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Abstract

Formal and social epistemologists have devoted significant attention to the question of how

to aggregate the credences of a group of agents who disagree about the probabilities of events.

Most of this work focuses on strategies for calculating the mean credence function of the group.

In particular, Moss (2011) and Pettigrew (2019) argue that group credences should be calculated

by taking a linear mean of the credences of each individual in the group. Both of these arguments

begin from the premise that that sole determinant of a credence function’s epistemic value is its

accuracy, before introducing additional premises to derive the conclusion that credences ought to

be aggregated by linear averaging. In this paper, I argue that if the epistemic value of a credence

function is determined solely by its accuracy, then we should not generate group credences by

finding the mean of the credences of the individuals in a group. Rather, where possible, we

should aggregate the underlying statistical models that individuals use to generate their credence

function, using “stacking” techniques from statistics and machine learning first developed by

Wolpert (1992). My argument draws on a result by Le and Clarke (2017) that shows the power

of stacking techniques to generate predictively accurate aggregations of statistical models, even

when all models being aggregated are highly inaccurate.
∗Many thanks to David Wolpert for first introducing me to the literature on stacking. I am also grateful to

Hein Duijf, Remco Heesen, James Nguyen, Richard Pettigrew, Joe Roussos, Jeremy Strasser, David Watson, Kevin
Zollman, two anonymous reviewers for this journal, and audiences at the LSE Choice Group Seminar, the 2020
Formal Epistemology Workshop, the 2020 Conference on Bayesian Epistemology: Perspectives and Challenges at the
Munich Center for Mathematical Philosophy, and the 2020 workshop on Workshop on the Wisdom and Madness of
Crowds at the Institute for Logic, Language, and Computation at the University of Amsterdam for helpful comments
on various drafts.
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1 Introduction

Suppose that Alphonse and Belinda are rushing to catch a train from Brussels to Amsterdam, and

do not have time to check the schedule. Alphonse’s credence that the train leaves before noon is .7,

while Belinda’s credence that the train leaves before noon is .3. As a couple, what is their credence

that the train leaves before noon? Formal epistemologists have devoted considerable attention to

this type of question, with Lehrer and Wagner (1983), Russell et al. (2015), and Dietrich and List

(2017), among others, producing impossibility results showing that no aggregation rule can satisfy

a set of prima facie desirable conditions. Russell et al. go on to argue that a geometric averaging

rule can uniquely satisfy an attractive subset of these desiderata. Most importantly, it is shown

that geometric averaging rules allow for group credences to commute with conditionalization: if

each individual in a group updates on the same information, and then takes a geometric mean

of their posterior credences, their group credence will be the same as it would be if they had

first taken the geometric mean of their prior credences, and then updated their group credence

on the same information. Linear methods for credal averaging do not allow for such consistency

of conditionalization between individuals and the groups that they comprise, a feature of linear

averaging also highlighted by Wagner (1985), Bradley (2007), Jehle and Fitelson (2009), Steele

(2012), Staffel (2015), and Kuan (forthcoming). By contrast, Moss (2011) and Pettigrew (2019)

argue for the alternative thesis that linear averaging is the superior method for aggregating group

credences. This thesis is defended in spite of the problems with conditionalization discussed above.

My aim in this paper is not to weigh in on either side of the debate between those who believe

that group credences should be generated via geometric averaging of individual credences and those

who believe that group credences should be generated via linear averaging of individual credences.

Simply put, I argue that both camps are in the wrong, at least in so far as they aim to provide

general normative guidelines for generating group credences. My argument for this claim proceeds

as follows. Like Pettigrew (2019), I hold that when devising a method to generate group credences,

we ought to favor methods that allow the group to be as accurate as possible, at least insofar as

we care about the epistemic value of the group’s credences. However, I show that there are cases

in which no averaging method can produce very accurate group credences. Informally, these are

cases in which all individuals in a group assign credences to events based on inaccurate models of
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the relevant data. One might think that in such cases, no method of arriving at group credences

can be expected to be accurate, but recent work on model stacking by Le and Clarke (2017) shows

that this is not the case. Although Le and Clarke do not specifically discuss the aggregation of

credences, I apply their techniques to show how, even when all members of a group use inaccurate

models to assign credences to events, the group can use stacking techniques to arrive at credences

that are more accurate than those that would be generated by any averaging method.

Here is the plan for this paper. In Section 2, I provide the formal background needed to make

my argument. In Section 3, I demonstrate that when all individuals in a group have inaccurate

models of a given data-generating process, neither geometric nor linear averaging of credences pro-

duces accurate group credences. In Section 4, I show how stacking techniques allow for a group to

generate more accurate credences by aggregating the statistical models from which each individual

derives their credences, even when each of these models is individually highly inaccurate. I there-

fore conclude that group credences should, where possible, be generated by stacking individuals’

models rather than averaging individuals’ credences. In Section 5, I address Pettigrew’s unanimity

condition on credal aggregation, which is central to his argument that groups that care only about

being accurate should pool their credences via linear averaging. I argue that there is no purely

accuracy-based reason to accept unanimity as a constraint on credal aggregation methods. I also

address similar arguments due to Moss (2011). In Section 6, I respond to possible counterarguments

to my proposal; in so doing, I highlight the value of asking individuals for reasons behind their

partial beliefs when attempting to determine a group credence. In Section 7, I offer concluding

remarks.

2 Formal Preliminaries

2.1 Group Credences as Means

Throughout this paper, I will represent the problem of determining group credences from individual

credences as follows. A group of individuals I = {1, 2, . . . , N} share a common sample space Ω,

or set of possible worlds, and share a common algebra AΩ on Ω, i.e. a set of a subsets of Ω that

is closed under complement, union, and intersection. Each individual i ∈ I plans to have their

own credence function Cri : AΩ → [0, 1] that obeys the standard Kolmogorov axioms. Thus, each
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individual has their own credal probability space Cri = (Ω,AΩ, Cri). For a sample space Ω, an

algebra AΩ, a set of individuals I, and a partition F of Ω such that for each F ∈ F , F ∈ AΩ, the

group credence problem (Ω,AΩ, I,F) is to find a single credence function Cr∗ that represents the

credence of the entire group I in each element of F .

To illustrate using the example above, we begin with a set of two individuals I = {Alphonse,Belinda},

each of whom shares a sample space Ω and a set of possible worlds AΩ. We define a partition

F = {F,¬F}, where F is the set of worlds in Ω in which the train from Brussels to Amsterdam

leaves before noon, and ¬F is its complement in Ω, i.e. the set of worlds in which the train leaves

at noon or later. We know that Alphonse’s credence function CrA is such that CrA(F ) = .7 and

CrA(¬F ) = .3, and Belinda’s credence function CrB is such that CrB(F ) = .3 and CrB(¬F ) = .7.

The problem of finding Alphonse and Belinda’s group credence in each element of the partition

{F,¬F} is represented as (Ω,AΩ, I,F).

In formal epistemology, it is typically assumed that the solution to the group credence problem

is to calculate a mean credence for each element of the relevant partition. For any element F of a

partition F of the relevant sample space and any set of credences {Cr1(F ), . . . , CrN (F )}, a mean

µ({Cr1(F ), . . . , CrN (F )}) of those credences satisfies the following two individually necessary and

jointly sufficient conditions:

Homogeniety: µ({tCr1(F ), . . . , tCrN (F )}) = tαµ({Cr1(F ), . . . , CrN (F )}), for any

t ∈ R and some α ∈ R.

Min-Max: min{Cr1(F ), . . . , CrN (F )} ≤ µ({Cr1(F ), . . . , CrN (F )}) ≤ max{Cr1(F ), . . . , CrN (F )}.

The two primary types of means considered in the formal epistemology literature on group credences

are the linear and geometric means. They are defined as follows:

Linear Mean: µL({Cr1(F ), . . . , CrN (F )}) =
∑N
i=1wiCri(F ), where {w1, . . . , wN} is a

set of non-negative, individual-specific weights such that
∑v
i=1wi = 1.

Geometric Mean: µG({Cr1(F ), . . . , CrN (F )}) =
k

√∏N

i=1 Cri(F )wi∑
F∈F

k

√∏N

i=1 Cri(F )wi
, where {w1, . . . , wN}

is a set of non-negative, individual-specific weights such that
∑v
i=1wi = k.

For a set of individuals I and a partition F of their shared sample space, if a group credence function

Cr∗ is such that for each F ∈ F , Cr∗(F ) = µL({Cr1(F ), . . . , CrN (F )}), then Cr∗ necessarily obeys
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the Kolmogorov axioms, provided that the same set of individual-specific weights {w1, w2, . . . , wN}

is used to calculate each group credence Cr∗(F ). Similarly, if a group credence function Cr∗ is

such that for each F ∈ F , Cr∗(F ) = µG({Cr1(F ), . . . , CrN (F )}), then Cr∗ necessarily obeys the

Kolmogorov axioms, provided that the same set of individual-specific weights {w1, w2, . . . , wN} is

used to calculate each group credence Cr∗(F ) and that there is an event F ∈ F that has non-zero

probability according to each individual’s credence function (Dietrich, 2019).

As mentioned in the introduction, my goal in this paper is not to adjudicate between which

of these two means provides the better mechanism for credal aggregation. Rather, my focus will

be on what these two means have in common, with a particular focus on the Min-Max condition

that both means satisfy. In what follows, I will argue that the Min-Max condition constrains the

possible accuracy of a group credence in cases where all members of the group have highly inaccurate

credences. I will show that this is not the case for stacking-based methods of determining group

credences.

Throughout this paper, I assume that all individuals in the group credence problem have a

shared data set. This assumption means that one must be precise about when in the belief-

formation and data collection process the group must make its decision about how they will solve

they group credence problem. Both Kadane and Lichtenstein (1982) and Dawid (1982) prove results

showing that if:

1. an agent’s beliefs are represented by a probability space (Ω,A, Cr),

2. (θ1 . . . , θn) is a sequence of random variables with the same range that are measurable with

respect to (Ω,A, Cr),

3. the agent sets their credence in θi+1 = x, where i+ 1 < n, for any x in the range of θi+1, by

conditionalizing on the outcome of all previous variables (θ1, . . . , θi),

4. πx is the proportion of RVs in (θ1 . . . , θn) with outcome x,

5. ζ is a random variable measurable with respect to (Ω,A, Cr) such that ζ = limn→∞[πx −
1
n

∑n
i=1Cr(θi = x)],

then Cr(ζ = 0) = 1. Thus, Bayesian agents take themselves to be maximally well-calibrated with

a given data source, such that in the long run, their credence that a given observation will return
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a given result will converge to the proportion of cases in which that output does indeed have that

result. As a result, they will not update their credences at all on the basis of another agent’s

credences when they know that second agent has access to all and only the same data source that

they do. Note that this applies even when i = 0, so that no agents have observed any data, but

have formed prior credences over the set of possible data streams that they might observe.

Thus, we must be careful about when a group adopts its solution to the group credence problem.

That is, we assume throughout that a group must agree on its solution to the group credence

problem from an ex ante position; before any data has been collected, and before any individual

prior credences have been adopted by the individuals in the group. This is why, in the introduction

to the group credence problem, I say that each individual in the group plans to have their own

credence function Cri over the shared algebra AΩ. They then agree to be bound by their planned

solution to the group credence problem at some future point in time, even though, at that point,

each group member i will regard this solution as sub-optimal, unless it returns precisely their

individual credence Cri. Note that this applies equally to solutions to the group credence problem

that take a mean of individual credences and the stacking-based solution that I defend below, in

cases such that individuals share all of their data.

2.2 Inaccuracy

My argument depends on our ability to make comparisons between group credence functions pro-

duced by different methods with respect to their (in)accuracy. Thus, I will need to introduce

the formal notion of an inaccuracy measure. Generally, an inaccuracy measure I is a real-valued

function that takes as its arguments a credence function Cr, a partition F of the sample space

Ω, where Cr is defined over an algebra AΩ on Ω, and an event F † ∈ F . We interpret F † as the

element of the partition F that contains the actual world. The higher the value of I(Cr,F , F †),

the more inaccurate Cr is with respect to the probabilities that it assigns to the elements of F .

The two inaccuracy measures discussed most in formal epistemology are the Brier measure and the

logarithmic measure. Let F = {F1, . . . , Fm} and let T : F → {0, 1} be a truth value function such

that T (Fj) = 1 if Fj = F †, and T (Fj) = 0 otherwise. The Brier measure and logarithmic measure

are defined as follows:
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Brier Measure: IB(Cr,F , F †) = 1
m

∑m
j=1(Cr(Fj)− T (Fj))2

Logarithmic Measure: IL(Cr,F , F †) = − ln(Cr(F †))

Although there are formal differences between the two scores, these differences are not directly

relevant to my argument. As such, I will use both measures when assessing the accuracy of any

given group credence.

In addition to measuring the accuracy of a credence function when the actual world is in a

particular element of a partition F , we can also calculate the expected inaccuracy of any credence

function Cr, where the expectation is calculated according to some probability distribution P that

is defined over the same algebra AΩ and sample space Ω as Cr. This expectation is defined via the

following equation:

Expected Inaccuracy: EP (I(Cr,F , ·)) =
∑m
j=1 P (Fj)I(Cr,F , Fj).

This definition assumes that we interpret a probability P (Fj) as expressing the probability that Fj

contains the actual world. Note that we use a placeholder instead of F † when calculating expected

inaccuracy because calculating an expected accuracy assumes that we do not know which element

of F contains the actual world. Since expected inaccuracy is itself a linear mean of inaccuracy

measures, it satisfies the Min-Max condition defined above.

3 When a Mean is Not Accurate

To show how assigning group credences using a mean can result in highly inaccurate group cre-

dences, consider the following case. Turning to a new example, let us suppose that Alphonse and

Belinda are each reading reports showing the number of lynx and the number of hares in a given

area of forest on a given day. Let us represent each day’s report as a pair (l, h), where l is the

number of lynx and h is the number of hares. The first four days produce a data set D of reports

such that D = {(1, 5), (2, 11), (3, 17), (4, 20)}. Alphonse and Belinda are then told that on the fifth

day of observation, there were five lynx in the area, but that the number of hares could not be

measured. They are asked to assign a credence to the event that the number of observed hares was

less than 10, and to the event that the number of observed hares was greater than or equal to 10.

Each agent completes their task by constructing their own signal-noise model of the data. Their
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respective models are defined as follows, where the noise term ε is normally distributed around zero

with a standard deviation of σ = 4:1

MA : h = 2l + ε (1)

MB : h = 3l + ε (2)

Thus, when l = 5, Alphonse and Belinda’s estimates of the number of hares in the area will be

normally distributed, with a standard deviation of σ = 4, around the mean of 2(5) = 10 and

3(5) = 15, respectively.

Alphonse and Belinda share a sample space Ω that contains the positive integers, representing

the number of hares observed on the fifth day. Their credence functions are defined over an algebra

AΩ, which we take to be the power set of Ω. We partition Ω into the set H = {H<10, H≥10}, where

H<10 is the set of worlds in which there are less than 10 hares in the area and H≥10 is the set of

worlds in which there are 10 or more hares in the area. In keeping with the models specified above,

Alphonse and Belinda’s credences in each of the two events in this partition can be calculated as

follows:2,3

CrA(H<10) =
∫ 9.5

0

1
4
√

2π
e−(h−10)2/2(42)dh ≈ .44 (3)

CrA(H≥10) = 1− CrA(H<10) ≈ .56 (4)

CrB(H<10) =
∫ 9.5

0

1
4
√

2π
e−(h−15)2/2(42)dh ≈ .08 (5)

CrB(H≥10) = 1− CrB(H<10) ≈ .92 (6)
1Throughout this paper I assume that all error terms have the standard deviation σ = 4. This assumption is for

mathematical tractability, and it is not a requirement for my argument that all signal-noise models have an error
term with the same standard deviation.

2To briefly explain these calculations, note that the normal distribution f(x) has the form f(x) =
1

σ
√

2π e
−(x−µ)2/2σ2

where σ is the standard deviation of the distribution and µ is the mean. The probability that
f(x) ∈ [y, z] can calculated by taking the integral

∫ z
y
f(x)dx. I estimate the probability that less than ten hares

are observed by taking the integral
∫ 9.5

0 f(h)dh. The use of normally-distributed, real-valued error terms is an ide-
alization, as it allows for non-integer and negative values of hares, although states in which the number of hares is
negative have very low probability according to all of the models considered here.

3All calculations performed in this paper are reproduced in the Jupyter available at https://github.com/
davidbkinney/whyaveragewhenyoucanstack.
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Brier Logarithmic
maxEPT (I(Cr∗M ,H, ·)) .394 .587
minEPT (I(Cr∗M ,H, ·)) .014 .088
EPT (I(PT ,H, ·)) 1.06619× 10−4 5.78× 10−4

Table 1: Maximum and minimum expected inaccuracy of Alphonse and Belinda’s mean credence
under both measures, as compared to expected inaccuracy of the true probability distribution,
according to itself.

Thus, if Alphonse and Belinda’s joint credence function Cr∗ is generated by taking a mean of their

individual credences, then due to the Min-Max constraint on a mean, it must be the case that

.08 ≤ Cr∗(H<10) ≤ .44 and .56 ≤ Cr∗(H≥10) ≤ .92.

However, Alphonse and Belinda are both poor data analysts. By stipulation, the true data

generating process is modelled as follows, where ε is also normally distributed around 0 with a

standard deviation of σ = 4:

MT : h = 5l + ε (7)

This means that the true probability distribution PT over H can be calculated as follows:

PT (H<10) =
∫ 9.5

0

1
4
√

2π
e−(h−25)2/2(42)dh ≈ 5.33× 10−5 (8)

PT (H≥10) = 1− PT (H<10) ≈ .99995 (9)

Table 1 shows the maximum and minimum expected inaccuracy of Alphonse and Belinda’s group

credence Cr∗ according the true probability distribution PT , for both the Brier and logarithmic in-

accuracy scores, under the assumption that their group credence must be a mean of their individual

credences. It also shows the expected inaccuracy of the true probability distribution, according to

itself. It should be clear from the table that even in the best-case scenario, Alphonse and Belinda’s

mean credence will be quite inaccurate compared to the true probability distribution.

One might be tempted to think that this limit on the expected accuracy of Alphonse and

Belinda’s joint credence is an inevitable consequence of their being poor data analysts. If all

individuals in a group are in a poor epistemic state, it could be argued, why should we expect

the group as a whole to fare well? In the next section, I will show how stacking techniques for
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generating group credences demonstrate that group inaccuracy is not an inevitable consequence of

unanimous individual inaccuracy.

4 How Stacking Leads to More Accurate Group Credences

Let us once again reference the lynx-and-hare example in the previous section, wherein Alphonse

and Belinda’s models of the observed data are given by MA and MB. We want to generate a

“stacked” model MS which we hope will yield more accurate credences than either of the individual

models. Our strategy will be to come up with a vector of stacking weights ~w = {w1,w2} such that

the group will make predictions using the following stacked model:

MS : h = w12l + w23l + ε (10)

Note that ε is once again an error term normally distributed around zero with a standard deviation

of σ = 4. Importantly, these weights are not required to sum to one; see Clyde and Iversen (2013, p.

485-6) for a simple demonstration of cases in which the sum-to-one constraint limits the accuracy of

a stacked model. Thus, there is a large space of weights to choose from, and we will need to choose

carefully in order to arrive at a model that generates more accurate credences than any mean.

In order to do this, we will need to add an additional piece to both Alphonse and Belinda’s

modeling repertoire. Let D be the set of all possible data sets D = {(x1, y1), . . . , (xv, yv)} that an

agent might observe, and let Li : D → M be a given individual i’s learning algorithm, where M

is the set of all possible signal-noise models of the form f(x) + ε. Individuals use their learning

algorithm to build models of the data-generating process from any given data set. Let D−α denote

the data set D \ {(xα, yα)}, i.e. the data set D with the α-th data point removed. For any data

set D, individual i, and data point (xα, yα), let Li(D−α) = f−αD,i (x) + ε. For any individual i

and data set D = {(x1, y1), . . . , (xv, yv)}, their leave-α-out vector ~zi is defined as follows: ~zi =

[f−1
D,i(x1), . . . , f−vD,i(xv)]T.

Le and Clarke (2017, p. 817) prove that, with respect to the goal of accurately predicting the

value of yv+1, given the value of xv+1, the optimal stacking weight vector ~w for N individuals and

data set D = {(x1, y1), . . . , (xv, yv)} can be derived as follows. Let Q be an N × N matrix such
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that each entry qkl is given by the following formula:

qkl =
v∑

α=1
f−αD,k(xα)f−αD,l (xα) (11)

That is, Q is a matrix such that the entry in the k-th row and the l-th column is the dot product

of the leave-α-out vectors for the individuals k and l. Next, let ~c be the following vector:

~c = [
v∑

α=1
yαf

−α
D,1(xα), . . . ,

v∑
i=1

yαf
−α
D,N (xα)]T (12)

In other words, ~c is a vector such that each entry is the dot product of a vector containing the

actual value of y for each entry in the data set, and the leave-α-out vector for each individual in

the set. A set of weights that yield a highly accurate stacking model for the ensemble of models

can be found via the following equation:

~w = Q−1~c (13)

Thus, the optimal stacking weights ~w are found by multiplying the inverse of Q by ~c. More precisely,

Le and Clarke prove the following:

Proposition 1 (Le and Clarke 2017, p. 817). For any data set D = {(x1, y1), . . . , (xv, yv)} and

set of individuals I, the weight vector ~w that uniquely minimizes
∑v
α=1(yα −

∑N
i=1 wif

−α
D,i (xα))2 is

~w = Q−1~c.

Thus, a learning algorithm LS that uses the leave-α-out vector produced by each individual’s

algorithm to produce a stacked predictive model with weights ~w = Q−1~c performs optimally well

at minimizing the sum of the squared difference between each predicted outcome f−αD,i (xα) and each

actual outcome yα when the data point (xα, yα) is left out of the data set, across all such leave-α-out

scenarios. If the probability distribution P over all possible data sets D = {(x1, y1), . . . , (xv, yv)}

is such that all finite permutations of any data set have equal probability (i.e., all observation sets

are “exchangeable”) then by the law of large numbers (see Bernardo and Smith 1994, p. 403-4),
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the following also holds:

P( lim
v→∞

1
v

v∑
α=1

(yα −
N∑
i=1

wif
−α
D,i (xα))2 = 0) = 1 (14)

Thus, in the infinite limit, we should expect the learning algorithm LS , which generates signal-

noise models by aggregating the existing signal-noise models in the ensemble using the weight

vector ~w = Q−1~c, to yield a more accurate prediction f
−(v+1)
D,S (xv+1) of the value yv+1, given the

data set D = {(x1, y1), . . . , (xv, yv)}, than any other aggregation of each individual’s models.

Applying this method to our running case study, let us suppose that Alphonse and Belinda’s

common data set is still D = {(1, 5), (2, 11), (3, 17), (4, 20)} and that their leave-α-out vectors are

specified as follows:

~zA = [3, 4, 6, 7]T (15)

~zB = [4, 5, 9, 11]T (16)

We use equation (13) above to derive the stacking weight vector ~w = [.74, 1.35]T. So the stacked

model has the following form:

MS : h = (.74)2l + (1.35)3l + ε = 5.53l + ε (17)

This means that when l = 5, a credence function over possible values of h that is consistent with

the stacked model MS will be derived from a normal distribution around a mean of (5.53)5 = 27.65.

Suppose again that this normal distribution has a standard deviation of σ = 4. If we use the stacked

model MS to derive a joint credence for Alphonse and Belinda over the partitionH = {H<10, H≥10},

we obtain the following:

Cr∗S(H<10) =
∫ 9.5

0

1
4
√

2π
e−(h−27.65)2/2(42)dh ≈ 2.85× 10−6 (18)

Cr∗S(H≥10) = 1− PT (H<10) ≈ .999997 (19)

The expected inaccuracies of this stacking-derived group credence Cr∗S , with respect to the true

12



probability distribution PT , for the Brier and logarithmic measures, are given by the following

equations:

EPT (IB(Cr∗S ,H, ·)) = 1.06624× 10−4 (20)

EPT (IL(Cr∗S ,H, ·)) = 6.84× 10−4 (21)

Thus, the expected inaccuracy of the stacking-derived joint credence for Alphonse and Belinda,

according to the true probability distribution, with respect to the number of hares in the region when

five lynx are observed, is much lower than the best-case scenario for any mean-derived joint credence,

regardless of whether the Brier or logarithmic measures are used to measure accuracy. Indeed, when

the Brier measure is used, the expected inaccuracy of the stacking-derived joint credence function

according to the true probability distribution is very close to the expected inaccuracy of the true

probability distribution according to itself (recall that the latter expectation is EPT (IB(PT ,H, ·)) =

1.06619× 10−4).

As discussed in the introduction, I suppose here that the sole normative expectation for any

solution to the group credence problem is that the solution ought to be as accurate as possible.

Under this supposition, the preceding example shows that it is at least sometimes the case that the

group should aggregate its credences by stacking, rather than credal averaging. Notably, this is a

case in which we aggregate the values of a random variable predicted by individuals in a group,

where each individual predicts the value of the variable by sampling from their particular credal

probability distribution. A group credence is then derived from the aggregate model predicting the

value of that random variable. The resulting group credal distribution is, in statistical terminology,

a “convolution” of each individual credence function. By contrast, solutions to the group credence

problem that take a mean of individual credences produce a group credence that is a “mixture” of

individual credence functions. The preceeding example shows that when all members of a group are

inaccurate, a convolution of group credences can be preferable to a mixture, for groups who care

about the accuracy of their group credence function. Where some individuals in the group are more

accurate, it may be that a mixture of credences is preferable as a solution to the group credence

problem. However, in these cases, it is also possible that both convolution-based and mixture-based
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methods will lead to similar results. For my purposes here, the upshot of this section is that there

are at least some cases such that a convolution of individual credences, rather than a mixture, is

preferable as a solution to the group credence problem.

5 Against Unanimity

In the introduction, I mention that Pettigrew (2019) argues in favor of the claim that if the sole

goal of a group of agents is to have as accurate a group credence as possible, then they ought to

plan to solve the group credence problem by linear averaging. However, the results above seem to

indicate that this is not the case; when all members of a group have inaccurate credences based on

flawed models, stacking results in more accurate credences than linear averaging. So what has gone

wrong? In this section, I argue that a premise of Pettigrew’s argument, viz., that group credences

must satisfy a unanimity constraint, need not be satisfied by groups of agents that take accuracy

to be the only valuable property of their group credence function.

Let us reconstruct Pettigrew’s argument. His first premise is that any measure of inaccuracy

must be a sum of the values of a strictly proper and continuous scoring rule for each element in a

partition under a given probability distribution. A scoring rule is a function s such that, for a given

element F of a partition F and a given credence function Cr, s takes as its input the truth value

T (F ) and the credence Cr(F ) and returns a value s(T (F ), Cr(F )) between zero and one. Recall

that T (F ) = 1 if the actual world is in F and T (F ) = 0 otherwise. Strict Propriety is defined

formally as follows:

Strict Propriety: For any element F of any partition F and any two credence functions

Cr and Cr′, Cr(F )s(1, Cr′(F )) + (1−Cr(F ))s(0, Cr′(F )) is uniquely minimized when

Cr(F ) = Cr′(F ).

In other words, a scoring rule is strictly proper if, once an agent adopts a certain credence that the

actual world is in a given element F of a partition, that agent cannot achieve a lower expected value

for that scoring rule by changing their credence in F . Continuity is defined formally as follows:

Continuity: For any element F of any partition F and any credence function Cr,

s(1, Cr(F )) and s(0, Cr(F )) are both continuous functions of Cr(F ).
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Brier Logarithmic
ECrA(I(Cr∗M ,H, ·)) .752 1.15
ECrA(I(Cr∗S ,H, ·)) .888 5.67
ECrB (I(Cr∗M ,H, ·)) .155 .290
ECrB (I(Cr∗S ,H, ·)) .169 1.08

Table 2: Expected inaccuracy, by Alphonse and Belinda’s lights, of the maximally accurate group
credence that can be derived by taking a linear mean (Cr∗M ) and the stacking-derived group credence
(Cr∗S).

I take this formal definition to be self-explanatory. As both the Brier and logarithmic scoring

rules are sums of the values of a strictly proper and continuous scoring rule for each element in

a partition under a given probability distribution, my argument in favor of stacking is consistent

with Pettigrew’s first premise, and indeed nothing that I say here should be taken to dispute it.

Instead, I take issue with Pettigrew’s second premise, which is that group credences must respect

unanimity. Pettigrew’s unanimity constraint can be defined formally as follows:

Unanimity: For any group credence problem (Ω,AΩ, I,F) and any two credence func-

tions Cr∗ and Cr′, if for all i ∈ I, ECri(I(Cr∗,F , ·)) < ECri(I(Cr′,F , ·)), then Cr′

cannot be the group credence function.

This definition formalizes Pettigrew’s definition of unanimity as the premise that “if, by the lights

of every individual in a group, the expected epistemic value of one credence function is higher than

the expected epistemic value of another credence function, then the latter cannot be the credence

function of that group” (2019, p. 145). Pettigrew then proves that, if inaccuracy is measured by

taking a sum of strictly proper and continuous scoring rules, then any solution Cr′ to the group

credence problem that is not a linear mean of individual credences will violate unanimity, because

there will always exist an alternative group credence Cr∗ that is: 1) a linear mean of the individual

credences, and 2) unanimously expected to be more accurate than Cr′. Further, any solution to

the group credence problem that is a linear mean of individual credences will not be disqualified

by the unanimity constraint. Pettigrew takes this to show that agents ought to solve the group

credence problem by taking a linear mean of their individual credences.

In the example discussed in the previous section, the group credence arrived at by stacking does

not satisfy unanimity. Table 2 shows the expected inaccuracy, by both Alphonse and Belinda’s

lights, of the maximally accurate group credence Cr∗M that can be derived by taking a linear
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mean of their individual credences, as compared to the expected inaccuracy, by both Alphonse

and Belinda’s lights, of the stacking-derived group credence Cr∗S . Clearly, both Alphonse and

Belinda expect Cr∗M to be the more accurate credence, and so unanimity would rule out Cr∗S as

a solution to their group credence problem. Nevertheless, I have shown in the previous section

that the stacking-derived group credence has far greater expected accuracy, by the lights of the

true probability distribution over H, than the maximally accurate credence that can be derived by

taking a linear mean of Alphonse and Belinda’s credences. Thus, it follows that if one believes,

as Joyce (1998), Goldman (2001), and Pettigrew (2019) all do, that accuracy is the sole source of

value for a credence function, then groups ought to abandon unanimity as an ex ante constraint on

how they ought to plan to solve the group credence problem, in order to allow for more accurate,

stacking-based solutions.

There may be other reasons why groups should plan to solve the group credence problem using

a method that is consistent with unanimity. Unanimity might be a necessary condition for finding a

solution that reflects a commitment to both the claim that the epistemic value of a credence function

is its accuracy and the claim that group credences should be arrived at through a procedure of

deliberative democracy. To accept this, one would have to grant that if all individuals in a group

care about accuracy, and all of those individuals expect that a certain credence will be inaccurate,

then the group ought to avoid adopting that credence. This conditional may be true, but note

that its normative consequent cannot follow from its descriptive antecedent just because the group

treats accuracy as the sole virtue of a credence function. This much is shown by the example

in the previous section. However, such a normative implication could be valid if the group has

a background commitment to the idea that group beliefs should, at a minimum, cohere with the

group consensus. Note that accuracy plays no role in this background commitment, which is only

about procedural norms. Thus, Pettigrew is able to give an accuracy-based argument for the claim

that group credences should be derived by taking a linear mean of individual credences only by

adopting an assumption that is not motivated by concerns relating to the accuracy of credence

functions.

Moss (2011) offers a different accuracy-based argument for solving the group credence problem

by taking a linear average of individual credences. Her argument proceeds as follows. Suppose that

the inaccuracy measure I is a sum of strictly proper scoring rules. Suppose further that for any
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partition F and any group of individuals I = {1, . . . , N}, the expected inaccuracy of the group

credence Cr∗, according to Cr∗, is given by the following linear mean of the expected inaccuracy

of individuals in the group:

ECr∗I(Cr∗,F , ·) =
N∑
i=1

wiECriI(Cri,F , ·) (22)

Where {w1, . . . , wN} is a set of positive weights that sum to one. Under these conditions, the

credence function that minimizes the group’s expected inaccuracy is necessarily a linear mean of

individual credences. Thus, Moss argues, there are accuracy-based reasons to solve the group

credence problem by taking a linear mean of individual credences. In response, I note that Moss

assumes in her argument that the expected accuracy of a group credence, according to that group

credence, must be a linear mean of the expected accuracy of each individual credence, according

to those credences. This assumption closes off the possibility of group credences that have greater

expected accuracy, according to some true probability distribution, in cases where all individuals

have highly inaccurate credences. Thus, Moss’ crucial assumption is not motivated by the norm

that the group ought to minimize expected inaccuracy in all cases, where expected inaccuracy is

measured by an objective standard rather than by the subjective standards of the individuals in

the group.

In summary, I am committed in this paper to the following view: the norm that individuals in

a group ought to plan to endorse group credences that they subjectively expect to be accurate is

only justified on veritistic grounds to the extent that their future subjective beliefs will be good

approximations of what is in fact the case in the actual world. In the scenario that I considered in

the previous section, individuals’ credences were derived from models that, by stipulation, were not

good approximations of what was in fact the case in the actual world. Thus, in such a scenario, it

does not follow that individuals ought to endorse group credences that they expect to be accurate,

at least where the ‘ought’ in ‘ought to endorse’ is interpreted in an externalist, objective sense rather

than an internalist or subjective sense. That is, if we take the primary norm of epistemology to be

that agents ought to have beliefs that are close to the truth, rather than having beliefs that they

believe will be close to the truth, then Pettigrew and Moss’ putatively accuracy-based arguments

in favor of linear averaging do not go through. By contrast, the same externalist understanding
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of accuracy-based norms for epistemology does motivate a stacking-based solution to the group

credence problem, as demonstrated by the results in the previous section.

6 Counterarguments

A key objection to my argument so far proceeds as follows. Applying stacking methods to solve

the group credence problem requires that all agents in a group have access to a shared data set,

and have a fairly sophisticated mechanism for analyzing that data and returning a hypothesis that

describes the data-generating process. Further, each agent must be able to perform this level of

data analysis not just when given the full data set, but when given each data set that can be

generated by removing one of the data points from the full set. These facts about stacking present

two ways of arguing that stacking cannot be used to solve the group credence problem. First, one

could argue that the presupposition that agents could derive a stacking-based solution to the group

credence problem endows those agents with an unrealistic level of epistemic ability. Second, one

could argue that in many cases, groups of agents will lack access to a shared data set which they

can analyze to produce models and derive credences in future events. Rather, it could be argued,

in many cases, agents’ credences are simply opinions that are not derived from data analysis.

Regarding the first counterargument, I need only point out that any formal approach to the

group credence problem that assumes that each individual in the group assigns a specific numerical

credence to each element of a partition, and indeed each element of an algebra over a set of possible

worlds, already represents agents in ways that idealize away from actual epistemic life. Real-

world agents do not come with well-defined credences in an exhaustive set of possible events, and

attempts to elicit such credences via iterated gambles are unlikely to be feasible in practice, and

may nevertheless be undermined by inconsistent betting behavior on the part of real-world agents.

Further, groups of agents rarely, if ever, possess a mutually agreed-upon set of possible worlds to

serve as the sample space over which an algebra is defined. These facts render the very framing of

the group credence problem an idealization. None of this implies that formal epistemology cannot

be useful in providing normative guidance on how to solve the group credence problem. Rather, just

as scientific models idealize away from their target systems while still providing important insights

about the nature of those systems, formal epistemology can provide insight into epistemic practice
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while nevertheless presenting an idealized picture of actual epistemic practice. Thus, although

stacking introduces further idealized elements into the group credence problem, the introduction

of said elements does not necessarily imply that stacking is not applicable to the group credence

problem.

As for the second counterargument, I hold that when the credences of individuals in a group

are mere opinions, not based on any analysis of underlying data, then we have no reason to suspect

that their group credences should be highly accurate.4 To illustrate why this is the case, consider

the earlier example in which Alphonse and Belinda disagree about whether the train to Brussels

leaves before or after noon. If neither has any data regarding the schedule of trains from Brussels

to Amsterdam, e.g. neither has looked at a schedule, neither has taken the train before, neither has

any experience with train journeys between European capitals, etc., then there is no reason why

we should expect either of their credences to have any probative value with respect to the time in

which the train is likely to depart. In these kinds of cases, the epistemologist who takes accuracy

to be the sole source of value for group credences has no reason to suspect that any mathematical

operation combining Alphonse and Belinda’s two credences into a single credence will get them

significantly closer the truth. By contrast, if Alphonse and Belinda do have access to some of the

data sources described above, then their process of arriving at a group credence can be represented,

with some idealization, as a stacking-based aggregation of models from which a group credence can

be derived.

This discussion reveals what I believe is an important epistemic upshot of stacking-based solu-

tions to the group credence function. Epistemologists who argue that the sole source of epistemic

value for a credence function is the accuracy of that credence function are what Berker (2013) calls

“epistemic consequentialists.” Just as consequentialists in ethics believe that the moral valence of

an action is determined solely by its consequences, and not an agent’s reasons for performing that

action, those who hold up accuracy as the sole epistemic virtue of a credence function believe that

the epistemic valence of a credence function is measured solely by the extent to which that credence

function allows an agent to believe the truth. Importantly, the agent’s reasons for adopting partial
4A result from Rougier (2016) does show that, in general, an average of credence functions in a given set has

greater expected accuracy than a randomly selected credence function from that same set. However, this does not
establish that a mean credence function cannot be significantly less accurate than some other credence function not
in the set being averaged.
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beliefs consistent with that credence function are irrelevant. Berker, for his part, rejects epistemic

consequentialism, insisting that the epistemic value of a belief is determined at least in part by an

agent’s reasons for holding that belief.

What stacking-based approaches to the group credence problem show is that, even if one believes

that accuracy is the sole source of value for a credence function, one should still care whether agents

in a group have reasons for adopting partial beliefs that are consistent with a particular credence

function. In the stacking cases, each agent has a particular analysis of shared data on which they

base their credences. Thus, they have a reason for holding the partial belief that they do. Even

if an agent does not have a good reason for holding their partial beliefs (e.g. they are a poor data

analyst), making these reasons explicit to the group can facilitate stacking, which in turn allows

for a more accurate solution to the group credence problem than would have been possible had

each individual provided only credences and no reasons justifying their holding those credences.

Thus, having a reason for holding a given credence is better than holding the same credence for no

reason at all, insofar as one is a member of a group that wishes to have an accurate group credence

function. This offers a possible point of conciliation between epistemic consequentialists and their

rivals. Both camps can agree that when each individual agent in a group has a reason for holding

partial beliefs that cohere with a given credence function, the existence of said reasons can improve

the value of the group’s epistemic state. However, they disagree over whether this improvement is

directly due to the existence of said reasons, or due to the increased accuracy of the group credences

that these reasons enable.

An additional counterargument against what I have presented here could proceed as follows.

In the example that I have given above, Alphonse and Belinda’s learning algorithms produce such

inaccurate models that they must either possess evidence not represented in their mutual data set,

or else they must be irrational in some sense. Let us stipulate that neither Alphonse nor Belinda

has any special knowledge that affects the output of their learning algorithm. This leaves open

the possibility that the severe inaccuracy of Alphonse and Belinda’s learning algorithms is due to

putative irrationality on their part. If this is the case, the counterargument might continue, then

the failure of any linear mean to produce an accurate group credence is explained not by any flaw

in the method of taking a linear mean of individual group credences, but instead by Alphonse and

Belinda’s irrationality.
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In response, I note first that I am wary of equating severe inaccuracy with irrationality. As

the inaccuracy of a prediction comes in degrees, the claim that a prediction can be so inaccurate

that it renders the predicting agent irrational invites a version of the Sorites paradox. If a severely

inaccurate prediction ρ1 renders the predictor irrational, then so too, it stands to reason, does a

prediction ρ2 that is only slightly more accurate than ρ1, and so on until all predictors are declared

irrational. I note second that while my previous example involved severely inaccurate predictors in

order to demonstrate clearly the virtues of stacking, stacking can still outperform credal averaging

when predictors are less severely inaccurate. To illustrate, consider the same example as above, but

with Alphonse and Belinda’s models changed to the following, while the true model MT : h = 5l+ε

remains unchanged:

MA : h = 6l + ε (23)

MB : h = 6.1l + ε (24)

Thus, Alphonse and Belinda both over-estimate the number of hares that ought to be present in the

region, given the number of lynx, but their inaccuracy is less egregious than in the earlier example.

Suppose further that Alphonse and Belinda’s leave-α-out vectors are as follows: ~zA = [6, 12, 17, 23],

~zB = [7, 13, 18, 24]. Applying stacking in this case yields the following aggregate model:

MS : h = .81(6l) + .09(6.1l) + ε = 5.45l + ε (25)

If this stacked model is used to generate group credences, then the group’s credence function over the

number of hares observed on a given day will be centered around a mean that is closer to the mean

predicted by the true model than the mean around which either Alphonse or Belinda’s credence

functions are centered. Indeed, both Alphonse and Belinda’s credence functions will be centered

around means that are greater than the mean around which the true probability distribution will

be centered. Thus, stacking yields a more accurate group credence than would be possible under

linear averaging, even when the inaccuracy of the individuals in the group is less severe than in the

earlier case.

Another objection might be to take issue with my stipulation of a true data-generating process
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in the lynx-hare scenario, according to which the expected accuracy of each group credence is

calculated. According to this objection, while it is true that the data are made more likely by the

data-generating process, such that h = 5l + ε is statistically better-motivated as the true model

than Alphonse’s model h = 2l + ε or Belinda’s model h = 3l + ε, there is no logical barrier to

either Alphonse or Belinda’s model, or some linear mean of their models, representing the true

data-generating process. In the unlikely but not impossible event that this is the case, stacking will

produce a less accurate model than taking a linear mean. In response, I note that, in light of the

result summarized in equation (14), in the long run of data collection we expect the stacked model

to be highly accurate, and thus to generate highly accurate credences, regardless of the specific

form of the true data-generating process. Of course, it can occur that small data sets, such as the

one that I have used in my example for the sake of exposition, are highly improbable within the

context of a given data-generating model, such that algorithms trained on small samples give poor

results. However, the epistemic norm that a group ought to behave in a way that maximizes long-

run expected accuracy is part of the underlying motivation of both my approach and the approach

of defenders of the linear mean such as Moss or Pettigrew. From this I conclude that the threat

of inaccurate predictions due to unlikely outcomes in finite sampling is no more a problem for my

view than it is for their views, or indeed for any expected-accuracy-motivated argument in favor of

groups or individuals adopting a particular set of beliefs in response to observed data.

A final objection against what I have presented here proceeds as follows. On any specification

of the group credence problem such that stacking-based solutions are appropriate, there is a shared

data set to which all individuals in the group have access. In cases where all individuals have highly

inaccurate learning algorithms, why not solve the group credence problem by simply using a better

learning algorithm than that possessed by any individuals in the group to build a new model of the

data-generating process, and derive the group credence from that model? Such a credence could

have greater expected accuracy than a credence derived from the stacking-based aggregation of the

two inaccurate models. Thus, it could be argued, simply training a different learning algorithm on

the commonly available data can, in some cases, be a better method for solving the group credence

problem, from a veritistic perspective, than stacking the inaccurate models. In response to such

an objection, I need only note that once we introduce a better learning algorithm into the group

credence problem, we are effectively introducing a new, more accurate individual into the group. In
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virtue of the results stated above, we can still expect the model produced by stacking the accurate

and inaccurate models to be as or more accurate, in the long run, than the single inaccurate model.

Thus, stacking is to be preferred to any single learning algorithm in producing a solution to the

group credence problem.

7 Conclusion

I have presented the group credence problem, now the subject of considerable attention in formal

social epistemology. I have shown how, when all members of a group are highly inaccurate, any

solution to the group credence problem that relies on taking a mean of each individual in the group’s

credence will result in an inaccurate group credence. I then show how, if we model each agent’s

credence function as derived from a learning algorithm trained on a common data set, we can use

stacking techniques to improve the accuracy of the group’s credence function. In so doing, I reject

Pettigrew’s unanimity constraint on any solution to the group credence problem, arguing that there

is no accuracy-based reason for accepting the constraint. I defend this approach against potential

counterarguments, showing that, even if reasons for belief are not in themselves sources of value

for a set of partial beliefs, epistemologists concerned with the accuracy of group credences should

seek to solicit reasons for partial belief from individuals in a group. Even where all individuals

in a group have bad reasons for holding the credences that they do, such an elicitation of reasons

can facilitate stacking, an aggregation method that yields more accurate group credences than

averaging techniques in some cases.

It is worth clarifying that I do not take stacking to be a panacea for the group credence prob-

lem. In particular, the law-of-large-numbers justification of stacking does not work in cases where

exchangeability is violated (i.e., in cases where data is more likely to appear in a specific order than

in some permutation of that order). It also is not applicable, at least not in the form presented here,

when individuals possess private data in addition to the public data available to the entire group,

or when the group does not have access to enough data. Finally, it may be that the predicted value

of interest is an element of a different domain than the data values, or that the data-generating

process cannot be assumed to be consistent from past to future. Here too, the stacking methods

presented may not be applicable. Nevertheless, I take myself to have shown above that, in at least
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some important cases, stacking is able to generate more accurate group credences than mean-based

aggregation methods. Moreover, in the cases in which stacking will not produce an accurate solu-

tion, there is no reason to think that mean-based aggregation methods will produce an accurate

prediction.

That said, the method of stacking presented here is only one version of the stacking methodol-

ogy; for a sampling of the many variants of stacking on offer, see Breiman (1996b), Van der Laan

et al. (2007), Sill et al. (2009), and Clyde and Iversen (2013). For an implementation of “hierarchi-

cal stacking,” in which stacking weights can vary across a population of learning algorithms, and

in which stacking weights can vary as a function of continuous predictors, see Yao et al. (2021).

Moreover, there are other popular model-aggregation procedures from statistics and machine learn-

ing that may prove effective in various contexts. These include boosting (for a textbook treatment,

see Schapire and Freund 2013), bagging (Breiman 1996a), mixture of experts (see Yuksel et al.

2012 and Masoudnia and Ebrahimpour 2014 for surveys) or prequential analysis (Dawid 1984).

Examining how each of these techniques can be deployed in various contexts to achieve a satisfying

solution of the group credence problem is an intriguing avenue for future research at the intersection

of machine learning, statistics, and social epistemology.
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