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aCollege of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba
275-8576, Japan

bDepartment of Philosophy, Logic and Scientific Method, London School of Economics and
Political Science, Houghton Street, London WC2A 2AE, United Kingdom

cInstitute of Philosophy, Research Center for the Humanities of the Hungarian Academy of
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Abstract

We prove new results on common cause closedness of quantum probability
spaces, where by a quantum probability space is meant the projection lattice of
a non-commutative von Neumann algebra together with a countably additive
probability measure on the lattice. Common cause closedness is the feature that
for every correlation between a pair of commuting projections there exists in the
lattice a third projection commuting with both of the correlated projections and
which is a Reichenbachian common cause of the correlation. The main result
we prove is that a quantum probability space is common cause closed if and
only if it has at most one measure theoretic atom. This result improves earlier
ones published in [1]. The result is discussed from the perspective of status of
the Common Cause Principle. Open problems on common cause closedness of
general probability spaces (L, ϕ) are formulated, where L is an orthomodular
bounded lattice and ϕ is a probability measure on L.

Keywords: Reichenbachian common cause, common cause principle,
orthomodular lattices

1. The main result

In this paper we prove new results on common cause closedness of quantum
probability spaces. By a quantum probability space is meant here the projection
lattice of a non-commutative von Neumann algebra together with a countably
additive probability measure on the lattice. Common cause closedness is the
feature that for every correlation between a pair of commuting projections there
exists in the lattice a third projection commuting with both of the correlated
projections and which is a Reichenbachian common cause of the correlation.
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The main result we prove is that a quantum probability space is common
cause closed if and only if it has at most one measure theoretic atom. Since
classical, Kolmogorovian probability spaces were proved in [2] to be common
cause closed if and only if they contained at most one measure theoretic atom,
and since classical probability spaces also can be regarded as projection lattices
of commutative von Neumann algebras, this result gives a complete characteri-
zation of common cause closedness of probability spaces in the category of von
Neumann algebras. Previous results on common cause closedness of quantum
probability spaces had to assume an additional, somewhat artificial and not very
transparent feature of the quantum probability measure under which the quan-
tum probability space could be proved to be common cause closed [1]. With
the removal of that condition it becomes visible that exactly the same type of
measure theoretical structure is responsible for the common cause closedness
(or lack of it) of classical and quantum probability spaces.

The broader context in which we give our proofs is the problem of character-
ization of common cause closedness of general probability spaces (L, ϕ), where L
is an orthocomplemented, orthomodular, bounded σ-lattice and ϕ is a countably
additive general probability measure on L. (Classical and quantum probability
spaces are obviously special examples of abstract probability spaces.) However,
little is known about the problem of common cause closedness in this generality.
A sufficient condition for common cause closedness of general probability the-
ories is known (Proposition 3.10 in [1], recalled here as Proposition 5) but the
condition is exactly the not very natural one that could be eliminated both in
classical and in quantum probability spaces, and one would like to know whether
it also can be eliminated (or replaced by a more natural one) in general prob-
ability theories (Problem 15). It also is unknown whether the condition which
is necessary for common cause closedness of quantum probability spaces is nec-
essary for the common cause closedness of general probability theories as well
(Problem 16). Further open questions and possible directions of investigation
will be indicated in section 7.

The conceptual-philosophical significance of common cause closed probabil-
ity spaces is that they display a particular form of causal completeness: these
theories themselves can explain, exclusively in terms of common causes that
they contain, all the correlations they predict; hence these theories comply in
an extreme manner with the Common Cause Principle. Probabilistic physical
theories in which the probability space is measure theoretically purely non-
atomic are therefore good candidates for being a confirming evidence for the
Common Cause Principle. Section 6 discusses this foundational-philosophical
significance of the presented results in the context of the more general problem
of assessing the status of the Common Cause Principle.

The other sections of the paper are organized as follows. Section 2 fixes some
notation and recalls some basic definitions in lattice theory. In section 3 the
notion of common cause in general probability theories is defined. In Section
4 it is shown that for a probability space, classical or quantum, to be common
cause closed it is sufficient that they have at most one measure theoretic atom
(Propositions 7 and 9). Section 5 proves that this condition is also necessary,
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both in case of classical probability spaces (Proposition 12) and in quantum
probability spaces (Proposition 14). Section 7 formulates some problems that
are open at this time.

2. General probability spaces - definitions and notations

Throughout the paper L denotes an orthocomplemented lattice with lattice
operations ∨,∧ and orthocomplementation ⊥. The lattice L is called orthomod-
ular if, for any A,B ∈ L such that A ≤ B, we have

B = A ∨ (B ∧A⊥) (1)

The lattice L is called a Boolean algebra if it is distributive, i.e. if for any
A,B,C ∈ L we have

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C) (2)

It is clear that a Boolean algebra is an orthomodular lattice. Other examples of
orthomodular lattices are the lattices of projections of a von Neumann algebra;
they are called von Neumann lattices. The projection lattice of a von Neumann
algebra is distributive if and only if the von Neumann algebra is commutative.
A basic reference for orthocomplemented lattices is [3]. For a summary of basic
facts about von Neumann algebras and von Neumann lattices we refer to [4],
for the theory of von Neumann algebra our reference is [5]. The paper [6] gives
a concise review of the basics of quantum probability theory.

If, for every subset S of L, the join and the meet of all elements in S exist,
then L is called a complete orthomodular lattice. If the join and meet of all
elements of every countable subset S of L exist in L, then L is called a σ-lattice.
Von Neumann lattices are complete hence σ-complete. In the present paper, it
is assumed that lattices are bounded: they have a smallest and a largest element
denoted by 0 and I, respectively.

Let L be a σ-complete orthomodular lattice. Elements A and B are called
mutually orthogonal if A ≤ B⊥. The map ϕ : L → [0, 1] is called a (general)
probability measure if ϕ(I) = 1 and ϕ(A ∨ B) = ϕ(A) + ϕ(B) for any mutual
orthogonal elements A and B. A probability measure ϕ is called a σ-additive
probability measure if for any countable, mutually orthogonal elements {Ai|i ∈
N}, we have

ϕ(∨i∈NAi) =
∑
i∈N

ϕ(Ai) (3)

Next we consider atoms. There are two types of atoms: algebraic and mea-
sure theoretic. An element A ∈ L is called an algebraic atom if A > 0 and, for
any B ≤ A we have B = A or B = 0. The other type of atom depends on a
probability measure on L. Let ϕ be a probability measure on L. An element
A ∈ L is called a ϕ-atom if ϕ(A) > 0 and, for any B ≤ A we have ϕ(B) = ϕ(A)
or ϕ(B) = 0.

A probability measure ϕ on L is called
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• purely atomic if for any A ∈ L with ϕ(A) > 0 there exists a ϕ-atom B ∈ L
such that B ≤ A,

• purely nonatomic if for any A ∈ L with ϕ(A) > 0 there exists an element
B ∈ L such that B < A and 0 < ϕ(B) < ϕ(A).

If ϕ(A) = 0 implies A = 0 for any A ∈ L, then ϕ is called faithful. Roughly
speaking, this condition means that the elements whose probabilities are zero are
ignored because such elements are identified with the zero element. According
to the following Lemma, we can identify a ϕ-atom with an atom in the case
where ϕ is faithful. Since we will deal with faithful measures in the paper,
algebraic and measure theoretic atoms can be identified and this will be done
implicitly in this paper.

Lemma 1. Let ϕ be a faithful probability measure on L. A is a ϕ-atom if and
only if A is an atom.

Proof. Let A be a ϕ-atom. For any B such that B ≤ A, ϕ(B) = ϕ(A) or
ϕ(B) = 0. ϕ(B) = 0 implies B = 0 because ϕ is faithful. ϕ(B) = ϕ(A) implies
ϕ(A⊥ ∧B) = 0, so that A = B ∨ (A⊥ ∧B) = B. This means that A is an atom.
It is trivial that A is a ϕ-atom if A is an atom. �

We say that two elements A and B in an orthomodular lattice L are com-
patible if

A = (A ∧B) ∨ (A ∧B⊥) (4)

It can be shown [3][Theorem 3.2] that (4) holds if and only if

B = (B ∧A) ∨ (B ∧A⊥) (5)

In other words, the compatibility relation is symmetric. If L is a Boolean
algebra, any two elements in L are compatible.

3. Definition of common cause closedness

In order to investigate common cause closedness in an orthomodular lattice,
we must re-define both the concept of correlation and the notion of common
cause of the correlation with which we define common cause closedness. The
reason why these concepts have to be re-defined explicitly is that Reichenbach’s
original definition was given in terms of classical probability spaces [7][Section
19], and in such probability spaces all random events are compatible. In the
lattice L of a general probability space there exist elements however which are
not compatible. Hence it must be stipulated explicitly whether we allow (i) in-
compatible elements to be correlated and (ii) the common causes of correlations
to be incompatible with the elements in the correlation. We take a conservative
route by disallowing such cases:

Let A and B be compatible elements in L. We say that A and B are
(positively) correlated in state ϕ on L if

ϕ(A ∧B) > ϕ(A)ϕ(B) (6)
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Definition 2 ([8] Definition 6.1). Let L be an orthomodular lattice, let ϕ be a
probability measure on L and let A and B be elements of L. C ∈ L is called
a common cause of the correlation (6) if C is compatible with both A and B,
0 < ϕ(C) < 1 and C satisfies the following equations:

ϕ(A ∧B ∧ C)

ϕ(C)
=

ϕ(A ∧ C)

ϕ(C)

ϕ(B ∧ C)

ϕ(C)
(7)

ϕ(A ∧B ∧ C⊥)

ϕ(C⊥)
=

ϕ(A ∧ C⊥)

ϕ(C⊥)

ϕ(B ∧ C⊥)

ϕ(C⊥)
(8)

ϕ(A ∧ C)

ϕ(C)
>

ϕ(A ∧ C⊥)

ϕ(C⊥)
(9)

ϕ(B ∧ C)

ϕ(C)
>

ϕ(B ∧ C⊥)

ϕ(C⊥)
(10)

If C is a common cause of the correlation between A and B, and differs from
both A and B, then we call the element C a nontrivial common cause.

This definition is the complete analogue of Reichenbach’s: it coincides with
Reichenbach’s original definition when one views it in the classical probability
space consisting of the distributive sublattice of L generated by the elements
A,B and C with the restriction of ϕ to this Boolean algebra.

We can now give the central definition of the paper:

Definition 3. Let L be an orthomodular lattice and let ϕ be a probability
measure on L. We say that (L, ϕ) is common cause closed if, for any distinct,
compatible elements A and B such that ϕ(A ∧ B) > ϕ(A)ϕ(B), there is a
nontrivial common cause C in L of the correlation.

Note that one can argue for a more liberal definition of common cause in
which the common cause is not required to be compatible with the correlating
events. Common cause closedness can be investigated under such a definition of
common cause as well but we do not wish to pursue this direction in this paper,
see the papers [9], [10], [11] and [8][Chapter 8] for the notion of non-commutative
common cause and some of its features.

4. A sufficient condition for common cause closedness

Gyenis and Rédei [2] gave a characterization of common cause closedness
of classical probability measure spaces. In the proof of that characterization
the following result of Johnson [12] played an important role. Let (S, p) be a
classical probability measure space. Johnson [12] showed that the probability
measure p can be decomposed into probability measures p1 and p2,

p = αp1 + (1− α)p2 (11)

for some α ∈ [0, 1], where p1 is purely atomic and p2 is purely nonatomic.
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A similar decomposition is not known to hold in a general probability space.
Thus, in order to prove a sufficient condition for common cause closedness of
general probability theories, Gyenis and Rédei [1] introduced the notion of Q-
decomposability: It is a special case of a decomposition of a probability measure.

Definition 4 ([1] p. 445). A σ-additive probability measure ϕ on a σ-complete
orthomodular lattice L is said to be Q-decomposable, where Q is an element
of L, if there exists a decomposition ϕ = αϕ1 + (1 − α)ϕ2, with α ∈ [0, 1],
furthermore ϕ2 is a purely nonatomic, σ-additive probability measure, and for
ϕ1 we have:

ϕ1(A) =

{
1 (if Q ≤ A)

0 (otherwise).
(12)

Making use of Q-decomposability, Gyenis and Rédei [1] strengthened Propo-
sition 3.9 in [13] in the following way:

Proposition 5 ([1] Proposition 3.10). Let L be a σ-complete orthomodular
lattice and let ϕ be a faithful σ-additive probability measure on L. If there is
at most one ϕ-atom Q in L, and ϕ is Q-decomposable, then (L, ϕ) is common
cause closed.

However, Q-decomposability is a somewhat artificial and non-transparent
condition. Therefore it is desirable to investigate whether one can remove or
replace it by another, more natural condition. It is not known if this can be
done in general probability theories. We claim however that it can be done
both in classical and in quantum probability theories. First we examine the
classical case. We prove the following lemma to remove the condition of Q-
decomposability in Proposition 5.

Lemma 6. Let L be a σ-complete Boolean algebra and let ϕ be a faithful σ-
additive probability measure on L. If L has at most one ϕ-atom Q, then ϕ is
Q-decomposable.

Proof. If there is no ϕ-atom in L, then ϕ is purely nonatomic. Thus ϕ is Q-
decomposable.

Suppose that L has one single ϕ-atom Q. For any A ∈ L, let the maps ϕ′
1

and ϕ′
2 be defined by

ϕ′
1(A) := ϕ(A ∧Q) (13)

ϕ′
2(A) := ϕ(A ∧ (A ∧Q)⊥) (14)

Then ϕ = ϕ′
1 + ϕ′

2 since A = (A ∧ Q) ∨ (A ∧ (A ∧ Q)⊥). If ϕ′
1(I) = 1, then

Q = I. In this case, ϕ is Q-decomposable. We, thus, assume that ϕ′
1(I) < 1.

Then ϕ′
2(I) > 0. Define ϕ1 and ϕ2 as follows:

ϕ1 := (1/ϕ′
1(I))ϕ

′
1 (15)

ϕ2 := (1/ϕ′
2(I))ϕ

′
2 (16)
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and let α := ϕ′
1(I). Then ϕ = αϕ1 + (1− α)ϕ2 and ϕ1(I) = ϕ2(I) = 1.

For any A such that Q ≤ A, we have ϕ1(A) = 1. For any A such that Q ̸≤ A,
A ∧Q = 0 since A ∧Q < Q and Q is an atom. Thus ϕ1(A) = 0 for any A such
that Q ̸≤ A.

Next we show that ϕ1 and ϕ2 are σ-additive probability measures.
Let {Ai|i ∈ N} be a countable set of mutually orthogonal elements in L. We

distinguish two cases:

(i) Suppose that Ai ∧Q = 0 for any i ∈ N.
Because L is a Boolean algebra, for any i ∈ N we have.

Q = (Ai ∧Q) ∨ (A⊥
i ∧Q) = A⊥

i ∧Q (17)

This implies Ai ≤ Q⊥ for any i ∈ N. Thus, ∨i∈NAi ≤ Q⊥. Therefore

(∨i∈NAi) ∧Q = 0 (18)

Hence
ϕ1(∨i∈NAi) =

∑
i∈N

ϕ1(Ai) = 0 (19)

and

ϕ2(∨i∈NAi) = (1/(1− α))(ϕ(∨i∈NAi)− αϕ1(∨i∈NAi)) (20)

= (1/(1− α))ϕ(∨i∈NAi) (21)

= (1/(1− α))
∑
i∈N

ϕ(Ai) (22)

=
∑
i∈N

((1/(1− α))ϕ(Ai)− αϕ1(Ai)) (23)

=
∑
i∈N

ϕ2(Ai) (24)

(ii) Suppose that there is Aj such that Aj ∧Q ̸= 0.
Since 0 < Aj ∧Q ≤ Q and Q is a ϕ-atom, we have Q = Aj ∧Q. Therefore

ϕ1(Aj) = ϕ(Aj ∧Q)/ϕ(Q) = 1 (25)

and

1 ≤ ϕ1(Aj) = ϕ(Aj ∧Q)/ϕ(Q) ≤ ϕ((∨i∈NAi) ∧Q)/ϕ(Q) (26)

= ϕ1(∨i∈NAi) ≤ 1 (27)

Moreover, A⊥
i ≥ Aj ≥ Q for any i ∈ N such that i ̸= j, so that Ai∧Q = 0.

Thus ϕ1(Ai) = 0 for any i ∈ N such that i ̸= j. Hence

ϕ1(∨i∈NAi) =
∑
i∈N

ϕ1(Ai) = 1 (28)
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and

ϕ2(∨i∈NAi) = (1/(1− α))(ϕ(∨i∈NAi)− αϕ1(∨i∈NAi)) (29)

= (1/(1− α))(ϕ(∨i∈NAi)− α) (30)

= (1/(1− α))(ϕ(Aj)− α) + (1/(1− α))
∑
i ̸=j

ϕ(Ai)(31)

= (1/(1− α))(ϕ(Aj)− αϕ1(Aj)) + (1/(1− α)) (32)

×
∑
i ̸=j

(ϕ(Ai)− αϕ1(Ai)) (33)

= ϕ2(Aj) +
∑
i ̸=j

ϕ2(Ai) (34)

=
∑
i∈N

ϕ2(Ai) (35)

Finally we show that ϕ2 is purely nonatomic. Let A be an element in L such
that ϕ2(A) > 0. Then A ∧ (A ∧Q)⊥ > 0 since ϕ is faithful. Suppose that Q ≤
A∧ (A∧Q)⊥. Then Q ≤ A and Q ≤ (A∧Q)⊥, which implies Q = A∧Q ≤ Q⊥.
This is a contradiction. Thus Q ̸≤ A ∧ (A ∧Q)⊥; that is we have

Q ∧ (A ∧ (A ∧Q)⊥) = 0 (36)

Because Q is the only ϕ-atom by assumption, A∧ (A∧Q)⊥ is not a ϕ-atom. So
there is an element X ∈ L such that

0 < X < A ∧ (A ∧Q)⊥ (37)

By Equation (36) we have X ∧Q = 0. Thus

X = X ∧ (X ∧Q)⊥ (38)

Hence
0 < ϕ(X) = ϕ(X ∧ (X ∧Q)⊥) = ϕ′

2(X) (39)

and
ϕ′
2(X) = ϕ(X) < ϕ(A ∧ (A ∧Q)⊥) = ϕ′

2(A) (40)

This shows that ϕ2 is purely nonatomic. �

By Proposition 5 and Lemma 6, we get the following proposition as a corol-
lary.

Proposition 7. Let L be a σ-complete Boolean algebra and let ϕ be a faithful
σ-additive probability measure on L. If L has at most one ϕ-atom, then (L, ϕ)
is common cause closed.

Next we consider the case of quantum probability spaces. We proceed along
the logic followed in the classical case: we prove a lemma that is analogous to
Lemma 6 showing that Q-decomposability is entailed by the feature that Q is
the only measure theoretic atom:
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Lemma 8. Let L be the orthomodular lattice of projections of a von Neumann
algebra N, and let ϕ be a faithful normal state on N. If L has at most one
ϕ-atom Q, then ϕ is Q-decomposable.

Proof. Let N be a von Neumann algebra, and let C(N) be the center of N.
There are projections PI , Pn ∈ C(N) such that PI + Pn = I, NPI is of type I
and NPn is not of type I (Theorem 6.5.2 in [5]).

If there is no ϕ-atom in L, then PI = 0. In this case, ϕ is purely nonatomic.
Thus, ϕ is Q-decomposable. If PI = I, then PI = Q. Thus ϕ is Q-decomposable.

Suppose that 0 < PI < I. Define ϕ1 and ϕ2 by

ϕ1(A) := ϕ(API)/ϕ(PI) (41)

ϕ2(A) := ϕ(APn)/ϕ(Pn) (42)

and let α := ϕ(PI). Then ϕ = αϕ1 + (1− α)ϕ2.
Suppose that NPI contains two projections. Then it contains two ϕ-atoms

because NPI is of type I. This is a contradiction. Thus, NPI contains only one
projection. Therefore, PI = Q.

For any projection A ∈ N such that Q ≤ A, we have

ϕ1(A) = ϕ(API)/ϕ(PI) = ϕ(AQ)/ϕ(Q) = 1 (43)

For any projection A ∈ N such that Q ̸≤ A, A is in NPn, that is, A ≤ Pn.
Thus, ϕ1(A) = ϕ(API)/ϕ(PI) = 0. NPn does not have any ϕ-atom, ϕ2 is purely
nonatomic. �

By Proposition 5 and Lemma 8, we get the following proposition as a corol-
lary.

Proposition 9. Let L be an orthomodular lattice of projections of a von Neu-
mann algebra N and let ϕ be a faithful σ-additive probability measure on L. If
L has at most one ϕ-atom, then (L, ϕ) is common cause closed.

Propositions 7 and 9 mean that the condition that L has at most one ϕ-
atom is a sufficient condition for common cause closedness in the category of
von Neumann algebras.

5. A necessary condition for common cause closedness

Next we consider the necessary condition for common cause closedness. Gye-
nis and Rédei [1] showed that an orthomodular lattice which has two distinct
ϕ-atoms is not common cause closed under an additional condition:

Proposition 10 ([1] Proposition 3.8). Let L be a σ-complete orthomodular
lattice and let ϕ be a faithful σ-additive probability measure on L. If L contains
two distinct ϕ-atoms P and Q such that ϕ(P∨Q) < 1, then (L, ϕ) is not common
cause closed.

9



We show that if (L, ϕ) is either a classical or a quantum probability space,
the assumption of condition ϕ(P ∨ Q) < 1 in Proposition 10 can be replaced
by the condition that there is a pair of correlated elements in L. This latter
condition is more natural to assume because the aim of the Reichenbachian
common cause is to explain correlations.

First we examine the case of a classical probability space.

Lemma 11. Let L be a Boolean algebra and let ϕ be a faithful probability mea-
sure on L. Assume that L contains two atoms P and Q (recall that atoms are
also ϕ-atoms by faithfulness of ϕ). There are two distinct elements A and B in
L such that ϕ(A ∧B) > ϕ(A)ϕ(B) if and only if ϕ(P ∨Q) < 1.

Proof. First we prove that if A and B are elements in L such that ϕ(A ∧B) >
ϕ(A)ϕ(B) and P and Q are distinct ϕ-atoms, then ϕ(P ∨Q) < 1. The proof is
indirect: Suppose that ϕ(P ∨Q) = 1. We show that this leads to contradiction.

Define ϕ1 and ϕ2 by

ϕ1(X) := ϕ((X ∧ P ) ∨ (X ∧Q)) (44)

ϕ2(X) := ϕ(X ∧ {(X ∧ P ) ∨ (X ∧Q)}⊥) (45)

for any X ∈ L. Then ϕ = ϕ1 + ϕ2 since

X = {(X ∧ P ) ∨ (X ∧Q)} ∨ (X ∧ {(X ∧ P ) ∨ (X ∧Q)}⊥)) (46)

For any X ∈ L we have

ϕ1(X ∨X⊥) = ϕ((X ∨X⊥) ∧ P ) ∨ ((X ∨X⊥) ∧Q))

= ϕ((X ∧ P ) ∨ (X⊥ ∧ P ) ∨ (X ∧Q) ∨ (X⊥ ∧Q))

= ϕ((X ∧ P ) ∨ (X ∧Q)) + ϕ((X⊥ ∧ P ) ∨ (X⊥ ∧Q))

= ϕ1(X) + ϕ1(X
⊥)

Thus for any X ∈ L we have:

ϕ2(I) = ϕ2(X ∨X⊥) (47)

= ϕ(X ∨X⊥)− ϕ1(X ∨X⊥) (48)

= ϕ(X)− ϕ1(X) + ϕ(X⊥)− ϕ1(X
⊥) (49)

= ϕ2(X) + ϕ2(X
⊥) (50)

≥ ϕ2(X) (51)

Since ϕ(P ∨ Q) = 1 by our indirect assumption, using the decomposition of ϕ
into ϕ1 and ϕ2, and keeping in mind the definition of ϕ1 we have

ϕ2(I) = ϕ(I)− ϕ1(I) (52)

= 1− ϕ(P ∨Q) = 0 (53)

This, by equations (47)-(51), entails ϕ2(X) = 0 for any X ∈ L. It follows that

ϕ(X) = ϕ1(X) = ϕ((X ∧ P ) ∨ (X ∧Q)) (54)
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Since P and Q are distinct atoms, one also has:

P = P ∧ (Q ∨Q⊥) (55)

= (P ∧Q) ∨ (P ∧Q⊥) (56)

= P ∧Q⊥ (57)

≤ Q⊥ (58)

It follows that X ∧ P is orthogonal to X ∧Q. Thus for all X ∈ L

ϕ(X) = ϕ(X ∧ P ) + ϕ(X ∧Q) (59)

Since ϕ(A∧B) > ϕ(A)ϕ(B), we have ϕ(A) > 0 and ϕ(B) > 0. Inserting X = A
and X = B into equation (59), we see that we have the following cases:

(i) ϕ(A ∧ P ) > 0 or ϕ(A ∧Q) > 0
and

(ii) ϕ(B ∧ P ) > 0 or ϕ(B ∧Q) > 0

Suppose that ϕ(A ∧ P ) > 0 and ϕ(B ∧ Q) > 0. (The other combinations
of the possibilities in (i) and (ii) can be handled exactly the same way.) Then
0 < A ∧ P ≤ P and 0 < B ∧ Q ≤ Q. Since P and Q are atoms, A ∧ P = P
and B ∧ Q = Q, which entails P ≤ A and Q ≤ B. We now separate the cases
according to how P and A and Q and B are related:

• if P = A and Q = B, then A ∧ B = P ∧ Q = 0 because P and Q are
distinct atoms. Hence 0 = ϕ(A ∧B) < ϕ(A)ϕ(B). This is a contradiction
because A and B were assumed to be positively correlated in ϕ.

• If P < A and Q = B, then P⊥ ∧ A > 0 since A = P ∨ (P⊥ ∧ A). Since
ϕ is faithful, we have then ϕ(P⊥ ∧ A) > 0. Inserting X = P⊥ ∧ A into
quation (59) we obtain

0 < ϕ(P⊥ ∧A) = ϕ((P⊥ ∧A) ∧ P ) + ϕ((P⊥ ∧A) ∧Q) (60)

which entails ϕ(A ∧ P⊥ ∧Q) > 0. Thus

0 < A ∧ P⊥ ∧Q ≤ Q (61)

Since Q is an atom, equation (61) entails

A ∧ P⊥ ∧Q = Q (62)

from which A ∧ P⊥ ≥ Q follows. Thus Q ≤ A. The inequalities P ≤ A
and Q ≤ A entail P ∨ Q ≤ A, thus 1 = ϕ(P ∨ Q) ≤ ϕ(A). Hence
ϕ(A ∧ B) ≤ ϕ(A)ϕ(B). This contradicts the indirect assumption that A
and B are positively correlated in ϕ.

• If P < A and Q < B, a contradiction follows in a similar way; we leave
out the details.
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Therefore ϕ(P ∨Q) < 1.
We now show that if P and Q are distinct ϕ-atoms in L such that ϕ(P ∨Q) <

1, then there are elements A and B in L such that ϕ(A ∧ B) > ϕ(A)ϕ(B). Let
A := P ∨Q and B := P . Then

ϕ(A ∧B) = ϕ((P ∨Q) ∧ P ) (63)

= ϕ(P ) (64)

> ϕ(P ∨Q)ϕ(P ) (65)

= ϕ(A)ϕ(B) (66)

�

By Propositions 7 and 10 and Lemma 11, we get the following proposition.

Proposition 12 (cf. [2] Theorem 1). Let L be a σ-complete Boolean algebra,
let ϕ be a faithful σ-additive probability measure on L and let L contain two
distinct elements A and B such that ϕ(A ∧ B) > ϕ(A)ϕ(B). (L, ϕ) is common
cause closed if and only if L has at most one ϕ-atom.

Next we consider quantum probability spaces. In this case, a result similar
to Lemma 11 holds.

Lemma 13. Let L be the orthomodular lattice of projections of a von Neumann
algebra N and let ϕ be a faithful normal state of N. Assume L contains two
atoms P and Q (which are ϕ-atoms as well by Lemma 1). There are two distinct
elements A and B in L such that ϕ(A∧B) > ϕ(A)ϕ(B) if and only if ϕ(P∨Q) <
1.

Proof. We prove first that if the von Neumann lattice L has two distinct atoms
P and Q and two projections A and B such that ϕ(A ∧ B) > ϕ(A)ϕ(B), then
ϕ(P ∨Q) < 1.

Let C(N) be the center of N. By Theorem 6.5.2 in [5] there are projections
PI , Pn ∈ C(N) such that

• PI + Pn = I

• NPI is of type I

• NPn is not of type I

We again separate the cases:

(a) Suppose that Pn > 0. If P and Q are distinct atoms, then ϕ(P ∨Q) < 1
since P,Q ≤ PI < PI + Pn = I.

(b) Let Pn = 0. Then N is of type I.
Subcases:

12



(i) Suppose that N is of type I2.
Since ϕ(A ∧B) > ϕ(A)ϕ(B), we have ϕ(A) > 0 and ϕ(B) > 0. Thus
there are atoms R1 and R2 such that R1 ≤ A and R2 ≤ B. If R1 = A
and R2 = B, then A∧B = R1∧R2 = 0. Hence ϕ(A∧B) < ϕ(A)ϕ(B).
This is a contradiction. If R1 < A, then 0 < A∧R⊥

1 . Thus there is an
atom R3 such that R3 ≤ A∧R⊥

1 . Since N is of type I2, R1 ∨R3 = I,
which implies I = R1 ∨R3 ≤ A. Hence ϕ(A ∧B) ≤ ϕ(A)ϕ(B). This
is a contradiction. A contradiction follows similarly in the case where
R2 < B. Hence N is not of type I2.

(ii) Suppose N is of type I1.
Then there are two distinct atoms P and Q such that ϕ(P ∨Q) < 1
by Lemma 11 because the von Neumann algebra N is abelian in this
case.

(iii) Suppose N is of type In, where n ≥ 3.
Then there are three mutually orthogonal projections P , Q, and R.
Thus ϕ(P ∨Q) < 1.

The proof that if there are two atoms P and Q in von Neumann lattice L
such that ϕ(P ∨ Q) < 1 then there are elements A,B in L that are positively
correlated in ϕ is the same as the corresponding proof in Lemma 11. �

By Propositions 9 and 10 and Lemma 13, we get the following proposition.

Proposition 14. Let L be an orthomodular lattice of projections of a von Neu-
mann algebra N, let ϕ be a faithful normal state of N and let N contain two
distinct projections A and B such that ϕ(A∧B) > ϕ(A)ϕ(B). (L, ϕ) is common
cause closed if and only if L has at most one ϕ-atom.

6. Common cause closedness and the Common Cause Principle

The philosophical significance of common cause closedness of probability
spaces is that they display a particular form of causal completeness: these the-
ories themselves can explain all the correlations they predict, and the explana-
tion is exclusively in terms of common causes they contain. Hence these theories
comply in an extreme manner with the Common Cause Principle.

Recall that the Common Cause Principle states that a correlation between
events is either due to a direct causal link between the correlated events, or there
is a third event, a common cause that explains the correlation. This principle,
which goes back to Reichenbach [7], and which was sharply articulated mainly
by Salmon [14], [15], is a strong claim about the relation of correlations and
causality, and its status has been subject of intense analysis in philosophy of
science.

The initial phase of the investigations in works of Salmon and others such as
van Fraassen [16], Cartwright [17], Sober [18], [19], [20] was semi-formal: pre-
cise models of the phenomena the papers analyzed were typically not given in
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terms of explicitly specified probability measure spaces. Thus the reasoning re-
mained vague in crucial respects. The recent trend in investigating the Common
Cause Principle is different: The concepts and claims related to the principle
get a mathematically precise, sharp definition, they are analyzed mathemati-
cally and the results are interpreted from the perspective of their metaphysical-
philosophical ramifications. Examples of this approach are especially the works
of the “Cracow school”, of the “Bern school” and of the “Budapest school”
(see the books [21], [8], [22], the references therein, and also the recent papers
by Sober and Steel [23], Marczyk and Wronski [24], Grasshoff et al. [25], and
Portmann and Wüethrich [26]).

There have been two broad and important consequences of the more technical
analysis of the Common Cause Principle: One is the insight that assessing the
status of the Common Cause Principle is a much more complicated and subtle
matter than previously thought. The other is that the mathematical analysis
has established direct contacts to those scientific theories that have empirically
confirmed claims which are directly relevant for the truth (or otherwise) of
the Common Cause Principle – first and foremost to non-relativistic quantum
mechanics of finite degrees of freedom and to relativistic quantum field theory.

The philosophical reason why assessing the status of the Common Cause
Principle is difficult, is well known from the history of philosophy: the Common
Cause Principle makes two general existential claims, and we know that falsi-
fying empirically a hypothesis making even one existential claim is problematic
because one cannot search the whole universe, past, present and future to find
a falsifying instance. This was most unambiguously stated by Popper [27]. In
short: Principles such as the Common Cause Principle are of metaphysical char-
acter. History of philosophy, from Kant and Hume through Popper, teaches us
that metaphysical claims cannot be verified or even falsified conclusively.

This general difficulty takes a very specific form in connection with the Com-
mon Cause Principle: It is certainly not enough for a falsification of the Common
Cause Principle to display a probabilistic theory that contains a correlation but
no common cause for it because the hypothetical common cause may be hidden:
it may not be part of the theory predicting the correlation, but it may very well
be part of a larger, more comprehensive theory having a more detailed picture
of the world by using a richer Boolean algebra in its probabilistic part. We
may never find that larger theory but we know that its existence is logically
possible: every classical probability theory that is not common cause closed can
be embedded into a larger one which is; this is one of the conclusions of the
formal analysis in [28], [2] (also see [8][Chapter 6] and [24]). This feature of
classical probability spaces is called “common cause cause completability” of a
probability space that is itself not common cause closed.

Thus, rather than trying to verify or falsify the Common Cause Principle, one
should settle on a more modest goal: to look at our best, confirmed scientific
theories to see whether they offer evidence in favor or against the truth of
the Common Cause Principle (for a more detailed discussions of this point see
[8][Chapter 10] and [29]). It is in connection with such an evaluation of the
Common Cause Principle that common cause closedness becomes relevant: If a
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probabilistic theory is such that the probability theory it employs to describe
phenomena is common cause closed then that theory is a strong candidate for
being confirming evidence in favor of the Common Cause Principle.

Crucial in this respect is (relativistic) quantum field theory, which, by its
very construction, is intended to comply fully with causality. Since quantum
field theory, at least in its mathematically precise, “axiomatic” form [30], [31],
is based on quantum probability theory, characterizing common cause closed-
ness of such quantum probability theories is relevant from the perspective of
evaluating the causal behavior of quantum field theory. The characterization
in terms of the measure theoretic atomicity given in this paper makes contact
to a deep structural property of quantum field theory: The atomicity struc-
ture of quantum probability theories is intimately linked to the Murray-von
Neumann classification of (factor) von Neumann algebras: Type II1 and type
III factor von Neumann algebras with faithful states define purely non-atomic
quantum probability theories [6]. Furthermore, it is a fundamental feature of
relativistic quantum field theories formulated in terms of covariant local nets
of von Neumann algebras that the algebras representing strictly local observ-
ables are type III factors [30][Section V.6]. Thus these algebras typically define
measure theoretically purely non-atomic quantum probability theories. Conse-
quently, relativistic quantum field theories are common cause closed and hence
very good candidates for being causally complete in the sense of being capable
of explaining causally all the correlations they predict.

Note the careful wording of the previous sentence: quantum field theory has
not been proved to be in full compliance with locality. This is because in this
framework one can impose locality conditions on the common cause, in addi-
tion to the defining conditions (7)-(10), and it is an open problem whether the
theory contains local common causes for all the correlations that are in need of
a common cause explanation [32], [33], [8][Chapter 8]. But if a quantum prob-
ability theory is not common cause closed, then one cannot expect the theory
to have common causes of the correlations that would need to be explained this
way. This happens in discrete (lattice) quantum field theory of finite degrees of
freedom. In these theories there exist correlations between observables pertain-
ing to spacelike separated local algebras for which there exist no local common
cause in the theory simply because these probability theories have many atoms
and thus they contain a lot of correlations for which there are no common causes
at all in the theory [34], [8][Chapter 8].

7. Some open questions

The results in sections 4 and 5 give a complete characterization of com-
mon cause closedness of probability theories understood as projection lattices
of both commutative and non-commutative von Neumann algebras. Thus we
have a characterization of common cause closedness of classical and quantum
probability theories. As the propositions show, the same structural property
is equivalent to common cause closedness in classical and quantum probability
theories (not having more than one measure theoretic atom). It remains open
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however whether this structural property is equivalent to common cause closed-
ness of general probability theories as well. Specifically, three open problems
can be formulated.

The first problem is related to a sufficient condition of common cause closed-
ness of general probability theories. We have seen that Q-decomposability plays
an important role in common cause closedness. Lemma 6 and Lemma 8 about
Q-decomposability lead to the following problem:

Problem 15. Let L be a σ-complete orthomodular lattice and let ϕ be a faithful
σ-additive probability measure on L. Does the assumption that L has at most
one ϕ-atom Q entail that ϕ is Q-decomposable?

The second problem is related to a necessary condition for common cause
closedness in a general orthomodular lattice. We get a characterization of com-
mon cause closedness by using Lemma 11 and Lemma 13. These lemmas lead
to the following problem:

Problem 16. Let L be a σ-complete orthomodular lattice which has two dis-
tinct atoms and let ϕ be a faithful σ-additive probability measure on L. Are
the following two conditions equivalent?

1. There are two distinct elements A and B in L such that ϕ(A ∧ B) >
ϕ(A)ϕ(B).

2. There are two distinct ϕ-atoms P and Q such that ϕ(P ∨Q) < 1.

If these conditions are not equivalent, is there a natural condition which is
equivalent to Condition 2?

The third problem is related to common cause completability. As mentioned
in section 6, common cause completability makes falsification of the Common
Cause Principle difficult because it allows one to evade falsification by referring
to hidden common causes. Classical probability spaces that are not common
cause closed are common cause completable [2] (also see [8][Chapter 6] and
[24]). By the characterization of common cause closedness (Theorem 14), we can
specify the quantum probability measure spaces which are not common cause
closed. For example, the orthomodular lattice of all projections on a Hilbert
space (Hilbert lattices) are not common cause closed because these probability
theories contain a lot of measure theoretic atoms. Then the following question
arises; is there a larger probability measure space into which these non-common
cause closed quantum probability spaces are embeddable? The answer to this
question is unknown. More generally we have

Problem 17. Can a general probability space (L, ϕ) be embedded into a larger
one (L′, ϕ′) which has at most one ϕ-atom?

By an embedding is meant here an injective ortholattice homomorphism
h : L → L′ which preserves ϕ in the sense ϕ′(h(A)) = ϕ(A) for all A ∈ L.

Recently the notion of common cause has been given a general definition in
terms of non-selective operations understood as completely positive, unit pre-
serving linear maps on C∗-algebras [35]. That definition makes it possible to
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formulate common cause closedness of quantum field theories on possibly non-
flat spacetimes in the categorial approach to relativistic quantum field theory.
It would be interesting to find out what role the structural properties of the op-
erator algebras play in common cause closedness (or lack of it) in such theories.
Nothing is known about this question, so we omit the precise definitions.
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