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Abstract According to the free energy principle biological agents resist a tendency
to disorder in their interactions with a dynamically changing environment by keeping
themselves in sensory and physiological states that are expected given their embodi-
ment and the niche they inhabit (Friston in Nat Rev Neurosci 11(2):127–138, 2010.
doi:10.1038/nrn2787). Why would a biological agent that aims at minimising uncer-
tainty in its encounters with the world ever be motivated to seek out novelty? Novelty
for such an agent would arrive in the form of sensory and physiological states that are
unexpected. Such an agent ought therefore to avoid novel and surprising interactions
with the world one might think. Yet humans and many other animals find play and
other forms of novelty-seeking and exploration hugely rewarding. How can this be
understood in frameworks for studying the mind that emphasise prediction error min-

Many thanks to Andy Clark for excellent feedback and suggestions on earlier drafts of this paper, and to
Jelle Bruineberg for helping us to understand the recent literature in cognitive neuroscience on epistemic
value. We are extremely grateful for detailed reviews we received from two anonymous reviewers that
helped us to significantly improve and sharpen our arguments. Erik Rietveld would like to acknowledge
the research funding awarded by the Netherlands Organisation for Scientific Research (NWO) in the form
of a VIDI-grant and the European Research Council in the form of ERC Starting Grant 679190 (EU
Horizon 2020) for the project AFFORDS-HIGHER.

B Julian Kiverstein
j.d.kiverstein@amc.uva.nl

Erik Rietveld
d.w.rietveld@amc.uva.nl
http://www.erikrietveld.com

1 Academic Medical Centre, Department of Philosophy, ILLC, University of Amsterdam,
Amsterdam, The Netherlands

2 School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh,
UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-017-1583-9&domain=pdf
http://orcid.org/0000-0003-3428-8367
http://orcid.org/0000-0001-5197-142X
http://dx.doi.org/10.1038/nrn2787


2848 Synthese (2019) 196:2847–2869

imisation? This problemhas been taken up in recent research concernedwith epistemic
action—actions an agent engages in to reduce uncertainty. However that work leaves
two questions unanswered, which it is the aim of our paper to address. First, no account
has been given yet of why it should feel good to the agent to engage the world play-
fully and with curiosity. Second an appeal is made to precision-estimation to explain
epistemic action, yet it remains unclear how precision-weighting works in action more
generally, or active inference. We argue that an answer to both questions may lie in
the bodily states of an agent that track the rate at which free energy is being reduced.
The recent literature on the predictive brain has connected the valence of emotional
experiences to the rate of change in the reduction of prediction error (Joffily and Cori-
celli in PLoS Comput Biol 9(6):e1003094, 2013. doi:10.1371/journal.pcbi.1003094;
Van de Cruys, in Metzinger and Wiese (eds) Philosophy and predictive processing,
vol 24, MIND Group, Frankfurt am Main, 2017. doi:10.15502/9783958573253). In
this literature valenced emotional experiences are hypothesised to be identical with
changes in the rate at which prediction error is reduced. Experiences are negatively
valenced when overall prediction error increases and are positively valenced when
the sum of prediction errors decrease. We offer an ecological-enactive interpretation
of the concept of valence and its connection to rate of change of prediction error.
We show how rate of change should be understood in terms of embodied states of
affordance-related action readiness. We then go on to apply this ecological-enactive
account of error dynamics to provide an answer to the first question we have raised:
It may explain why it should feel good to an agent to be curious and playful. Our
ecological-enactive account also allows us to show how error dynamics may provide
an answer to the second question we have raised regarding how precision-weighting
works in active inference. An agent that is sensitive to rates of error reduction can tune
precision on the fly. We show how this ability to tune precision on the go can allow
agents to develop skills for adapting better and better to the unexpected, and search
out opportunities for resolving uncertainty and progressing in its learning.

Keywords Free energy principle · Predictive processing · Epistemic value ·
Exploit-explore dilemma · Curiosity · Error dynamics · Emotion · Decision-making ·
Embodied cognition · Enactive cognitive science

Introduction

Cognitive neuroscience is on the brink of formulating an elegant unifying theory that
shows how the principles that define living systems, also explain the workings of the
human mind. The foundations of this theory come from a mathematically complex
principle—the so-called “free energy principle” (FEP), which can be applied to every
biological system that resists a tendency to disorder (Friston 2009, 2010, 2013; Kirch-
hoff and Froese 2017).1 Friston has proposed that everything that can change in the

1 Elsewhere we have provided a detailed philosophical overview and analysis of the free-energy principle
(FEP), showing how the FEP should be interpreted in ecological-enactive terms (Bruineberg and Rietveld
2014; Bruineberg et al. 2016). Here we restrict our focus to dealing with a problem that seems to arise for
FEPwhen it comes to accounting for behaviours that aremotivated by curiosity, exploration and playfulness.
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brain will change so as to maintain the adaptive fit of the agent to its dynamically
changing environment. The brain (as an integrated part of larger agent-environment
system) should steer the agent’s interactions with the world so as to maximize the
probability that it stays in the physiological and sensory states that are expected given
its embodiment and the niche it inhabits. For example, the human body has a high
probability of having a temperature of around 37 ◦C. Homeostatic processes in the
brain should then regulate body temperature so that the thermal states of the body
stay as close as possible to this expected value. In other words, the brain should be
organized in such a way as to suppress “surprise”, which will remain low when the
organism maintains itself in physiological and sensory states that are expected, and
will increase should the organism find itself in states that are improbable and hence
unexpected. “Surprise” is a technical term and relates to predictions of sensory and
physiological states over time—it is future oriented. More precisely, surprise is asso-
ciated with trajectories or sequences of sensory input; thereby lending it a dynamic
and anticipatory aspect. In this treatment, we will be concerned with the surprise of
extended sensory outcomes, consequent upon the pursuit of action policies. The brain
contributes to ensuring that the agent avoids surprise by anticipating how the agent’s
sensory and physiological states will change over time as it moves through its environ-
ment. So long as the brain succeeds in minimizing the divergence between the change
in sensory states that it anticipates and the changes in sensory states that actually ensue,
it will succeed in keeping the agent away from surprising outcomes, and maintain the
agent’s adaptive fit to its environment.

Friston provides a precise mathematical framework for quantifying the value of this
divergence between the change in sensory states the brain anticipates and the change
that actually occurs, using the information-theoretic concept of free-energy. Friston
claims that self-organising adaptive systems will avoid surprising states by having a
functional organization that continuously minimizes free-energy over the long run.2

Free energy is related to entropy, it is a measure of the biological agent’s order. In
thermodynamics and statistical mechanics it refers to the amount of energy that can be
extracted from a system and put to work (McEvoy 2002; Clark 2013: p. 186), which
is roughly the “difference between the energy and the entropy of the system” (Friston
and Stephan 2007: p. 419). The concept of free energy at work in the free energy
principle is variational free energy, a “measure of statistical probability distributions”
(Friston and Stephan 2007: p. 420). More precisely, what free energy measures is the
divergence between a probability distribution typically interpreted as encoding “prior
beliefs” about the hidden statistical structure in data, and current sensory evidence.
This divergence provides a means of quantifying the information that is available for
use in the current sensory evidence. The lower the free energy, the better the system’s
“beliefs”. This is to say that the system’s cognitive resources are being put to work

Footnote 1 continued
We provide only as much theoretical background in this paper as is needed for generating the problem. For
readers interested in learning more about FEP we recommend they consult the papers by Friston we cite
here and the recent special issue on predictive brains in this journal.
2 When these dynamics are instantiated in an embodied organism the natural result of this ongoing reduction
of error at all levels is the generation and maintenance of homeostasis (Seth 2015; Bruineberg et al. 2016).
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in ways that are maximally useful for adapting it to the environment. Free energy
increases when the biological agent finds itself in states (potentially life-threatening)
that are unexpected relative to its beliefs about the world. The more free energy, which
is to say the more often the biological agent finds itself in unexpected sensory and
physiological states, the less useful work the biological agent’s “beliefs” about the
world do.3

Wherever there is free energy there is room for improvement—there is sensory
prediction error that is not currently accommodated by one’s model. This prediction
error can then be accommodated through action, or by improving one’s existingmodel.
In this paper we will be concerned with the prediction of the temporally-extended
sensory consequences of action, or expected free energy. We say more about the latter
concept below. The FEP therefore claims that biological systems are organised in
such a way as to minimise free energy continuously over time, which is equivalent to
minimising uncertainty in an agent’s active engagement with its environment.

If free-energy minimisation is a fundamental organising principle of the brain why
is it then that our brains don’t steer us towards environments in which sensory states
can be easily predicted such as empty dark rooms? In the next section we outline the
dark room problem and the solution that has been proposed. We agree with others
that the dark room problem is in some ways a red herring (e.g. Friston et al. 2012b),
however we will argue that a significant problem remains. The real problem is that
of explaining why a biological system that acted based on the imperative to resist a
tendency to disorder would be curious, motivated to explore its environment and seek
out novelty. The free energy principle would seem to imply that valuable states are the
ones the agent expects to be in. Yet curiosity and playfulness will more often than not
lead an agent into states that are unexpected. Thus it looks at first glance as if a free
energy minimising (FEM) agent ought not to be a curious and playful agent.

In Sect. 1 we outline this challenge in a little more detail. Section 2 shows how
the problem has been addressed in recent work on “epistemic action”. Epistemic
actions are actions an agent engages in to reduce uncertainty. They allow the agent
to “disclose information” through exploration “that enables pragmatic actions in the
long run” (Friston et al. 2015: p. 2).4 The research on epistemic action leaves two
questions unanswered. First, it fails to explain why it feels good to the agent to engage
the world playfully and with curiosity. Pleasure is a part of the value of curiosity and
play for agents like us. Existing accounts of epistemic action do not fully explain how
value works in epistemic action. Second, an appeal is made to precision-estimation

3 Free energy is for this reason sometimes defined in terms of accuracy minus complexity (Friston 2010).
Accuracy is a function of how much prediction error the model produces over time—how well does the
model do at reducing surprisal over the long-term. Complexity is measured technically in terms of Kubler–
Leibler (K–L) divergence. It refers to the divergence between the prior probability of the hypothesis and the
hypothesis selected based on the evidence. Complexity is high when many changes were made to the priors
to fit the evidence (i.e. the divergence is large). Complexity leads to models that may fit current evidence
very well but end up doing worse over time, generalising poorly to new situations (they are overfitted)
(Hohwy 2015: p. 5).
4 Pragmatic actions are actions that minimise free energy directly leading the agent to occupy the states they
expect to be in based on past learning. We discuss Friston and colleagues’ distinction between pragmatic
and epistemic actions in more detail in the next section.
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to explain epistemic action, yet it remains unclear how precision-weighting works
in active inference. We argue that the answer to both questions may be found in the
bodily states of an agent that track the rate at which free energy is being reduced.
In Sect. 3 we take up the first of these questions and show how the agent can be
sensitive to rates of free energy minimisation (FEM). This information about rate
of change is given corporeally as states of affordance-related action readiness that
are simultaneously affective and behavioural (Bruineberg & Rietveld, 2014; Rietveld,
Denys & van Westen, 2017). We show how felt states of action readiness can account
for the positive and negative hedonic tone that is often a feature of novel experience.
In Sect. 4 we turn to the second question about precision-weighting and show how
sensitivity to rate of change may play a role in tuning precision on the fly. This can
ensure that the agent is steered towards opportunities for reducing uncertainty. We
finish up in Sect. 5 by showing how an agent that is sensitive to error dynamics (rate
of FEM) will be a curious agent, motivated to explore and play in its environment.

1 Worries about dark rooms

In FEP, agents act so as to keep themselves within expected sensory states given their
embodiment and the niche they inhabit. The value of a sensory state is a function
of how surprising it is. We are using the term “surprise” here in the technical sense
introduced above that makes a conceptual connection between “surprise” and sensory
states that are highly probable and thus expected given an agent’s embodiment and the
niche it lives in. Unsurprising states (states highly frequented) are expected and are
thus highly valued. Surprising states are not expected (they are improbable), and thus
negatively valued. Positively valued states are often associatedwith reward (sometimes
understood in terms of pleasure),while negatively valued states are typically associated
with punishment and are consequently aversive. It follows that unsurprising states
should be associated with pleasure, according to FEP and surprising states should be
aversive (Friston et al. 2012a). A novel outcome of this perspective is that while it
might feel as though we seek pleasures and avoid pains and so end up frequenting
pleasurable states more often than painful states, according to FEP highly frequented
states are themselves the rewards. Through a process known as “active inference” the
agent acts to keep itself in states that are expected. A consequence of minimising free
energy is that some states are occupied more than others. These are the states that
are positively valued by an agent (Friston et al. 2014: p. 2). This means that we are
not so much drawn to rewards, but are instead rewarded for reducing errors between
expected and actual states. Traditional reinforcement learning models describe goal-
directed behaviour as a product of the agent working out how best to maximize an
expected reward (Schutz et al. 1997; Sutton and Barto 1998). In active inference the
rewarding states are the states the agent learns to expect to occupy through a process of
approximateBayesian inference. Subsequent behaviour unfolds as the system attempts
to reduce the discrepancies between the current state and the expected reward state
(Schwartenbeck et al. 2014).

This view of decision-making as the outcome of active inference comes with a
puzzle. If highly frequented (more expected) states are themselves rewarding and less
frequented states (more uncertainty) are aversive, why then should agents ever be
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motivated to seek out novelty? A good strategy for guaranteeing that one remains
in sensory states that are expected might seem to be to seek out a simple, static
environment such as a dark empty room in which very little ever changes (Friston
et al. 2012b). The agent adopting such a strategy would be pretty much guaranteed to
only occupy the sensory states they expected to occupy given their model of the dark
room. Nothing unexpected happens in a dark empty room. Thus, once one has learned
a good model of such an environment, one is pretty much guaranteed to remain in the
states one expects.

The problem of why free energy minimising agents tend not to retreat and hide
away in dark rooms has already been well answered by Friston et al. (2012a). On the
whole embodied creatures expect to stay warm, well fed and healthy. Dark rooms are
not the kinds of environments that allow living agents to meet these basic biological
needs. An agent that “felt the pull of the dark room” (Clark 2016) would be an agent
that would after a while experience dehydration and hypoglycaemia, bodily conditions
that are highly surprising.

While this response is clearly correct it only takes us so far. What is missing still
is an explanation of the adaptive importance of things such as curiosity, play, and
the spirit of adventure. Why would an agent that aims to occupy only those sensory
states that are expected ever engage in behaviours that lead to novel and surprising
discoveries, as happens when we play and explore? More specifically, why would
agents ever be motivated to engage in such behaviours? If positively valued states are
sensory states that are expected while negatively valued states are surprising, an agent
whose actions are the result of active inference should only act to bring about sensory
states that are expected. Novel sensory states such as those that occur as a result of
exploration should be negatively valued (i.e. highly aversive). Yet this is not the case:
many valued experiences are discovered by us through exploration.

2 The exploit/explore dilemma

In recent work, Friston and colleagues have shown that in active inference agents don’t
only act to keep themselves in states that are expected, but also act so as to minimise
uncertainty about future outcomes (Friston et al. 2014, 2015, 2017; Schwartenbeck et
al. 2013). They show how curiosity and novelty-seeking, and exploratory behaviour
more generally, allow agents to reduce or resolve uncertainty about theworld. Consider
a scenario in which the agent is uncertain about which outcome to prefer, such as a
mouse in a maze that needs to find its way to an unknown location of a reward while
avoiding harm along the way. Recall that in active inference, preferences take the
form of sensory states the agent expects to occupy or regularly frequent over time.
The mouse is uncertain about where the dangers lie, and where the rewards are to
be found. Its priors therefore tell it to keep its options open. It should resolve its
uncertainty by further exploring the maze.

Friston and colleagues call priors that inform agents about which states they can
expect to frequent over the long run “policies”. An “action policy” as Friston and
colleagues use this term, can be thought of as a rule for the selection of a sequence
of actions. We could think of policies in terms of paths of activity some of which are
more probable than others to lead you to be in the states you expect to be in. Policies
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should serve tominimise future free energy, or what Friston and colleagues understand
in terms of “expected free energy” (Friston et al. 2015, 2017). Expected free energy
is the free energy an agent expects to receive for each of its different policies, were
it to pursue them (i.e. the trajectory or sequence of sensory states it expects in the
future as a consequence of its actions).5 The only prior belief about a policy that is
consistent with an agent’s continued existence is that it will pursue policies that reduce
expected free energy. An agent that didn’t select policies based on such a prior would
be unable to stay well adapted to its niche, and would eventually cease to exist.6 This
implies that policies that have the highest prior probability are rules for generating
action that will most likely help the agent to attain what they want in the future.7 This
is because free energy is the divergence between the states an agent predicts it is likely
to occupy (its posterior predictions) and the state it believes it should occupy if it is to
satisfy its preferences (i.e. the states it expects to be in over time). The higher the prior
probability of a policy, the less free energy an agent can expect in the future. When a
policy has a high prior probability, the agent can allow the policy to drive action and be
confident it will attain what it expects. We see this, for instance in the case of habitual
behaviours. These are behaviours we have performed on many occasions that reliably
lead to comfortable and familiar outcomes. They are policies that for this reason have
a high probability because the free energy we can expect from following them is low.

According to Friston and colleagues, FEP mandates that an agent’s choices should
reflect their beliefs about which policies have the highest prior probability of causing
them to occupy the states they expect in the future. These beliefs inform the agent about
the probability of reaching the states it expects from the states it currently occupies.
An action policy will be assigned a value based on how well it is predicted to do at
minimising the divergence between the states an agent is likely to occupy, and the state
it believes it should occupy (i.e. its desired states such as securing a maximum payoff
in a game).When the pursuit of an action possibility does not lead to the consequences
an agent expects, she will engage in an epistemic action and explore her environment.
By contrast, when the pursuit of action possibilities does lead to the consequences an
agent expects, and a policy allows an agent to predict a clear path from her current
states to the states she wants to occupy, she will treat the policy as highly probable.
Policies that the agent believes have a high probability (such as habits) drive an agent’s
actions since they stand the best chance of minimising free energy.

Friston and colleagues characterise the agent’s beliefs about the probability of a
given policy in terms of the “precision” of a policy (Schwartenbeck et al. 2014).
Precision weighting adds a second-order layer to active inference. In addition to esti-

5 Technically, the expected free energy also includes an ambiguity term; in other words, the expected free
energy or uncertainty comprises the pragmatic value of behaviour in relation to prior preferences plus an
epistemic term that resolves ambiguity about the causes of sensations. We thank an anonymous reviewer
for drawing our attention to this important detail.
6 Based on this assumption that the probability of a policy is proportional to expected free energy, Friston
and colleagues have built simulations of economic decision making and foraging behaviour (Friston et al.
2014, 2015, 2017).
7 It should be noted that decision-making is always playing out in a hierarchically organised biological
architecture in which there are multiple policies in play operating over multiple time scales. This reflects
the individual’s simultaneous openness to multiple relevant affordances (Bruineberg and Rietveld 2014).
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mating the probability distributions of outcomes the predictive brain must also track
the reliability (or precision) of its own estimates given the state of the organism and
the current context. It uses this estimation of reliability to flexibly adjust the gain (or
the “volume”) of particular error units: increasing the impact those units will have on
the unfolding process (Friston 2010).8

The agent’s overall confidence in a policy is reflected in the precision of its policies.
This precision is updated as a function of the predictive success of the consequences of
actions. When the consequences of acting on a policy are correctly predicted (i.e. the
potential outcomes are clearly consistent with prior preferences), precision increases
and it decreases when new sensory input is surprising. In other words, if things are
unfolding as expected, we become increasingly confident in the policy that we are pur-
suing. The precision of our beliefs about our own behaviour will increase as expected
free energy decreases.

Low precision skews the prior over policies to a flat distribution, which reflects the
likelihood that policies will be explored with roughly equal probability. Low precision
causes the agent to keep its options open, and explore different options (as in the
maze example sketched above). High precision by contrast, skews the prior to those
policies that have the lowest expected free energy.9 It is the precision of beliefs about
competing policies that Friston and colleagues hypothesise will decide whether an
agent continues to follow a well-trodden path or departs from this path to actively
explore the world.10 We can think of epistemic actions as being selected based on a
recognition of the current state of the world as offering what one might call epistemic
possibilities for action or “epistemic affordances”. The world is recognised as offering
epistemic affordances when to put it in Friston’s terms (1) there is uncertainty to be
resolved and (2) there is a clear and precise way forward that is driven by our beliefs
about the policies that will best minimise expected free energy.11 An examplemight be
the uncertainty one experiences about the colour of an item of clothing due to artificial
shop lighting. One might resolve this uncertainty by say asking the shop assistant if
one can take the item of clothing out of the shop to view it under natural light, or by
comparing it with other items whose colour one is more certain about.

8 Much of the argument in this paper is based upon formulations of active inference in terms of expected
free energy using discrete state space (Markov decision) processes (MDP). The concept of prediction error
units appeals to a slightly different formalism; namely, predictive coding and Bayesian filtering. However, it
is possible to formulate the belief propagation in discrete (MDP) schemes in terms of prediction errors. We
can therefore borrow the notion of attention and precision as it is used in predictive coding, when referring to
active inference in choosing discrete policies, with no loss of generality. We thank an anonymous reviewer
for drawing our attention to this difference.
9 It should be noted that epistemic actions are not always associated with low precision. If there is a clear
and obvious uncertainty-reducing sequence of actions available, precision will increase to effectively render
that epistemic course of actionmore likely to be selected.We thank an anonymous reviewer for emphasising
this point to us.
10 We thank Jelle Bruineberg for clarifying discussion of Friston and colleagues’ complex work on epis-
temic value and for helping us fine tune some of our formulations of these ideas in the text.
11 We thank an anonymous reviewer for this suggested characterisation of epistemic action in terms of
recognition of epistemic affordances. For previous discussion of the concept of epistemic affordances,
though not in the terms of Markov decision processes we are employing in this paper (see Rietveld &
Kiverstein 2014).
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While Friston and colleagues have provided an elegant set of formal tools for
explaining exploratory behaviour and how agents resolve the so-called “explore-
exploit” dilemma, their proposal nevertheless leaves us with two questions unan-
swered. It is these questions we take up in the remainder of our paper.

First, play and curiosity result in surprising and unexpected discoveries which are
often experienced as having positive hedonic value. The novel experiences we have as
a result of exploring our environment often feel pleasurable. Think of visiting a new
culture as an example. The positive feelings of pleasure are part of what motivate us
to engage in this type of exploratory activity rather than sticking with the comfortable
familiarity of what is already known. Friston and colleagues suggest that this feeling
of pleasure should be a consequence of recognising the action opportunities the world
offers to reduce or resolve uncertainty (i.e. an epistemic affordance of the agent’s
situation). Recall how the states an agent values are unsurprising states the agent
expects to occupy. These states are the consequences of the behaviours the agent
performs in seeking to minimise expected free energy. In other words the states an
agent expects to occupy given its priors should be states with positive hedonic value.
This however leaves it unexplained why novel experiences that reduce uncertainty
should feel good. Why should there be a positive phenomenology that comes with
exploring and making progress in reducing uncertainty? We enjoy being curious. This
is part of the value we assign to these activities. Insofar as current work on epistemic
action doesn’t account for the positive feelings that characterises curiosity and play,
it doesn’t yet fully account for how value works in epistemic action.

Second, the success of Friston and colleague’s account depends on their explaining
how it is that agents are able to optimise the precision of their policies. They say that
precision estimation is a consequence of free energyminimisation. They show how the
optimisation of precision estimations has dynamical properties that closely resemble
those of dopaminergic systems in the brain.12 This provides a candidate mechanism
for the implementation of precision in active-inference. However it leaves us with
questions still about how precision is weighted in a given context. We will show how
these two questions may turn out to share a common answer. Bodily feelings in the
form of affordance-related states of action readiness turn out to be a part of what allows
an agent to estimate precision on the fly.

3 The feeling of action readiness

We’ve seen in the previous section how expected free energy gets to decide whether
the agent exploits familiar solutions or explores the environment to reduce uncertainty.
Precision influences how evidence is accumulated and thus how “beliefs” are formed
by an agent. Precision estimates are made more generally by the brain to separate out
organism-important error signals from the surrounding unimportant noise (Feldman
2013). For example, while walking home on a familiar busy street one might barely

12 It has been suggested that precision weighting is the result of neuromodulators (such a dopamine). Kanai
and Friston have suggested that, “this may explain why superficial pyramidal cells have so many synaptic
gain control mechanisms such as N-methyl-d-aspartate (NMDA) receptors and classical neuromodulatory
receptors like D1 dopamine receptors” (Kanai et al. 2015).
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notice the general buzz of the people around you. Day to day the buzz is inevitably
different in shape—different people interacting in different ways. Nevertheless, while
the exact shape of the buzz is exceptionally unpredictable it draws almost no attention:
no further processing is allocated. Now if someone were to unexpectedly fall close
by and seem to require assistance this bit of error would suddenly be pertinent. If
we think of error signals as broadcasting newsworthy information then we must also
explain how the brain decides which channels it should “listen to” (Kanai et al. 2015;
c.f. Kwisthout et al. 2017). Estimating the precision of a policy is a special case of a
more general phenomenon in which the agent is continuously engaged in monitoring
its own level of confidence in its predictions about the world.

The foregoing concerns the precision of prediction errors in relation to states of
the external environment. However we have been discussing precision in relation to
action-selection, and have therefore been discussing the precision of beliefs about
policies. These notions of precision turn out to be closely related and intertwined on
our account.13 Policies consist of interrelated, and nested states of action readiness,
which are patterns of readiness for the sensory consequences or outcomes of action.
We therefore suggest that in assigning precision the brain isn’t only concerned with
the reliability of the PE signal. It is more accurate to say that precision relates to
how well the agent is doing at engaging with expected uncertainty in relation to the
sensory consequences of temporally extended sequences of actions. Precision doesn’t
just concern the agent here and now and its momentary state of uncertainty with
regards to some current prediction error. We’ve seen above how expected or future
uncertainty is also important when it comes to assigning precision to policies. FEM
agents actively seek a means of managing uncertainty over time. The rollercoaster
of continual increases and decreases of errors that accompany life become expected
and are folded into our expectations. For such a system it becomes important not only
to track the constantly fluctuating instantaneous errors, but also to pay attention to
the dynamics of error reduction over longer time scales. This means paying attention
to the rate at which those errors are being reduced or increasing. Rate of change is
an important (but largely overlooked dimension) of free energy minimisation. If we
compare two agents both of which succeed in dealing with prediction error the agent
that does it faster will do better in the long run than the agent that takes longer.14

We can think of the rate of change of prediction error reduction by analogy with
velocity (Joffily andCoricelli 2013: p. 3). The velocity of an object is the rate of change
in the position of an object relative to a frame of reference over time. So velocity is
equivalent to the speed of an object moving in a particular direction. Rate of change
in relation to prediction error reduction thus refers to how fast or slow prediction error
is being reduced relative to the states of the whole agent-environment system. If the
speed of error reduction increases, this equates to decrease in free energy over time

13 See our earlier footnote 8.
14 Technically, what we are saying here is that the path or time integral of prediction error (or expected free
energy) is the important thing. Crucially, because these time integrals or averages are known as Hamiltonian
Action, we are saying is that the best policies will conform to Hamilton’s Principle of Least Action. We
thank an anonymous reviewer for the formulation of this technical point, and for making the connection to
Hamilton’s principle.
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(relative to what was expected). If speed of error reduction decreases, this equates to
an increase in free energy over time.

Each agent’s performance in reducing error can be plotted as a slope that depicts
the speed at which errors are being accommodated relative to their expectations. The
steepness of the slope indicates that error is being reduced over a shorter period of
time and so faster than the agent expected: the steeper the slope, the faster the rate
of reduction. Think of mastering a second language and finding it easy to take part
in a conversation with a stranger in this second language. A gentle slope by contrast
indicates that error is being reduced at a slower than expected rate. The agent has
encountered an error that is proving difficult to deal with. This has the result that they
reduce fewer errors over time. Suppose for instance that a person has broken a leg and
they now need to get around their environment on crutches. They are nowmuch slower
to move around—the rate at which they are able to get into the states they expected to
be in has slowed dramatically. This is typically the source of some frustration for the
person.

Oncewe have the idea of rate of change in play, we see that even large instantaneous
errors (sudden spikes in the slope) could be experienced as positive as long as the error
takes place within a more general reduction of error over time. This is to say that a
large but resolvable error signal informs the agent that the environment offers the
opportunity to resolve uncertainty. An epistemic action then becomes an attractive
option.

This goes a long way to helping make sense of why certain errors are accept-
able and even highly desirable. The environment offers an epistemic affordance, an
opportunity for information gain that allows one to pick up on a free-energy lowering
policy. Information about rate of change is thus highly important for updating one’s
expectations, changing the course of action entirely or rather continuing on the same
course of action. It informs the agent whether, given what they know already, there is
still room to improve. Perhaps there is no room for improvement because error rate
just keeps increasing in which case what you should do is just try something differ-
ent. You shouldn’t change what you anticipate happening when the result of making
such a change will just be more error. You should instead explore and look for new
opportunities that help you to learn to grip better.

In the recent literature a number of authors have begun to relate information about
rate of change in error reduction to the valence of full-blooded emotional experience
like happiness, disappointment, hope and fear (Joffily and Coricelli 2013; Van de
Cruys 2017; Van de Cruys and Wagemans 2011). These authors hypothesise that the
valence of different emotional experiences is a reflection of unexpected rate of change
in prediction error reduction.When free energy is increasing at a greater than expected
rate this can feel bad, it can for instance be experienced as frustrating. Converselywhen
free energy is decreasing at a faster rate than expected this can feel really good. For
example, a positive emotion like happiness is a reflection of an unexpected reduction
of prediction error (e.g. error being reduced at a rate faster than expected), while a
negative emotion like disappointment reflects an unexpected decrease in prediction
error reduction (e.g. error being reduced at a rate slower than expected).

In this section we’ve been applying the notion of rate of change to explain why
an agent might be moved to explore rather than exploit. Assuming these authors are
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right to tie valence to rate of change, our proposal is that it is valence that plays this
role of motivating an agent to to engage in exploratory actions rather than exploit.15

The concept of “valence” is used by these authors to refer to the positive or negative
(approach or avoid) character of an emotional experience that inform the organism
about its current relationship with the environment. Pleasurable states have positive
hedonic value and are associated with approach behaviours. Aversive states have neg-
ative hedonic value and are in turn associated with avoidance behaviours. Their claim
is not so simple as to say we feel good when our predictions fit and bad when they
do not. They claim (rightly) that the predictive organism is in a constant state of error
management at all levels of the hierarchy, and yet clearly there is not a felt experience
of each and every fluctuation. Errors are reviewed on a background of learned expecta-
tions concerning how fast or slow (the rate) such errors have been reduced previously
(Joffily and Coricelli 2013).

We suggest thinking of valence differently in terms of multiple states of affordance-
related action readiness that are simultaneously affective and behavioural (Rietveld
2008).16 At the same time as emotional experiences feel good or bad they also prepare
or make us ready to act on relevant affordances (possibilities for action offered by
the environment). It is the relevant affordances of the environment that have valence.
This valence consists in solicitations or invitations to act: relevant affordances attract
or repel the agent’s actions (Bruineberg and Rietveld 2014). Think of how the apple
sitting next to you as you work can look enticing to eat when you are hungry: it has
positive valence. But when you take a bite into and find it is rotten inside it ceases to be
enticing in the sameway and takes on a negative valence.We thus disagree with Joffily
and Coricelli (2013) and Van de Cruys (2017) who treat valence as the avoid/approach
character of full-blooded emotional experiences. They treat valence as a property of
emotional experience while we suggest understanding valence in relational terms, and
as necessarily environment involving: it is relevant affordances that have valence in
virtue of which they solicit or invite some form of action on the part of the agent.

15 A closely related proposal can be found in Van de Cruys (2017). He emphasises that valence as error
dynamics helps guide the organism in its exploration to niches that have maximum gain in prediction-error
minimisation. Van de Cruys doesn’t explicitly apply this hypothesis to the case of epistemic action as we
have been doing in this paper. However, we can suppose that sometimes increasing PE may lead an agent
to shift into an exploratory mode of engagement with their environment, while on other occasions it may
lead the agent to shift to another reliable exploit mode. Exactly what the agent does next will depend on
the precision of the policies it is enacting as discussed above. Differences between our ecological-enactive
account of valence and the view that can be found in Van de Cruys are discussed below.
16 Here we are drawing upon the analysis of emotion found in the research of the emotion psychologist,
Nico Frijda (see (Frijda 1986, 2007), in which states of action readiness are central. We will have nothing
to say here about so-called full-blooded emotions that Frijda analyses (e.g. happiness, sadness, anger, etc.).
Our interest will be instead in the myriad ways that the brain and body change as part of our meaningful
engagement with the world. Our use of felt states of action readiness to refer to the individual agent’s
openness to a field of relevant affordances closely parallels Matthew Ratcliffe’s account of “existential
feelings” (2008). Existential feelings are background bodily states of action readiness that orient us in the
world. They are what attune us towards or away from relevance. While existential feelings are certainly
felt, the affective changes can themselves be more or less explicit, foregrounded objects of attention. So
for example, we may be expressly aware of our experienced anxiety, or we may simply perceive a situation
(through our anxious state) as worrisome.

123



Synthese (2019) 196:2847–2869 2859

In addition to valence at the level of individual relevant affordances we suggest it
also makes sense to think in terms of the field of relevant affordances as a whole as
having valence. This is the kind of valence that is made explicit when someone asks
how things are going, or how one feels in a situation. One’s initial response to this
question relates to the situation as a whole, though of course it is possible to zoom in
on particular aspects to make things more specific. The field of relevant affordances
comprises the multiple relevant affordances that get the agent bodily ready to respond.
One is ready to respond to each of the relevant affordances but one also has an overall
grip on the situation. It is this valence at the global level of the field as a whole that
we propose to understand in terms of rate of change. Global level valence gets the
agent ready to either exploit the particular inviting relevant affordances or to seek out
epistemic affordances that offer opportunities for information gain, thereby allowing
one to pick up on a free-energy lowering policy.

Valence can thus be thought of both at the global level of the agent in relation to
the field as a whole, and at the more local level of micro-level states of action readi-
ness elicited by relevant affordances that invite the agent to act. The former (“global
valence”) is best thought of in the context of what we’ve earlier described as the ten-
dency towards an optimal grip on the field of relevant affordances (Bruineberg and
Rietveld 2014). The relation between multiple micro-level states of action-readiness
and macroscopic patterns of activity at the level of the individual agent as a whole is
analysed in terms of self-organising dynamics in our earlier work (Bruineberg et al.
2016; Rietveld, Denys & van Westen, 2017).

In earlier work (Bruineberg and Rietveld 2014; Bruineberg et al. 2016), we’ve
proposed an ecological-enactive reading of the FEP, providing an analysis of free-
energy in terms of disattunement of internal and external dynamics, a dynamic state of
disequilibrium within the agent-environment system as a whole. In active inference,
agents prepare actions that will reduce disattunement and thereby lead them closer
towards some dynamical equilibrium or grip on the situation. States of action readi-
ness originate in fluctuations of affect that orient us towards affordances that matter
to us, preparing us for sensory consequences that arise from responding to inviting
possibilities for action. Emerging a few hundred milliseconds after an event, action
readiness is the earliest coordinated evaluation of the new situation by the organism
as a whole (Klaasen et al. 2010). Positive and negative feeling should be thought of
as an integral part of tending towards an optimal grip. As Frijda notes:

“Emotional feeling is to a very large extent awareness, not of the body, but of the
body striving, and not merely of the body striving, but the body striving in the world…
emotional experience is to a large extent experienced action tendency, or experienced
state of action readiness.” (Frijda 2004: p. 161, quoted by Lowe and Ziemke 2011: p. 8)

Felt states of action readiness manifest as a “complex space of polarities and com-
binations” (Colombetti 2005; Thompson 2007: p. 378). The agent prepares to move
towards/away, approach/withdraw, and is receptive/defensive to affordances in the
environment that are exerting a pull on, or repelling the agent. These movement ten-
dencies can also be consciously felt as pleasant/unpleasant, positive/negative, and they
relate to affordances the individual likes/dislikes, is attracted/repelled by. We suggest
that felt states of action readiness arise when there is an unexpected change in rate
of error reduction at the level of the agent-environment system as a whole. Rate of
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change is an important source of information for the agent because it can help them to
always be ready for opportunities for improving grip, and living systems continuously
strive to improve grip (Bruineberg and Rietveld 2014).

This ecological-enactive analysis of rate of change can help us to address the first
of the questions we raised about epistemic action in the previous section. There we
raised the question of why reducing uncertainty through epistemic actions should feel
good to the agent. Why should novel experiences have a positive phenomenology?
We’ve just suggested thinking of rate of change as the changes felt in the skilled
body (in its relation to the field of relevant affordances as a whole) with a positive
or negative hedonic value. When an agent succeeds in reducing error at a faster than
expected rate (or recognises the opportunity to do so) this feels good. It is thus not
uncertainty reduction alone that the agent cares about, but also the rate at which
uncertainty is being reduced. Pleasurable feelings arise in the form of feedback as part
of the process of our moving towards, or being drawn towards affordances that are
relevant to us. We are drawn towards opportunities for improving grip, and positive
feelings arise when we improve grip at a faster than expected rate. This is to say that
the slope one could plot describing the rate of error reduction would have a steep
incline.17

Conversely, negative affect is experienced by the agent in terms of being repelled
from a situation. This occurs when we do worse (or anticipate doing worse) than
expected at reducing error, and the slope describing error reduction has a gentle incline.
Consider boredom as an example. Suppose you find yourself stuck in a seat in a music
hall sitting through a boring symphony. The music you are hearing has nothing to
offer. It is boring because there are no salient regularities to be harvested relative to
the skills you have that attune you to the environment. There is no opportunity to do
better than expected at reducing prediction error because the skills you have already
attune you to the music without this requiring any effort from you. Alternatively the
skills of the individual may be such that the structure of the music is too complex to
get a grip on it. This is an inherently frustrating situation for the listener stuck in their
seat who nevertheless aims to continuously improve their grip on the world. The felt
frustration manifests as boredom for the music and agitation, a drive to get up out of
your seat and leave.

In the next section we argue that rate of change may also play a key role in precision
estimation as it occurs in active inference. Active inference can be tuned by rate of
change in agents that are sensitive to this feedback signal. They can use this feedback
signal to allow themselves to be pushed towards or pulled away from aspects of
the environment that offer opportunities for making progress in uncertainty reduction.
The hypothesised role of rate of change in precision estimation is among the important
novel contributions of this paper.18

17 Again we see Hamilton’s Principle of Least Action in play. Our thanks to an anonymous reviewer for
this point.
18 It is a possibility that has not to our knowledge been recognised in previous work that has appealed to
error dynamics to explain the valence of emotional experience.

123



Synthese (2019) 196:2847–2869 2861

4 Using rate of change to tune precision-weighting on the fly

How is precision weighted in active inference?We suggest in line with our ecological-
enactive reading of FEP that precision should be understood in the context of tending
towards an optimal grip on the affordances available in the ecological niche. Precision
is what sets the degree of influence on behaviour (or more precisely, action readiness)
of themultiple relevant affordances inviting us to act.19 Error dynamics (rates of FEM)
are “grasped corporeally”, we feel the dynamics of error-reduction (and whether it is
going well or badly) in our attunement to the world (Patočka 1998). The agent doesn’t
simply act so as to improve grip; it is a part of their acting skillfully that they can
do so with sensitivity to how well or badly they are doing. Agents that make use of
feelings that arise from rates of change can continuously do better at improving their
grip on what is relevant in the landscape of affordance by exploring and seeking out
novelty. They can aim to better engage with error, and attune to the unexpected so as
to broaden their skills and grip in more and more domains of their ecological niche.

Once we understand FEM as always being enacted in an ecological context as
we propose, it makes sense to suppose that in general, FEM agents will be on the
lookout for opportunities that are rich in the kinds of error they can manage given their
skills (eg. manageable errors). We suggest this is the kind of error that will allow an
agent to improve on their level of skilled engagement with affordances. Unexpected
improvements or setbacks, in relation to the expected rate of error reduction, then
provide a particularly valuable learning signal that can direct resources to opportunities
for improvement or speak in favour of task-switching (seeRietveld andBrouwers 2016
for real life examples of this). FEM organisms do not try to maximally reduce error,
since sometimes error can be invaluable for learning,20 and in any case prediction error
is unavoidable. When we think about a day that has gone well, we evaluate the day
as a whole in part based on the surprising and unexpected things that happened to us
and how well we managed to deal with them. A good day is not only one in which we
succeeded in reducing prediction error relative to our expectations. It is one in which
we were met with all manner of unexpected events and we did well at meeting these
challenges.

Agents can be sensitive to different degrees to how well or badly they are doing at
gripping to their environment. To put this in terms of rate of change of FEM, they are
sensitive to different degrees to the increases and decreases in FEM.Given an advanced
level of skill we expect our skilled body (as a model of the world) to do well at attuning
to a given context. When we run into more troubles than we anticipated, this slows
down the rate at which our current skills succeed in attuning us to unexpected changes
in the environment. Think about a difficult day at work in which many problems
come up that you fail to solve. The feeling of frustration in this case is feedback that
informs us that things are going worse than expected. This is important information
for an agent because it can be used to move us to do things differently. When free
energy is rapidly increasing, this is a sign that the agent is doing poorly over time

19 This hypothesis about the precision mechanism is developed in more detail in Miller and Clark (2017).
20 Schouppe et al. (2014) shows that more reward comes from resolving incongruent stimuli than from
congruent stimuli in a Stroop task. These findings points to initial errors being conducive to higher rewards.
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at accommodating sensory input. An agent that possesses this information about rate
of change should downgrade confidence in their policies. Equivalently, they should
assign more confidence to prediction errors relative to their policies.

Now consider a more positive scenario in which prediction error progressively
decreases like in the example of the day in which lots of unexpected events occur that
we nevertheless manage well. The agent’s policies are performing well at attuning
them to change in the environment, and thus they have good cause for being highly
confident in their policies.

The more an agent takes note of rate of change, the more sensitive they are to how
well they are gripping in a given situation. Agents that lack sensitivity to felt states
of action readiness will be more likely to get stuck in situations that are frustrating to
them. Feelings provide them with the impetus or impulse to switch. When people are
not sensitive to these feelings, this can lead them to be overconfident or underconfident
in their policies. Overconfidence in one’s policies can lead one to overlook unexpected
changes in the environment that bodily feelings attune us to. Underconfidence in one’s
policies can make an agent dissatisfied with what they are doing when they are doing
just fine at adapting to the unexpected. Sensitivity to rate of change and to the feelings
it gives rise to can be used to tune confidence as we go.21 This is maybe one of the
essential ways in which agents are able to stay attuned to what matters to them. Failure
to tune confidence as we go along leads to inflexibility and failure to switch activities
based on changes in the environment or changes in internal state (e.g. homeostatic
needs). An agent might for instance persist with some activity that has been weighted
as highly important, but is failing to reduce free energy at the expected rate because of
some other pressing need that is being neglected. Sensitivity to rate of change, which
reflects how things are going at the global level of the agent as a whole, would tell
the agent that they need to assign priorities differently allowing them to do better at
reducing free energy overall by continually tuning their confidence in the expectations
that are driving their actions on the fly.22

Why are people so curious and playful? We can remove some of this mystery we
suggest, once we appreciate the role of rate of change in precision estimation. Agents
that weight precision based on feedback from the feeling of grip will be attracted to
opportunities for continually improving in their skills. Positive and negative hedonic
value is felt in the body and can (in the agent that is sensitively attuned to these

21 Although beyond the remit of our current treatment, it is a prediction of our arguments that the dopamine
system should play a central role in this online tuning of precision in active inference (thanks once again
to an anonymous reviewer for suggesting this point to us). This is because, in physiological versions of
predictive coding and active inference, precision is thought to be mediated by neuromodulatory effects
(see e.g. Friston et al. 2012a). Key among these (in the domain of motivated behaviour) is dopamine—a
neurotransmitter strongly implicated in hedonics, reward and emotional learning.
22 Inflexibility that arises from failure to tune confidence on the fly may go some way towards accounting
for the current political climate in which people are falling back on comfortable, familiar certainties from
the past in response to the many complex, hard to manage uncertainties of the future. The current political
situation presents people with a tremendous amount of uncertainty that is far too complex for them to
integrate. One natural response to this is to fall back on outdated but familiar and entrenched patterns of
interaction that no longer give a grip on current events, which for interesting sociological reasons people
nevertheless overlook.

123



Synthese (2019) 196:2847–2869 2863

feelings) provide feedback that moves the agents through the environment leading
them to places where they stand to learn the most.

5 Novelty seeking and learning progress

We’ve been arguing it is not only prediction error that the agent seeks to reduce in
their skilled engagement with the environment, but also the rate of change in prediction
error (i.e. the opportunity to reduce uncertainty in the future). Anticipation isn’t just
about determining what is most likely to happen next. Optimising one’s engagement
with a dynamically changing environment requires in addition, sensitivity to how well
one is doing at reducing disattunement over time. Sometimes it feels good for the
agent to generate more prediction error in their interaction with the environment as a
part of their epistemic foraging.

Irreducible error means environmental complexity is too high for the agent—and
this feels bad, as in the example of the symphony that one finds boring because its
complexity is too high. Too little error in our dealings with the environment means
that our model is already fitting well to the environment, there is nothing further to
be learned and we feel bored. Value in epistemic action thus seems to be a matter of
finding the right balance so that the agent is continuously improving in the speed at
which they are reducing prediction error.

Imagine signing up for a one hour swimming lesson to improve one’s swimming
skills. When one arrives for the first time at the swimming pool for the training one
finds out that the group is very large and that it is not a beginners group. Most people
in the class are already proficient at doing breast-stroke for instance, something one
has not yet mastered. Given the size of the class, the teacher probably notices that
one’s level of performance is lagging behind other members of the class but is unable
to give one the attention needed for acquiring a new skill. One feels that things are
going a good deal worse than one expected, and one’s swimming ability is not at all
improving. Every new exercise during the class is too difficult. The valence of this
situation is negative; one feels out of place and has the action tendency of leaving the
class, and joining a different one that is better suited to one’s level of ability. Rather
than being determined to keep trying until one has mastered the exercises sufficiently,
one might well decide it would be better to switch and find a class that is targeted at
beginners and has more personal attention for the participants.

The richest opportunities for improving in FEM will come from situations that are
neither too complex, nor so simple and straightforward that we already know how to
deal with them. In finding this balance of complexity and simplicity an agent is able to
learn optimally and so is able to do better, while nevertheless always falling short of
fully attaining an optimal grip or equilibrium with the environment. This means being
sensitive to the felt states of action readiness that attune one to positively or negatively
valenced relevant affordances. Negatively charged feelings of action readiness tell
one that things are not going well. One is failing to grip in the way one expects given
one’s level of confidence. This may make switching activities or strategies an enticing
option so long as one is sensitive to this feeling. Positive feelings tell you that you are
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doing well at dealing with, and adapting to unexpected changes. This provides you
with valuable feedback for further improving your skills.

Various lines of research support the view that agents seek out environments with
optimal amounts of novel complexity (error). For example, Berlyne (1966) argues that
organisms actively seek out stimuli that are slightly above the complexity the organism
is used to. A few good examples of this come from research on early childhood
development in which newborns were found to attend longer to stimuli that are neither
too simple nor too complex (Kidd et al. 2012). In non-human studies, rats were found
to frequent parts of a maze that were decorated in a slightly more complex fashion
than parts they commonly frequented in the past (Dember et al. 1957). Learning
environments in which the complexity is just above the abilities of the agent offer the
largest accelerations of error reduction. These are the environments the rats like to
explore the most because they offer the most opportunities to learn relative to what
they know already. Exploration of these environments feels good to the rats because
it is in such environments that acceleration of FEM is at its greatest. We hypothesise
that the rats are motivated to explore because it feels good to explore this kind of
environment—doing so offers them the greatest opportunity for acceleration of FEM.

A similar line of thinking comes from recent research on error reduction dynamics
in artificial intelligence and robotics (Oudeyer et al. 2007, 2013; Schmidhuber 2010).
Kaplan and Oudeyer take the rate of error reduction to be associated with intrinsic
rewards in humans (2007).23 By linking error reduction dynamics and intrinsic rewards
they offer a model of learning in which agents are intrinsically driven to investigate
particular regions of the environment as long as there are learnable regularities left to
harvest given their current skill level. Being sensitive to error dynamics guarantees that
the agent avoids wasting time in places where regularities are either already learned
or too complex given the agent’s skill level. To put this in the terms of our paper, sen-
sitivity to felt states of action readiness tunes the agent to, and draws them to explore,
learning-rich places simply by tracking local learning progress. Such systems will
naturally and spontaneously move from one stage of development to the next, from
one level of complexity to another, as error reduction becomes less available (either all
that’s left is uninteresting noise or the complexity is yet too high to be managed given
the skill level of the organism). A neat outcome of such systems is the self-organization
of developmental and learning trajectories that naturally move agents from acquiring
simple to more complex skills over time (Oudeyer and Kaplan 2006; Oudeyer et al.
2007; Kaplan and Oudeyer 2011; Moulin-Frier and Oudeyer 2012).

These ideas about learning progress have shown promise in developmental robotics,
allowing robots implementing these routines to “efficiently learn repertoires of skills
in high dimensions and under strong time constraints and to avoid unfruitful activities
that are either well learnt and trivial, or which are random and unlearnable (Pape
et al. 2012; Ngo et al. 2012; Baranes and Oudeyer 2013; Nguyen and Oudeyer 2013)”
(Gottlieb et al. 2013: p. 9). There are good reasons to suspect a similar approach to

23 In the free energy framework, the concept of intrinsic motivation that underlies (self) exploration (e.g.
motor babbling) and novelty seeking is understood in terms of expected free energy; also referred to as
Bayesian surprise, information gain in the literature. Intrinsic value is the value of information or epistemic
value (see Sect. 2 above).

123



Synthese (2019) 196:2847–2869 2865

learning takes place in humans. Progress-based systems in robotics simulate closely
infant sensorimotor development. This has led to the hypothesis that certain patterns
of information-seeking behaviour in humans may emerge from a particular embodied
system (morphology, etc.) intrinsicallymotivated byprogress-based learning strategies
(Smith 2003; Kaplan and Oudeyer 2007; Oudeyer et al. 2007). To put this point in
our own words: the sensitivity to the valence of a situation moves agents to explore
situations that maximize learning progress by directing them towards a trajectory of
action possibilities whose complexity is neither too simple nor too novel. Oudeyer and
colleagues refer to these learning sweet-spots as progress niches:

“Progress niches are not intrinsic properties of the environment. They result from
a relation between a particular environment, a particular embodiment [...](sensors,
actuators, feature detectors, and techniques used by the prediction algorithms), and a
particular time in the developmental history of the agent. Once discovered, progress
niches progressively disappear as they become more predictable.” (Oudeyer et al.
2007, p. 282)

By tracking their own progress in learning, agents are moved to seek out oppor-
tunities that present them with just the right level of complexity that they can make
something of these opportunities given their current level of ability.24 FEM agents
don’t need to orient towards novelty indiscriminately. Agents that make use of their
sensitivity to how well they are doing at tending towards an optimal grip can orient
to the right kind of novelty—the kind that maximises their own learning rate or the
opportunity to do better at improving their grip on what matters in the environment.
They will be agents that are intrinsically motivated to explore, seek out novelty and
along the way improve their skill at gripping.

To offer a rather extreme example of this, some people are able to forecast events
like election results, economic collapses, famines and wars with an accuracy much
better than chance. They have been shown to perform on average 65% better than the
average person and 30% better than US intelligence agents that forecast these kinds
of events for a living (Tetlock and Gardner 2015).25 These people are highly skilled
at estimating the probable outcomes of counterfactual scenarios. It is a prediction of
our arguments that the secret to their success must lie in their ability to form better
expectations than the average person about how errors will arise. They do a way better
job than the average person of anticipating when the unexpected is likely to arise and
adapting their probability estimates accordingly. If our arguments are along the right
lines, this is something they are able to do by paying close attention to what their
feelings tell them to do so they can continuously tune the confidence they have in
their own estimations of what could happen in the future. They are always looking for
opportunities to incrementally improve in how they are doing at reducing error, and
they don’t care so much about the end product. They are as Andy Clark nicely put it
to us in conversation “slope-chasers”.

24 We don’t mean to suggest that progress niches are discovered by individual agents all by themselves.
Often other people from the practice, more experienced practitioners, give the most relevant feedback about
how well one is performing and educate one’s attention to relevant affordances.
25 Many thanks to Andy Clark for suggesting this fascinating example of super-forecasters.
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Conclusion

We started the paper by raising a puzzle for FEP about why an agent would be moti-
vated to play and explore if all they ever aim to do is keep themselves in states that
are expected relative to its model of the world. We’ve argued that a FEM agent should
naturally engage in epistemic foraging, and seek out epistemic affordances or oppor-
tunities to reduce uncertainty in relation to their policies. We’ve raised two questions
for an account of epistemic foraging in terms of FEM and active inference. The first
question asks why it should feel good to an agent to engage in exploratory, curiosity-
driven behaviours. We’ve offered a new perspective on recent work on the rate of
change in error reduction to address this question. According to this earlier work, it
feels good for an agent to increase in the speed of error-reduction, and it feels bad for
an agent when they reduce error at a slower than expected rate. We’ve suggested that
what rate of change tracks are affordance-related changes in states of action readiness.
Our contribution is thus two-fold. First we have proposed an ecological and enactive
interpretation of these relatively recent ideas about what rate of change might be doing
in predictive-processing. Second we have put this interpretation to work to explain the
positive and negative hedonic value that can motivate an agent to engage in epistemic
actions.

The second question we’ve raised asks how precision-weighting might work in
active inference. Precision-weighting plays a crucial role in epistemic action since it
is the precision that is assigned to a policy that settles the question for the agent as to
whether to exploitwhat one already knows, or to explore and seek out novelty. Building
on our ecological-enactive interpretation of FEM we’ve proposed that sensitivity to
rate of error reduction may play a role in precision estimation. Active inference can
be tuned on the fly in agents that use rate of change as a feedback signal, thereby
guaranteeing that they continuously make progress in reducing their own uncertainty.

An organismwired to be rewarded for reducing disattunement at a faster rate should
naturally and spontaneously orient itself to places in the ecological niche that offer
opportunities where disattunement can bemanaged the best. They should bemotivated
to seek out opportunities for managing errors that are just above their current level
of ability and to develop new skills. This is to say that the FEM agent ought to be a
curious agent, motivated to explore and play in their environment, constantly pushing
the boundaries of what they know how to do. In their exploratory engagement with
their ecological niche, curious agents discover novel affordances that allow them to
constantly improve in their skills.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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