57(1), 147–161.

    PubMed  CAS  Google Scholar 

  • Robson, J.G., 1975: Receptive field: Neural representation of the spatial and intensive attributes of the visual image, in EC Carterette (ed.), Handbook of Perception, Vol. V, Seeing, Academic Press, New York, pp. 81–116

    Google Scholar 

  • Saul, A.B. and Humphrey, A.L., 1992a: Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical Area 17 of the cat, Journal of Neurophysiology 68(4), 1190–1208.

    PubMed  CAS  Google Scholar 

  • Saul, A.B. and Humphrey, A.L., 1992b: Temporal-frequency tuning of direction selectivity in cat visual cortex, Visual Neuroscience 8, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Saul, A.B. and Humphrey, A.L., 1990: Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, Journal of Neurophysiology 64(1), 206–224.

    PubMed  CAS  Google Scholar 

  • Shepherd, G.M., Brayton, R.K., Miller, J.P., Segey, I., Rindsel, J. and Rall, W., 1985: Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines, Proceedings of the National Academy of Sciences 82, pp. 2192–2195.

    Article  CAS  Google Scholar 

  • Simons, D.J., 1995: Neuronal integration in the somatosensory whisker/barrel cortex, in E.G. Jones and A. Peters (eds), Cerebral Cortex, 11, Plenum Press, New York.

    Google Scholar 

  • Simons, D.J., 1978: Response properties of virbrissa units in rat SI somatosensory neocortex, Journal of Neurophysiology 41(3), 263–297.

    Google Scholar 

  • Spinelli, D.N. and Pribram, K.H., 1967: Changes in visual recovery functions and unit activity produced by frontal and temporal cortex stimulation, Electronenceph. Clin. Neurophysiol 22, 143–149.

    Article  CAS  Google Scholar 

  • Steinmetz, M.A., Motter, B.C., Duffy, C.J. and Mountcastle, V.B., 1987: Functional properties of parietal visual neurons: radial organization of directionalities within the visual field, The Journal of Neuroscience 7(1), 177–191.

    PubMed  CAS  Google Scholar 

  • Van Heerden, P.J., 1970a: Models for the brain, Nature 225, 177–178.

    Article  PubMed  CAS  Google Scholar 

  • Van Heerden, P.J., 1970b: Models for the brain, Nature 227, 410–411.

    Article  PubMed  CAS  Google Scholar 

  • Van Heerden, P.J., 1968: The Foundations of Empirical Knowledge, N.V. Uitgeverij-Wassenaar, The Netherlands.

    Google Scholar 

  • Van Heerden, P.J., 1963: A new method of storing and retrieving information, Applied Optics 2, 387–392.

    Google Scholar 

  • Verzeano, M., Laufer, M., Spear, P. and McDonald, S., 1970: The activity of neuronal networks in the thalamus of the monkey, in K.H. Pribram and D.E. Broadbent (eds), Biology of Memory, Academic, New York, pp. 239–271.

    Google Scholar 

  • Vidyasagar, T.R. and Henry, G.H., 1996: Spatially selective attention gates neuronal responses in macaque, Abstracts of the Society for Neuroscience 26th Annual Meeting, Vol. 22, Part 2. Society for Neuroscience, Proc Abst 376.13, Washington, D.C., p. 953.

    Google Scholar 

  • Von der Heydt, R., Peterhans, E. and Duersteler, M.R., 1992: Periodic-pattern-selective cells in monkey visual cortex, Journal of Neuroscience 12, 1416–1434.

    PubMed  CAS  Google Scholar 

  • Willshaw, D.J., Buneman, O.P. and Longuet-Higgins, H.C., 1969: Non-holographic associative memory, Nature 222, 960–962.

    Article  PubMed  CAS  Google Scholar 

  • Xie, M., Pribram, K.H. and King, J., 1994: Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes?, in Origins: Brain & Self Organization, Lawrence Erlbaum Associates, Inc., New Jersey, pp. 253–267.

    Google Scholar 

  • Zeevi, Y.Y. and Daugman, J.G., 1981: Some psychophysical aspects of visual processing of displayed information, Proceedings of the Image II Conference, Phoenix, AZ.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J.S., Xie, M., Zheng, B. et al. Maps of Surface Distributions of Electrical Activity in Spectrally Derived Receptive Fields of the Rat's Somatosensory Cortex. Brain and Mind 1, 327–349 (2000). https://doi.org/10.1023/A:1011540011390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011540011390

Navigation