Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T08:43:22.857Z Has data issue: false hasContentIssue false

MECHANIZING PRINCIPIA LOGICO-METAPHYSICA IN FUNCTIONAL TYPE-THEORY

Published online by Cambridge University Press:  12 July 2019

DANIEL KIRCHNER*
Affiliation:
Fachbereich Mathematik und Informatik, Freie Universität Berlin
CHRISTOPH BENZMÜLLER*
Affiliation:
Fachbereich Mathematik und Informatik, Freie Universität Berlin and Computer Science and Communications, University of Luxembourg
EDWARD N. ZALTA*
Affiliation:
Center for the Study of Language and Information, Stanford University
*
*FACHBEREICH MATHEMATIK UND INFORMATIK FREIE UNIVERSITÄT BERLIN ARNIMALLEE 14, 14195 BERLIN, GERMANY E-mail: daniel@ekpyron.org
FACHBEREICH MATHEMATIK UND INFORMATIK FREIE UNIVERSITÄT BERLIN ARNIMALLEE 14, 14195 BERLIN, GERMANY E-mail: c.benzmueller@fu-berlin.de and COMPUTER SCIENCE AND COMMUNICATIONS UNIVERSITY OF LUXEMBOURG 2, AVENUE DE L’UNIVERSITÉ L-4365 ESCH-SUR-ALZETTE, LUXEMBOURG E-mail: christoph.benzmueller@uni.lu
CENTER FOR THE STUDY OF LANGUAGE AND INFORMATION STANFORD UNIVERSITY CORDURA HALL, 210 PANAMA STREET STANFORD, CA 94305-4115, USA E-mail: zalta@stanford.edu

Abstract

Principia Logico-Metaphysica contains a foundational logical theory for metaphysics, mathematics, and the sciences. It includes a canonical development of Abstract Object Theory [AOT], a metaphysical theory (inspired by ideas of Ernst Mally, formalized by Zalta) that distinguishes between ordinary and abstract objects.

This article reports on recent work in which AOT has been successfully represented and partly automated in the proof assistant system Isabelle/HOL. Initial experiments within this framework reveal a crucial but overlooked fact: a deeply-rooted and known paradox is reintroduced in AOT when the logic of complex terms is simply adjoined to AOT’s specially formulated comprehension principle for relations. This result constitutes a new and important paradox, given how much expressive and analytic power is contributed by having the two kinds of complex terms in the system. Its discovery is the highlight of our joint project and provides strong evidence for a new kind of scientific practice in philosophy, namely, computational metaphysics.

Our results were made technically possible by a suitable adaptation of Benzmüller’s metalogical approach to universal reasoning by semantically embedding theories in classical higher-order logic. This approach enables one to reuse state-of-the-art higher-order proof assistants, such as Isabelle/HOL, for mechanizing and experimentally exploring challenging logics and theories such as AOT. Our results also provide a fresh perspective on the question of whether relational type theory or functional type theory better serves as a foundation for logic and metaphysics.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Benzmüller, C. (2019). Universal (meta-)logical reasoning: Recent successes. Science of Computer Programming, 172, 4862.CrossRefGoogle Scholar
Boolos, G. (1987). The consistency of Frege’s foundations of arithmetic. In Thomson, J., editor. On Being and Saying. Cambridge, MA: MIT Press, pp. 320.Google Scholar
Bueno, O., Menzel, C., & Zalta, E. N. (2014). Worlds and propositions set free. Erkenntnis, 79, 797820.CrossRefGoogle Scholar
Church, A. (1940). A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2), 5668.CrossRefGoogle Scholar
Clark, R. (1978). Not every object of thought has being: A paradox in naive predication theory. Noûs, 12(2), 181188.CrossRefGoogle Scholar
Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Verlag von Louis Nebert.Google Scholar
Hieke, A. & Zecha, G. (2018). Ernst Mally. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Winter 2018 Edition). Metaphysics Research Lab, Stanford University.Google Scholar
Kirchner, D. (2017). Representation and partial automation of the principia logico-metaphysica in Isabelle/HOL. Archive of Formal Proofs, http://isa-afp.org/entries/PLM.html.Google Scholar
Kirchner, D., Benzmüller, C., & Zalta, E. N. (2019). Computer science and metaphysics: A cross-fertilization. Open Philosophy (Special Issue—Computer Modeling in Philosophy), forthcoming, doi: 10.1515/opphil-2019-0015, preprint: https://arxiv.org/abs/1905.00787.Google Scholar
Linsky, B. & Irvine, A. D. (2019). Principia mathematica. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Summer 2019 Edition). Metaphysics Research Lab, Stanford University.Google Scholar
Muskens, R. (2007). Intensional models for the theory of types. The Journal of Symbolic Logic, 72(1), 98118.CrossRefGoogle Scholar
Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science, Vol. 2283. Berlin: Springer-Verlag.Google Scholar
Oppenheimer, P. E. & Zalta, E. N. (2011). Relations versus functions at the foundations of logic: Type-theoretic considerations. Journal of Logic and Computation, 21(2), 351374.CrossRefGoogle Scholar
Whitehead, A. N. & Russell, B. (1910–1913). Principia Mathematica (first edition). Cambridge: Cambridge University Press.Google Scholar
Wiedijk, F. The de Bruijn factor. Available at: http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf/.Google Scholar
Zalta, E. N. (2018). Principia Logico-Metaphysica. Available at: http://mally.stanford.edu/principia.pdf (Draft/Excerpt).Google Scholar
Zalta, E. N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Zalta, E. N. (1988). Intensional Logic and the Metaphysics of Intentionality. Cambridge, MA: MIT Press.Google Scholar