

CDMTCS Research Report Series

Higher Kurtz Randomness



Bjørn Kjos-Hanssen¹, A. Nies², F. Stephan³, L. Yu⁴

¹University of Hawaii at Manoa, USA ²University of Auckland, NZ ³National University of Singapore ⁴Nanjing University, P.R. of China

CDMTCS-330 August 2008

Centre for Discrete Mathematics and Theoretical Computer Science

HIGHER KURTZ RANDOMNESS

BJØRN KJOS-HANSSEN, ANDRÉ NIES, FRANK STEPHAN, AND LIANG YU

ABSTRACT. A real x is Δ_1^1 -Kurtz random (Π_1^1 -Kurtz random) if it in no closed null Δ_1^1 set (Π_1^1 set). We show that there is a cone of Π_1^1 -Kurtz random hyperdegrees. We characterize lowness for Δ_1^1 -Kurtz randomness by being Δ_1^1 -dominated and Δ_1^1 -semitraceable.

1. Introduction

Traditionally one uses tools from recursion theory to obtain mathematical notions corresponding to our intuitive idea of randomness for reals. However, already Martin-Löf [10] suggested to use tools from higher recursion (or equivalently, effective descriptive set theory) when he introduced the notion of Δ_1^1 -randomness. This approach was pursued to greater depths by Hjorth and Nies [8] and Chong, Nies and Yu [1]. Hjorth and Nies investigated a higher analog of the usual Martin-Löf-randomness, and a new notion with no analog in recursion theory: a real is Π_1^1 -random if avoids each null Π_1^1 set. Chong, Nies and Yu [1] studied Δ_1^1 -randomness in more detail, viewing it as a higher analog of both Schnorr and recursive randomness. By now a classical result is the characterization of lowness for Schnorr randomness by recursive traceability (see, for instance, [11]). Chong, Nies and Yu [1] proved a higher analog of this result, characterizing lowness for Δ_1^1 randomness by Δ_1^1 traceability.

Our goal is to carry out similar investigations for higher analogs of Kurtz randomness [3]. A real x is Kurtz random if avoids each Π^0_1 null class. The term is a bit of a misnomer as such a set need not be random in any intuitive sense. Each weakly 1-generic set is Kurtz random, so for instance the law of large numbers can fail badly. However, the term is by now commonly accepted.

It is essential for Kurtz randomness that the tests are *closed* null sets. Two higher analogs of Kurtz randomness make sense: one can require that these tests are Δ_1^1 , or that they are Π_1^1 .

Restrictions on the computational complexity of a real have been used successfully to analyze randomness notions. For instance, a Martin-Löf-random real is weakly 2-random iff it forms a minimal pair with \emptyset' (see [11]). We prove a result of that kind in the present setting. Already [1] studied a property restricting the complexity of a real, being Δ_1^1 dominated. This is the higher analog of being recursively dominated (or of

 $^{2000\} Mathematics\ Subject\ Classification.\ 03D30, 03D28, 03E15, 03E35, 68Q30.$

Kjos-Hanssen is supported as co-PI on NSF grant DMS-0652669. The second author is partially supported by the Marsden Fund of New Zealand, grant No. 03-UOA-130. Stephan is supported in part by NUS grants number R146-000-114-112 and R252-000-308-112. Yu is supported by NSF of China No. 10701041 and Research Fund for the Doctoral Program of Higher Education, No. 20070284043.

hyperimmune-free degree). We show that a Δ_1^1 -Kurtz random Δ_1^1 dominated set is already Π_1^1 -random. Thus Δ_1^1 -Kurtz randomness is equivalent to a proper randomness notion on a conull set. We also study the distribution of higher Kurtz random reals in the hyperdegrees. For instance, there is a cone of Π_1^1 -Kurtz random hyperdegrees. However, its base is very complex, having the largest hyperdegree among all Σ_2^1 reals.

Thereafter we turn to lowness for higher Kurtz randomness. Recursive traceability of a real x is easily seen to be equivalent to the condition that for each function $f \leq_T x$ there is a recursive function \hat{f} that agrees with f on at least one input in each interval of the form $[2^n, 2^{n+1} - 1)$. One says that x is recursively semitraceable if for each $f \leq_T x$ there is a recursive function \hat{f} that agrees with f on infinitely many inputs. It is straightforward to define the higher analog of this notion, being Δ_1^1 -semitraceable. Our main result is that lowness for Δ_1^1 -Kurtz randomness is equivalent to being Δ_1^1 -dominated and Δ_1^1 -semitraceable. We also show using forcing that being Δ_1^1 -dominated and Δ_1^1 -semitraceable is strictly weaker than being Δ_1^1 -traceable. Thus, lowness for Δ_1^1 Kurtz randomness is strictly weaker than lowness for Δ_1^1 -randomness.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as presented, for instance, in Sacks [13]. A real is an element in 2^{ω} . Sometimes we write $n \in x$ to mean x(n) = 1. Fix a standard Π_2^0 set $H \subseteq \omega \times 2^{\omega} \times 2^{\omega}$ so that for all x and $n \in \mathcal{O}$, there is a unique real y satisfying H(n, x, y). Moreover, if $\omega_1^x = \omega_1^{\text{CK}}$, then each real $z \leq_h x$ is Turing reducible to some y so that H(n, x, y) holds for some $n \in \mathcal{O}$. Roughly speaking, y is the |n|-th Turing jump of x. These y's are called H^x sets and denoted by H_n^x 's. For each $n \in \mathcal{O}$, let $\mathcal{O}_n = \{m \in \mathcal{O} \mid |m| < |n|\}$. \mathcal{O}_n is a Δ_1^1 set.

We use the Cantor pairing function, the bijection $p:\omega^2\to\omega$ given by $p(n,s)=\frac{(n+s)^2+3n+s}{2}$, and write $\langle n,s\rangle=p(n,s)$. For a finite string σ , $[\sigma]=\{x\succ\sigma\mid x\in 2^\omega\}$. For an open set U, there is a presentation \hat{U} so that $\sigma\in\hat{U}$ if and only if $[\sigma]\subseteq U$. We sometimes identify U with \hat{U} . For a recursive functional Φ , we use $\Phi^\sigma[s]$ to denote the computation state of Φ^σ at stage s. For a tree T, we use [T] to denote the set of infinite paths in T. Some times we identify a finite string $\sigma\in\omega^{<\omega}$ with a natural number without confusion.

The following results will be used in later sections.

Theorem 2.1 (Gandy). If $A \subseteq 2^{\omega}$ is a nonempty Σ_1^1 set, then there is a real $x \in A$ so that $\mathcal{O}^x \leq_h \mathcal{O}$.

Theorem 2.2 (Spector [14] and Gandy [6]). $A \subset 2^{\omega}$ is Π_1^1 if and only if there is an arithmetical predicate P(x, y) such that

$$y \in A \leftrightarrow \exists x \leq_h y P(x, y).$$

Theorem 2.3 (Sacks[12]). If x is non-hyperarithmetical, then $\mu(\{y|y \ge_h x\}) = 0$.

Theorem 2.4 (Sacks [13]). The set $\{x|x \geq_h \mathcal{O}\}$ is Π_1^1 . Moreover, $x \geq_h \mathcal{O}$ if and only if $\omega_1^x > \omega_1^{\text{CK}}$.

A consequence of the last two theorems above is that the set $\{x|\omega_1^x > \omega_1^{\text{CK}}\}$ is a Π_1^1 null set.

A subset of 2^{ω} is Π_0^0 if it is clopen. We can define Π_{γ}^0 sets by a transfinite induction in an obvious way for all countable γ . Every such set can be coded by a real in an obvious way (more details can be found in [13]). Given a class Γ (for example, $\Gamma = \Delta_1^1$) of subsets of 2^{ω} , a set A is $\Pi_{\gamma}^0(\Gamma)$ if A is Π_{γ}^0 and can be coded by a real in Γ .

In the case $\gamma = 1$, every hyperarithmetic closed subset of reals is $\Pi_1^0(\Delta_1^1)$. We also have the following result with an easy proof.

Proposition 2.5. If $A \subseteq 2^{\omega}$ is Σ_1^1 and Π_1^0 , then $A \in \Pi_1^0(\Sigma_1^1)$.

Proof. Let
$$z = \{ \sigma \mid \exists x (x \in A \land x \succ \sigma) \}$$
. Then $x \in A$ if and only if $\forall n (x \upharpoonright n \in z)$. So A is $\Pi_1^0(z)$. Obviously z is Σ_1^1 .

Note that Proposition 2.5 fails if we replace Σ_1^1 with Π_1^1 since $\mathcal{O}^{\mathcal{O}}$ is a Π_1^1 singleton of which the hyperdegree is greater than \mathcal{O} .

The ramified analytical hierarchy was introduced by Kleene, and applied by Fefferman [4] and Cohen [2] to study forcing, a tool that turns out to be powerful in the investigation of higher randomness theory. We recall some basic facts here following Sacks [13] whose notations we mostly follow, as given below:

The ramified analytic hierarchy language $\mathfrak{L}(\omega_1^{\text{CK}}, \dot{x})$ contains the following symbols:

- (1) Number variables: j, k, m, n, ...;
- (2) Numerals: 0,1,2,...;
- (3) Constant: \dot{x} ;
- (4) Ranked set variables: $x^{\alpha}, y^{\alpha}, \dots$ where $\alpha < \omega_1^{\text{CK}}$;
- (5) Unranked set variables: x, y, ...;
- (6) Others symbols include: +, \cdot (times), ' (successor) and \in .

Formulas are built in the usual way. A formula φ is ranked if all of its set variables are ranked. Due to its complexity, the language is not codable in a recursive set but rather in the countable admissible set $L_{\omega_{\gamma}^{\text{CK}}}$.

To code the language in a uniform way, we fix a Π_1^1 path \mathcal{O}_1 through \mathcal{O} (by [5] such a path exists). Then a ranked set variable x^{α} is coded by the number (2, n) where $n \in \mathcal{O}_1$ and $|n| = \alpha$. Other symbols and formulas are coded recursively. With such a coding, the set of Gödel number of formulas is Π_1^1 . Moreover, the set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique notation for α in \mathcal{O}_1 . Hence there is a recursive function f so that $W_{f(n)}$ is the set of Gödel numbers of the ranked formula of rank less than |n| when $n \in \mathcal{O}_1$ ($\{W_e\}_e$ is, as usual, an effective enumeration of r.e. sets).

One now defines a structure $\mathfrak{A}(\omega_1^{\text{CK}}, x)$, where x is a real, analogous to the way Gödel's L is defined, by induction on the recursive ordinals. Only at successor stages are new sets defined in the structure. The reals constructed at a successor stage are arithmetically definable from the reals constructed at earlier stages. The details may be found in [13]. We define $\mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi$ for a formula φ of $\mathfrak{L}(\omega_1^{\text{CK}}, \dot{x})$ by allowing the unranked set variables to range over $\mathfrak{A}(\omega_1^{\text{CK}}, x)$, while the symbol x^{α} will

be interpreted as the reals built before stage α . In fact, the domain of $\mathfrak{A}(\omega_1^{\text{CK}}, x)$ is the set $\{y|y \leq_h x\}$ if and only if $\omega_1^x = \omega_1^{\text{CK}}$ (see [13]).

A sentence φ of $\mathfrak{L}(\omega_1^{\text{CK}}, \dot{x})$ is said to be Σ_1^1 if it is ranked, or of the form $\exists x_1, ..., \exists x_n \psi$ for some formula ψ with no unranked set variables bounded by a quantifier.

We have the following result which is a model-theoretic version of the Gandy-Spector Theorem.

Theorem 2.6 (Sacks [13]). The set $\{(n_{\varphi}, x) | \varphi \in \Sigma_1^1 \wedge \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}$ is Π_1^1 , where n_{φ} is the Gödel number of φ . Moreover, for each Π_1^1 set $A \subseteq 2^{\omega}$, there is a formula $\varphi \in \Sigma^1$ so that

- (1) $\mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi \implies x \in A;$ (2) if $\omega_1^{\text{CK}} = \omega_1^{\text{CK}}$, then $x \in A \Leftrightarrow \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi.$

Note that if φ is ranked, then both the sets $\{x|\mathfrak{A}(\omega_1^{\mathrm{CK}},x)\models\varphi\}$ (the Gödel number of φ is omitted) and $\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \neg \varphi\}$ are Π_1^1 and so Δ_1^1 . Moreover, if $A \subseteq 2^{\omega}$ is Δ_1^1 , then there is a ranked formula φ so that $x \in A \Leftrightarrow \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi$ (see Sacks [13]).

Theorem 2.7 (Sacks [12]). The set $\{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land \{(n_{\varphi}, p) | \mu(\{x | \mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi\}) \}$ p is a rational number $\{is\ \Pi_1^1\ where\ n_{\varphi}\ is\ the\ G\"{o}del\ number\ of\ \varphi.$

Theorem 2.8 (Sacks [12]). There is a recursive function $f: \omega \times \omega \to \omega$ so that for all n which is Gödel number of a ranked formula

- (1) f(n, p) is Gödel number of a ranked formula;
- (2) The set $\{x | \mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi_{f(n,p)}\} \supseteq \{x | \mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi_n\}$ is open; (3) $\mu(\{x | \mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi_{f(n,p)}\} \{x | \mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi_n\}) < \frac{1}{p}$.

Theorem 2.9 (Sacks [12] and Tanaka [15]). If A is a Π_1^1 set of positive measure, then A contains a hyperarithmetical real.

3. Higher Kurtz random reals and their distribution

Definition 3.1. Given a point class Γ (i.e. a class of sets of reals). A real x is Γ -Kurtz random if for every closed null set $A \in \Gamma$, $x \notin A$. x is said to be Kurtz-random (y-Kurtz random) if $\Gamma = \Pi_1^0 \ (\Gamma = \Pi_1^0(y))$.

We focus on Δ_1^1 , Σ_1^1 and Π_1^1 -Kurtz randomness. By the proof of Proposition 2.5, it is not difficult to see that a real x is Δ_1^1 -Kurtz random if and only if x does not belong to any $\Pi_1^0(\Delta_1^1)$ null set.

Theorem 3.2. Π_1^1 -Kurtz-randomness $\subset \Sigma_1^1$ -Kurtz-randomness $= \Delta_1^1$ -Kurtz-random-

Proof. It is obvious that Π_1^1 -Kurtz-randomness $\subseteq \Sigma_1^1$ -Kurtz-randomness $\subseteq \Delta_1^1$ -Kurtzrandomness.

Note that every Π_1^1 -ML-random is Δ_1^1 -Kurtz-random and there is a Π_1^1 -ML-random real $x \equiv_h \mathcal{O}$ (see [8] and [1]). But $\{x\}$ is a Π_1^1 closed set. So x is not Π_1^1 -Kurtz-random. Hence Π_1^1 -Kurtz-randomness $\subset \Delta_1^1$ -Kurtz-randomness.

Given a Π_1^1 open set A of measure 1. Define $x = \{\sigma \in 2^{<\omega} \mid \forall y(y \succ \sigma \Longrightarrow x \in A)\}$. Then x is a Π_1^1 real coding A (i.e. $y \in A$ if and only if there is a $\sigma \in x$ for which $y \succ \sigma$, or $y \in [\sigma]$). So there is a recursive function $f: 2^{<\omega} \to \omega$ so that $\sigma \in x$ if and only if $f(\sigma) \in \mathcal{O}$. Define a Π_1^1 relation $R \subseteq \omega \times \omega$ so that $(k,n) \in R$ if and only if $n \in \mathcal{O}$ and $\mu(\bigcup \{[\sigma] \mid \exists m \in \mathcal{O}_n(f(\sigma) = m)\}) > 1 - \frac{1}{k}$. Obviously R is a Π_1^1 relation which can be uniformized by a Π_1^1 function f. Since $\mu(A) = 1$, f is a total function. So the range of f is bounded by a notation $n \in \mathcal{O}$. Define $B = \{y \mid \exists \sigma(y \succ \sigma \land f(\sigma) \in \mathcal{O}_n)\}$. Then $B \subseteq A$ is a Δ_1^1 open set with measure 1. So every Π_1^1 open conull set has a Δ_1^1 open conull subset. Hence Σ_1^1 -Kurtz-randomness $= \Delta_1^1$ -Kurtz-randomness.

The following result clarifies the relation between Δ_1^1 - and Π_1^1 -Kurtz randomness.

Proposition 3.3. If $\omega_1^x = \omega_1^{\text{CK}}$, then x is Π_1^1 -Kurtz random if and only if x is Δ_1^1 -Kurtz random.

Proof. Suppose that $\omega_1^x = \omega_1^{\text{CK}}$ and x is Δ_1^1 -Kurtz random. If A is a Π_1^1 closed null set so that $x \in A$. Then by Theorem 2.6, there is a formula $\varphi(z,y)$ whose only unranked set variables are z and y so that the formula $\exists z \varphi(z,y)$ defining A. Since $\omega_1^x = \omega_1^{\text{CK}}$, $x \in B = \{y \mid \mathfrak{A}(\omega_1^{\text{CK}},y) \models \exists z^\alpha \varphi(z^\alpha,y)\} \subseteq A$ for some recursive ordinal α . Define $T = \{\sigma \in 2^{<\omega} \mid \exists y \in B(y \succ \sigma)\}$. Obviously $B \subseteq [T]$. Since B is Δ_1^1 , [T] is Σ_1^1 . Since A is closed, so is $[T] \subseteq A$. A is null, so is [T]. By the proof of Theorem 3.2, there is a Δ_1^1 closed null set $C \supseteq [T]$. Hence $x \in C$, a contradiction.

From the proof of Theorem 3.2, one sees that every hyperarithmetic degree above \mathcal{O} contains a Δ_1^1 -Kurtz random real. But this fails for Π_1^1 -Kurtz random. We say that a hyperdegree \mathbf{d} is a base for a cone of $\mathbf{\Gamma}$ -Kurtz randomness if for every hyperarithmetic degree $\mathbf{h} > \mathbf{d}$, \mathbf{h} contains a $\mathbf{\Gamma}$ -Kurtz random real.

The hyperdegree of \mathcal{O} is a base for a cone of Δ_1^1 -Kurtz randomness as proved in Theorem 3.2. We shall prove that not every nonzero hyperdegree is a base of a cone for Δ_1^1 -Kurtz random later.

Does there exist a base for a cone of Π_1^1 -Kurtz randomness? If there exists such a base, say **b**, then **b** is not hyperarithmetically reducible to any Π_1^1 singleton. This means that the bases must be rather complicated.

Lemma 3.4. For any reals x and $z \ge_T x'$, there is an x-Kurtz-random real $y \equiv_T z$.

Proof. Fix the reals x and z as the assumption. Fix an enumeration of x-r.e. open sets $\{U_n^x\}_{n\in\omega}$.

We construct an increasing sequence $\{\sigma_s\}_{s<\omega}$ step by step.

At stage 0. Let σ_0 be empty.

At stage s+1. Let $l_0=0$, $l_1=|\sigma_s|$, and $l_{n+1}=2^{l_n}$ for all n>1. For every n>1, let $A_n=\{\sigma\in 2^{l_n-1}\mid \exists m< n\forall i\forall j(l_m\leq i,j< l_{m+1}\implies \sigma(i)=\sigma(j))\}.$

Then

$$|A_n| < 2 \cdot 2^{l_{n-1}}.$$

In other words,

$$\mu(B_n = \bigcup \{ [\sigma] \mid \sigma \succeq \sigma_s \land \sigma \not\in A_n \}) \ge 2^{-l_1} \cdot (1 - 2^{l_n + 1 - l_{n+1}}).$$

Case(1): There is some $m > l_1 + 1$ so that $|\{\sigma \succeq \sigma_s \mid \sigma \in 2^m \land [\sigma] \subseteq U_s^x\}| > 2^{m-l_1-1}$. Let n = m+1. Then $l_{n+1} - 1 - l_n > 2$ and $l_n > m$. So there must be some $\sigma \in 2^{l_n-1} - A_n$ so that there is a $\tau \preceq \sigma$ for which $[\tau] \subseteq U_s^x$ and $\tau \in 2^m$.

Let
$$\sigma_{s+1} = \sigma^{\hat{}}(z(s))^{l_n-1}$$
.

Case(2): Otherwise. Let $\sigma_{s+1} = \sigma_s^{\hat{}}(z(s))^{l_1-1}$.

This finishes the construction at stage s + 1.

Let $y = \bigcup_s \sigma_s$.

Obviously the construction is recursive in z. So $y \leq_T z$. Moreover, if U_n^x is of measure 1, then Case (1) happens at the stage n+1. So y is x-Kurtz random.

Let $l_0 = 0, l_{n+1} = 2^{l_n}$ for all $n \in \omega$. To compute z(n) from y, we y-recursively find the n-th l_m for which for all i, j with $l_m \leq i < j < l_{m+1}, \ y(i) = y(j)$. Then $z(n) = y(l_m)$.

Let $\mathcal{A} \subseteq \omega \times 2^{\omega}$ be a universal Π_1^1 closed set. In other words, \mathcal{A} is a Π_1^1 set so that for every n, $\mathcal{A}_n = \{x \mid (n, x) \in \mathcal{A}\}$ is a Π_1^1 closed set and every Π_1^1 closed set is some \mathcal{A}_n . By Theorem 2.2.3 in [9], the real $x_0 = \{n \mid \mu(\mathcal{A}_n) = 0\}$ is Σ_1^1 . Let

$$\mathfrak{c} = \{(n,\sigma) \mid n \in x_0 \land \exists x ((n,x) \in \mathcal{A} \land \sigma \prec x)\} \subseteq \omega \times 2^{<\omega}.$$

Then \mathfrak{c} can be viewed as a Σ_2^1 real. Since every Π_1^1 null closed set is $\Pi_1^0(\mathfrak{c})$, every \mathfrak{c} -Kurtz-random real is Π_1^1 -Kurtz random.

Theorem 3.5. \mathfrak{c} is a base for a cone of Π_1^1 -Kurtz-randomness.

Proof. By Lemma 3.4, for every $y \ge_T \mathfrak{c}'$, there is a real $z \equiv_T y$ for which z is \mathfrak{c} -Kurtz random and so Π^1 -random. Thus \mathfrak{c} is a base for Π^1 -randomness.

Let

 $\delta_2^1 = \text{ supremum of the } \Delta_2^1 \text{ wellorderings of } \omega,$

and

$$\delta = \min\{\alpha \mid L \setminus L_{\alpha} \text{ contains no } \Pi_1^1 \text{ singleton}\}.$$

Proposition 3.6. $\delta = \delta_2^1$.

Proof. If $\alpha < \delta$, then there is a Π_1^1 singleton $x \in L_{\delta} \setminus L_{\alpha}$. Since $x \in L_{\omega_1^x}$ and ω_1^x is a $\Pi_1^1(x)$ -wellordering, it must be that $\alpha < \omega_1^x < \delta_2^1$. So $\delta \leq \delta_2^1$.

If $\alpha < \delta_2^1$, there is a Δ_2^1 wellordering relation $R \subseteq \omega \times \omega$ of order type α . So there are two recursive relations $S, T \subseteq (\omega^{\omega})^2 \times \omega^3$ so that

$$R(n,m) \Leftrightarrow \exists f \forall g \exists k S(f,g,n,m,k), \text{ and}$$

$$\neg R(n,m) \Leftrightarrow \exists f \forall g \exists k T(f,g,n,m,k).$$

Define a Π_1^1 set $R_0 = \{(f, n, m) \mid \forall g \exists k S(f, g, n, m, k)\}$. By Gandy-Spector theorem 2.2, there is an arithmetical relation S' so that $R_0 = \{(f, n, m) \mid \exists g \leq_h f(S'(f, g, n, m))\}$. Notice that every Π_1^1 nonempty set contains a Π_1^1 -singleton. Then

$$R(n,m) \Leftrightarrow \exists f \in L_{\delta} \exists g \in L_{\omega_1^f}[f](S'(f,g,n,m)).$$

In other words, R is Σ_1 -definable over L_{δ} . By the same method, $\neg R$ is Σ_1 -definable over L_{δ} too. So R is Δ_1 -definable over L_{δ} . It is clear that L_{δ} is admissible. So $R \in L_{\delta}$. Hence $\alpha < \delta$. Thus $\delta_2^1 = \delta$.

We analyze the complexity of \mathfrak{c} . Since every Π_1^1 singleton is recursive in \mathfrak{c} , $\mathfrak{c} \not\in L_{\delta_2^1}$. Moreover, the set $\{x \mid x \text{ is a } \Pi_1^1\text{-singleton}\}$ is a $\Delta_1^1(\mathfrak{c})$ set. In other words, $\{x \mid x \text{ is a } \Pi_1^1\text{-singleton}\} \in L_{\omega_1^{\mathfrak{c}}}[\mathfrak{c}]$. So it is clear that $\omega_1^{\mathfrak{c}} > \delta_2^1$.

By the same argument in Proposition 3.6, the reals lying in $L_{\delta_2^1}$ are exactly those Δ_2^1 -reals. So \mathfrak{c} is not Δ_2^1 . Moreover, since \mathfrak{c} is Σ_2^1 , it is Σ_1 definable over $L_{\delta_2^1}$. Hence $\mathfrak{c} \in L_{\delta_2^1+1}$. Actually all Σ_2^1 reals lies in $L_{\delta_2^1+1}$. This means:

 ${\mathfrak c}$ has the largest hyperdegree among all Σ_2^1 reals.

4. Δ_1^1 -traceability and dominability

We begin with the characterization of Π_1^1 -randomness within Δ_1^1 -Kurtz randomness.

Definition 4.1. A real x is Δ_1^1 -dominated if for all functions $f: \omega \to \omega$ with $f \leq_h x$, there is a hyperarithmetic function g so that g(n) > f(n) for all n (written as g > f).

Recall that a real is Π_1^1 -random if it does not belong to any Π_1^1 -null set. The following result is a higher analog of the result that Kurtz randomness coincides with weak 2-randomness for reals of hyperimmune-free degree.

Proposition 4.2. A real x is Π_1^1 -random if and only if x is Δ_1^1 -dominated and Δ_1^1 -Kurtz-random.

Proof. Every Π_1^1 -random real is Δ_1^1 -Kurtz random and also Δ_1^1 -dominated (see [1]). We prove another direction.

Suppose x is Δ_1^1 -dominated and Δ_1^1 -Kurtz random. We show that x is Π_1^1 -Martin-Löf random. If not, then fix a universal Π_1^1 -Martin-Löf test $\{U_n\}_{n\in\omega}$ (see [8]). Since x is Π_1^1 -dominated, $\omega_1^x = \omega_1^{CK}$ (see [1]). Then by the same argument in the proof of Lemma 4.5, there is a Δ_1^1 -sub-Martin-Löf test $\{\hat{U}_n\}_{n\in\omega}$ so that $x\in\bigcap_n\hat{U}_n$. Let $\hat{f}(n)=\min\{l\mid\exists\sigma\in 2^l(\sigma\in\hat{U}_n\wedge x\in[\sigma])\}$ be a $\Delta_1^1(x)$ function. Then there is a Δ_1^1 -function f dominating \hat{f} . Define $V_n=\{\sigma\mid\sigma\in 2^{\leq f(n)}\wedge\sigma\in\hat{U}_n\}$ for every n. Then $P=\bigcap_n V_n$ is a Δ_1^1 closed set and $x\in P$. So x is not Δ_1^1 -Kurtz random, a contradiction.

Hence x is Π_1^1 -Martin-Löf random. Since $\omega_1^x = \omega_1^{CK}$, x is also Π_1^1 -random (see [1]).

Next we proceed to traceability.

- **Definition 4.3.** (i) Let $h: \omega \to \omega$ be a nondecreasing unbounded function that is hyperarithmetical. A Δ_1^1 -trace with bound h is a uniformly Δ_1^1 sequence $(T_e)_{e \in \omega}$ such that $|T_e| \leq h(e)$ for each e.
 - (ii) $x \in 2^{\omega}$ is Δ_1^1 -traceable [1] if there is $h \in \Delta_1^1$ such that, for each $f \leq_h x$, there is a Δ_1^1 -trace with bound h such that, for each $e, f(e) \in T_e$.
 - (iii) $x \in 2^{\omega}$ is Δ_1^1 -semi-traceable if for each $f \leq_h x$, there is a Δ_1^1 -function g so that, for infinitely many n, f(n) = g(n). We call that g semi-traces f.

(iv) $x \in 2^{\omega}$ is Π_1^1 -semi-traceable if for each $f \leq_h x$, there is a partial Π_1^1 -function p so that, for infinitely many n's, f(n) = p(n).

Note that, if $(T_e)_{e \in \omega}$ is a uniformly Δ_1^1 sequence of finite sets, then there is $g \in \Delta_1^1$ such that for each e, $D_{g(e)} = T_e$ (where D_n is the nth finite set according to some recursive ordering). Thus

$$g(e) = \mu n \, \forall u \, [u \in D_n \leftrightarrow u \in T_e].$$

In this formulation, the definition of Δ_1^1 traceability is very close to that of recursive traceability.

Also notice that the choice of a bound as a witness for traceability is immaterial:

Proposition 4.4 (As in Terwijn and Zambella [16]). Let A be a real that is Δ_1^1 traceable with bound h. Then for any monotone and unbounded Δ_1^1 function h', A is Δ_1^1 traceable with bound h'.

Lemma 4.5. x is Π_1^1 -semi-traceable if and only if x is Δ_1^1 -semi-traceable.

Proof. It is not difficult to see that if x is Π_1^1 -semi-traceable, then $\omega_1^x = \omega_1^{\text{CK}}$ (otherwise, $x \geq_h \mathcal{O}$. But \mathcal{O} cannot be Π_1^1 -semi-traceable,).

Suppose that x is Π_1^1 -semi-traceable and $\omega_1^x = \omega_1^{\text{CK}}$, and $f \leq_h x$. Fix a Π_1^1 partial function p for f. Since p is a Π_1^1 function, there must be some recursive injection h so that $p(n) = m \Leftrightarrow h(n, m) \in \mathcal{O}$.

Let R(n,m) be a $\Pi_1^1(x)$ relation so that R(n,m) iff there exists $m > k \ge n$ for which f(k) = p(k). Then there is a $\Pi_1^1(x)$ total, and so $\Delta_1^1(x)$, function g uniformizing R. So for every n, there is some $m \in [g(n), g(g(n)))$ so that f(m) = p(m). Let g'(0) = g(0), and g'(n+1) = g(g'(n)) for all $n \in \omega$. Define a $\Pi_1^1(x)$ relation S(n,m) so that S(n,m) if and only if $m \in [g'(n), g'(n+1))$ and p(m) = f(m). Uniformizing S to be a $\Delta_1^1(x)$ function g''.

Define a $\Delta_1^1(x)$ set to be $H = \{h(m,k) \mid \exists n(g''(n) = m \land f(m) = k)\}$. Since $\omega_1^x = \omega_1^{\text{CK}}$, $H \subseteq \mathcal{O}_n$ for some $n \in \mathcal{O}$. Since \mathcal{O}_n is a Δ_1^1 set, we can define a Δ_1^1 function \hat{f} to be: $\hat{f}(i) = j$ if $h(i,j) \in \mathcal{O}_n$; $\hat{f}(i) = 1$, otherwise. Then there are infinitely many i's so that $f(i) = \hat{f}(i)$.

The following result gives another characterization of Δ_1^1 -semi-traceability.

Proposition 4.6. x is Δ_1^1 -semi-traceable if and only if there is an increasing Δ_1^1 function g so that for every function $f \leq_h x$, there is a function $F : \omega \to \omega^{<\omega}$ with $\underline{\lim}_n \frac{|F(n)|}{g(n)} < 1$ so that there are infinitely many n's with $f(n) \in F(n)$.

Proof. It suffices to show the if direction. Given $f \leq_h x$. Let $g(n) = \langle f(g(n)), f(g(n)+1), ..., f(g(n+1)-1) \rangle$ for all $n \in \omega$. Then there is a Δ_1^1 function F as described. Then for all $g(n) \leq m < g(n+1)$, let $\hat{f}(m) = \text{the } (m-g(n))$ -th column of the (m-g(n))-th element of F(n) if there exists such an m; otherwise, let $\hat{f}(m) = 1$. Since $\underline{\lim}_n \frac{|F(n)|}{g(n)} < 1$, it is not difficult to see that for infinitely many n's, there is a number $m \in [g(n), g(n+1))$ so that $f(m) = \hat{f}(m)$.

Note that the Δ_1^1 dominated reals form a measure 1 set [1] but the set of Δ_1^1 -semi-traceable reals is null. Chong, Nies and Yu [1] constructed a non-hyperarithmetic Δ_1^1 -traceable real.

Proposition 4.7. Every Δ_1^1 -traceable real is Δ_1^1 -dominated and -semi-traceable.

Proof. Obviously every Δ_1^1 -traceable real is Δ_1^1 -dominated.

Given a Δ_1^1 -traceable real x and $\Delta_1^1(x)$ function f. Let $g(n) = \langle f(2^n), f(2^n + 2), \ldots, f(2^{n+1} - 1) \rangle$ for all $n \in \omega$. Then there is a Δ_1^1 trace T for g so that $|T_n| \leq n$ for all n.

Then for all $2^n+1 \le m \le 2^{n+1}$, let $\hat{f}(m) = \text{the } (m-2^n)$ -th column of the $(m-2^n)$ -th element of T_n if there exists such an m; otherwise, let $\hat{f}(m) = 1$. It is not difficult to see that for every n there is at least one $m \in [2^n, 2^{n+1})$ so that $f(m) = \hat{f}(m)$. \square

From the proof above, one can see the following corollary.

Corollary 4.8. A real x is Δ_1^1 -traceable if and only if for every x-hyperarithmetic \hat{f} , there is a hyperarithmetic function f so that for every n, there is some $m \in [2^n, 2^{n+1})$ so that $f(m) = \hat{f}(m)$.

The following proposition is useful.

Proposition 4.9. For any real x, the following are equivalent.

- (1) x is Δ_1^1 -semi-traceable and Δ_1^1 -dominated.
- (2) For every function $g \leq_h x$, there are an increasing Δ_1^1 function f and a Δ_1^1 function $F: \omega \to \omega^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in [f(n), f(n+1))$ so that $g(n) \in F(n)$.

Proof. $(1) \Longrightarrow (2)$: Obviously.

(2) \Longrightarrow (1). Give a function $\hat{g} \leq_h x$. Without loss of generality, \hat{g} is non-decreasing. Let Δ^1_1 functions f and F be the corresponding functions. Define $j(n) = \sum_{i \leq f(n+1)} \sum_{k \in F(i)} k$. Then j is a Δ^1_1 function dominating \hat{g} .

To show that x is Δ_1^1 -traceable. Give a function $\hat{g} \leq_h x$. Let $h(n) = \langle g(2^n + 1), g(2^n + 2), ..., g(2^{n+1} - 1) \rangle$. Then there are the corresponding Δ_1^1 functions f_h and F_h . For every n and $m \in [2^n, 2^{n+1})$, let $g(m) = \text{the } (m-2^n)$ -th column of the $m-2^n$ -th element in $F_h(n)$ if such an m exists; let g(m) = 1 otherwise. Then g is a Δ_1^1 function semi-tracing \hat{g} .

To separate Δ_1^1 -traceability from the conjunction of Δ_1^1 -semi-traceability and Δ_1^1 -dominability, we have to modify Sacks' perfect set forcing.

- **Definition 4.10.** (1) A Δ_1^1 perfect tree $T \subseteq 2^{<\omega}$ is fat at n if for every $\sigma \in T$ and $|\sigma| \in [2^n, 2^{n+1})$, then $\sigma \cap 0 \in T$ and $\sigma \cap 1 \in T$.
 - (2) A Δ_1^i perfect tree $T \subseteq 2^{<\omega}$ is fat if there are infinitely many n's so that T is fat at n.
 - (3) Fat forcing $\mathbb{F} = (\mathcal{F}, \subseteq)$ is a partial order of which the domain \mathcal{F} is the collection of fat trees.

Let φ be a sentence of $\mathfrak{L}(\omega_1^{\text{CK}}, \dot{x})$. Then we can define the forcing relation, $T \Vdash \varphi$, as done by Sacks in Section 4, IV [13].

- (1) φ is ranked and $\forall x \in T(\mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi)$, then $T \Vdash \varphi$.
- (2) If $\varphi(y)$ is unranked and $T \Vdash \varphi(\psi(n))$ for some $\psi(n)$ of rank at most α , then $T \Vdash \exists y^{\alpha} \varphi(y^{\alpha})$.
- (3) If $T \Vdash \exists y^{\alpha} \varphi(y^{\alpha})$, then $T \Vdash \exists y \varphi(y)$.
- (4) If $\varphi(n)$ is unranked and $T \Vdash \varphi(m)$ for some number m, then $T \Vdash \exists n \varphi(n)$.
- (5) If φ and ψ are unranked, $T \Vdash \varphi$ and $T \Vdash \psi$, then $T \Vdash \varphi \land \psi$.
- (6) If φ is unranked and $\forall P(P \subseteq T \implies P \not\Vdash \varphi)$, then $T \Vdash \neg \varphi$.

The following lemma can be deduced as done in [13].

Lemma 4.11. The relation $T \Vdash \varphi$, restricted to $\Sigma_1^1 \varphi$'s, is Π_1^1 .

Lemma 4.12. (1) Let $\{\varphi_i\}_{i\in\omega}$ be a hyperarithmetic sequence of Σ_1^1 sentences. Suppose for every i and $Q\subseteq T$, there exists some $R\subseteq Q$ so that $R\Vdash \varphi_i$. Then there exists some $Q\subseteq T$ so that for every i, $Q\Vdash \varphi_i$.

 $(2) \ \forall \varphi \forall T \exists Q \subseteq T(Q \Vdash \varphi \lor Q \Vdash \neg \varphi).$

Proof. Note that $\mathcal{R}(R, i, \sigma, P)$ if and only if

 $\sigma \in R \wedge \log |\sigma| - 1$ is the *i*-th fat number of $R \wedge P \upharpoonright |\sigma| = \{\tau \mid \tau \prec \sigma\} \wedge P \subseteq R \wedge P \Vdash \varphi_i$ is a Π_1^1 relation where $P \upharpoonright n = \{\tau \in 2^{\leq n} \mid \tau \in P\}$. Then \mathcal{R} can be uniformized by a partial Π_1^1 function $F : \mathcal{F} \times \omega \times 2^{<\omega} \to \mathcal{F}$. A hyperarithmetic family $\{P_{\sigma} \mid \sigma \in 2^{<\omega}\}$ can be defined by recursion on σ .

 $P_{\emptyset} = T$.

If $\log |\sigma| - 1$ is not a fat number of P_{σ} , then $P_{\sigma \cap 0}, P_{\sigma \cap 1} = P_{\sigma}$.

Otherwise: If $\sigma \notin P_{\sigma}$, then $P_{\sigma \cap 0} = P_{\sigma \cap 1} = \emptyset$.

Otherwise: $P_{\sigma \hat{\ }0} \cap P_{\sigma \hat{\ }1} = \emptyset, P_{\sigma \hat{\ }0} \cap P_{\sigma \hat{\ }1} \subseteq P_{\sigma}$,

 $P_{\sigma \cap 0} \upharpoonright |\sigma|, P_{\sigma \cap 1} \upharpoonright |\sigma| = \{\tau \mid \tau \prec \sigma\}$ and

 $P_{\sigma^{\smallfrown}0}, P_{\sigma^{\smallfrown}1} \Vdash \wedge_{j\leq i} \varphi_j$ where

i is the number so that $\log |\sigma| - 1$ is the i-th fat number of T.

Let $Q = \bigcap_n \bigcup_{|\sigma|=n} P_{\sigma}$. Then $Q \in \mathcal{F}$. It is routine to check that for every $i, Q \Vdash \varphi_i$.

The proof of (2) is the same as the proof of Lemma 4.4 IV [13].

x is a generic if for each Σ_1^1 sentence φ , there is a condition T such that $x \in T$ and either $T \Vdash \varphi$ or $T \Vdash \neg \varphi$. One can check that for every Σ_1^1 -sentence φ (Lemma 4.8, IV [13]),

$$\mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi \Leftrightarrow \exists P(x \in P \land P \Vdash \varphi).$$

Lemma 4.13. If x is a generic real, then

- (1) $\mathfrak{A}(\omega_1^{\text{CK}}, x)$ satisfies Δ_1^1 -comprehension. So $\omega_1^x = \omega_1^{\text{CK}}$.
- (2) x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.
- (3) x is not Δ_1^1 -traceable.

Proof. (1). The proof of (1) is exactly same as the proof of Theorem 5.4 IV, [13].

(2). By Proposition 4.9, it suffices to show that for every function $g \leq_h x$, there are an increasing Δ_1^1 function f and a Δ_1^1 -function $F: \omega \to \omega^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in [f(n), f(n+1))$ so that $g(n) \in F(n)$. Since $g \leq_h x$ and $\omega_1^x = \omega_1^{\text{CK}}$, there is a ranked formula φ so that for every n, g(n) = m if

and only if $\mathfrak{A}(\omega_1^{\text{CK}}, x) \models \varphi(n, m)$. So there is a condition $S \Vdash \forall n \exists ! m \varphi(n, m)$. Fix a condition $T \subseteq S$. As in the proof of Lemma 4.12, we can build a hyperarithmetic sequence of conditions $\{P_{\sigma}\}_{{\sigma} \in 2^{<\omega}}$ as in the proof so that

$$P_{\sigma^{\hat{}}i} \Vdash \varphi(|\sigma|, m_{\sigma^{\hat{}}i}) \text{ for } i \leq 1$$

if $\log |\sigma| - 1$ is a fat number of P_{σ} and $\sigma \in P_{\sigma}$. Let Q as defined in the proof of Lemma lemma fusion lemma. Define a Δ_1^1 function f(0) = 0, f(n+1) be the least number k > f(n) so that m_{σ} is defines for some σ with $f(n) < |\sigma| < k$. Let $F(n) = \{0\} \cup \{m_{\sigma} \mid |\sigma| = n\}$ be a Δ_1^1 function. Then

$$Q \Vdash \forall n | F(n) | \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i)).$$

So

$$Q \Vdash \exists F \exists f (\forall n | F(n)) \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))).$$

Since T is an arbitrary condition stronger than S, this means

$$S \Vdash \exists F \exists f (\forall n | F(n)) \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))).$$

Since $x \in S$,

$$\mathfrak{A}(\omega_1^{\operatorname{CK}},x) \models \exists F \exists f (\forall n | F(n)| \leq n \land \forall n \exists m \in [f(n),f(n+1)) \exists i \in F(m)(\varphi(m,i))).$$

So x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.

(3). Suppose $f: \omega \to \omega$ is a Δ^1_1 function so that for every n, there is a number $m \in [2^n, 2^{n+1})$ with f(m) = x(m). Then there is a ranked formula φ so that $f(n) = m \Leftrightarrow \mathfrak{A}(\omega^{\operatorname{CK}}_1, x) \models \varphi(n, m)$. Moreover, $\mathfrak{A}(\omega^{\operatorname{CK}}_1, x) \models \forall n \exists m \in [2^n, 2^{n+1})(\varphi(m, x(m)))$. So there is a condition $T \Vdash \forall n \exists m \in [2^n, 2^{n+1})(\varphi(m, \dot{x}(m)))$ and $x \in T$. Let n be a number so that T is fat at n and $\sigma \in 2^{2^n-1}$ be a finite string in T. Let μ be a finite string so that $\mu(m) = 1 - f(m + 2^n - 1)$. Define $S = \{\sigma^{\wedge}\mu^{\wedge}\tau \mid \sigma^{\wedge}\mu^{\wedge}\tau \in T\} \subseteq T$. Then $S \Vdash \forall m \in [2^n, 2^{n+1})(\neg \varphi(m, x(m)))$. But S is stronger than T, a contradiction. By Corollary 4.8, x is not Δ^1_1 -traceable.

We may now separate Δ_1^1 -traceability from the conjunction of Δ_1^1 -semi-traceability and Δ_1^1 -dominability.

Theorem 4.14. There are 2^{\aleph_0} many Δ_1^1 -dominated and Δ_1^1 -semi-traceable reals which are not Δ_1^1 -traceable.

Proof. This is immediate from Lemma 4.13. Note that there are 2^{\aleph_0} many generic reals.

5. Lowness for Kurtz randomness

Definition 5.1. Given a relativizable class of reals C (for instance, C is the class of random reals), a real x is low for C if $C = C^x$.

We shall prove that lowness for Δ_1^1 -randomness is different from lowness for Δ_1^1 -Kurtz randomness.

Theorem 5.2. If x is Δ_1^1 -dominated and -semi-traceable, then x is low for Δ_1^1 -Kurtz random. Actually x is low for Δ_1^1 -Kurtz test. In other words, every $\Delta_1^1(x)$ open set with measure 1 has a Δ_1^1 open subset of measure 1. Hence lowness for Δ_1^1 -randomness is different from lowness for Δ_1^1 -Kurtz randomness.

Proof. Suppose x is Δ_1^1 -dominated and -semi-traceable and U is a $\Delta_1^1(x)$ open set with measure 1. Then there is a real $y \leq_h x$ so that U is $\Sigma_1^0(y)$. So there is a recursive oracle set U^z so that $U^y = U$.

Define a $\Delta_1^1(x)$ function $\hat{f}(n) =$ the shortest string $\sigma \prec y$ so that $\mu(U^{\sigma}[\sigma]) > 1 - 2^{-n}$. By the assumption, there are an increasing Δ_1^1 function g and Δ_1^1 function f so that for every n, there is an $m \in [g(n), g(n+1))$ so that $f(m) = \hat{f}(m)$. Without loss of generality, we can assume that $\mu(U^{f(m)}[m]) > 1 - 2^{-m}$ for every m.

Define a Δ_1^1 open set V so that $\sigma \in V$ if and only if there exists some n so that $[\sigma] \subseteq \bigcap_{g(n) \le m < g(n+1)} U^{f(m)}[m]$. By the property of f and $g, V \subseteq U^y = U$. But for every n,

$$\mu(\bigcap_{g(n) \leq m < g(n+1)} U^{f(m)}[m]) > 1 - \sum_{g(n) \leq m < g(n+1)} 2^{-m} \geq 1 - 2^{-g(n)+1}.$$

So

$$\mu(V) \ge \lim_{n} \mu(\bigcap_{g(n) \le m < g(n+1)} U^{f(m)}[m]) = 1.$$

Hence x is low for Δ_1^1 -Kurtz random.

In [1], it is proved that lowness for Δ_1^1 -randomness is the same as Δ_1^1 -traceability. By Theorem 4.14, lowness for Δ_1^1 -randomness is different from lowness for Δ_1^1 -Kurtz randomness.

Corollary 5.3. There is a non-zero hyperdegree below \mathcal{O} which is not a base for a cone of Δ_1^1 -Kurtz randomness.

Proof. Clearly there is a real $x <_h \mathcal{O}$ which is Δ_1^1 -dominated and -semi-traceable. Then the hyperdegree of x is not a base for Δ_1^1 -Kurtz random.

Actually the converse of Theorem 5.2 is also true.

Lemma 5.4. If x is low for Δ_1^1 -Kurtz random, then x is Δ_1^1 -dominated.

Proof. Firstly we show that if x low for Δ_1^1 -Kurtz test, then x is Δ_1^1 -dominated.

Suppose $f \leq_h x$ is an increasing function. Let $S_f = \{z \mid \forall n(z(f(n)) = 0)\}$. Obviously S_f is a $\Delta^1_1(x)$ closed null set. So there is a Δ^1_1 closed null set $[T] \supseteq S_f$ where $T \subseteq 2^{<\omega}$ is a Δ^1_1 -tree. Define

$$g(n) = \min\{m \mid \frac{|\{\sigma \in 2^m \mid \sigma \in T\}|}{2^m} < 2^{-n}\} + 1.$$

Since $\mu([T]) = 0$, g is a well defined Δ_1^1 -function. We claim that g dominates f. For every n, $S_{f(n)} = \{ \sigma \in 2^{f(n)} \mid \forall i \leq n(\sigma(f(i)) = 0) \}$ has cardinality $2^{f(n)-n}$. But

if $g(n) \leq f(n)$, then since $S \subseteq [T]$, we have

$$|S_{f(n)}| \le 2^{f(n)-g(n)} \cdot |\{\sigma \in 2^{g(n)} \mid \sigma \in T\}| < 2^{f(n)-g(n)} \cdot 2^{g(n)-n} = 2^{f(n)-n}$$

This is a contradiction. So x is Δ_1^1 -dominated.

Now suppose x is not Δ_1^1 dominated witnessed by some $f \leq_h x$. Then S_f is not contained in any Δ_1^1 -closed null set. Actually, it is not difficult to see that for any σ with $[\sigma] \cap S_f \neq \emptyset$, $[\sigma] \cap S_f$ is not contained in any Δ_1 -closed null set (otherwise, as proved above, one can show that f is dominated by some Δ_1^1 function). Then, by an induction, we can construct a Δ_1^1 -Kurtz random real $z \in S_f$ as follows:

Fix an enumeration P_0, P_1, \dots of Δ_1^1 -closed null set.

At stage n+1, we have constructed some $z \upharpoonright l_n$ so that $[z] \upharpoonright l_n \cap S_f \neq \emptyset$. Then there is a $\tau \succ z \upharpoonright l_n$ so that $[\tau] \cap S_f \neq \emptyset$ but $[\tau] \cap S_f \cap P_n = \emptyset$. Fix such a τ , let $l_{n+1} = |\tau|$ and $z \upharpoonright l_{n+1} = \tau$.

Then $z \in S_f$ is a Δ_1^1 -Kurtz random.

So x is not low for Δ_1^1 -Kurtz random.

Lemma 5.5. If x is low for Δ_1^1 -Kurtz random, then x is Δ_1^1 -semi-traceable.

Proof. The proof is a shift of the main result in [7].

Firstly we show that if x low for Δ_1^1 -Kurtz test, then x is Δ_1^1 -semi-traceable.

Suppose that x is low for Δ_1^1 -Kurtz test and $f \leq_h x$. Partition ω into finite intervals $D_{m,k}$ for 0 < k < m so that $|D_{m,k}| = 2^{m-k-1}$. Moreover, if m < m', then max $D_{m,k} < m'$ $\min D_{m',k'}$ for any k < m and k' < m'. Let $n_m = \max\{i \mid i \in D_{m,k} \land k < m\}$ for every $m \in \omega$. Note that $\{n_m\}_{m \in \omega}$ is a recursive increasing sequence.

For every function h, let

$$P^h = \{ x \in 2^\omega \mid \forall m(x(h \upharpoonright n_m) = 0) \}$$

be a closed null set. Obviously P^f is a $\Delta_1^1(x)$ closed null set. Then there is a Δ_1^1 closed null set $Q \supseteq P^f$. We define a Δ_1^1 function g as follows.

For each $k \in \omega$, let d_k be the least number d so that $|\{\sigma \in 2^d \mid \exists x \in Q(x \succ \sigma)\}| \le$ 2^{d-k-1} . Note that $\{d_k\}_{k\in\omega}$ is a Δ_1^1 -sequence. Define

$$Q_k = \{ \sigma \mid \sigma \in 2^{d_k} \land \exists x \in Q(x \succ \sigma) \}.$$

Then $\{Q_k\}_{k\in\omega}$ is a Δ^1_1 sequence of clopen sets and $|Q_k|\leq 2^{d_k-k-1}$ for each $k< d_k$. Then Greenberg and Miller [7] constructed a finite tree $S \subseteq \omega^{<\omega}$ and a finite sequence $\{S_m\}_{k < m \le l}$ for some l with the following properties:

- $(1) [S] = \{ h \in \omega^{\omega} \mid P^h \subseteq [Q_k] \};$
- (2) $S_m \subseteq S \cap \omega^{n_m};$ (3) $|S_m| \le 2^{m-k-1};$
- (4) every leaf of S extends some string in $\bigcup_{k < m < l} S_m$.

Moreover, both the finite tree S and sequence can be obtained uniformly from Q_k . Now for each m with $k < m \le l$ and $\sigma \in S_m$, we pick a distince $i \in D_{m,k}$ and define $g(i) = \sigma(i)$. For the other undefined $i \in D_{m,k}$, let g(i) = 0.

So g is a well-defined Δ_1^1 function.

For each $k, P^f \subseteq Q \subseteq [Q_k]$. So $f \in [S]$. Hence there must be some $i > n_k$ so that f(i) = g(i).

Thus x is Δ_1^1 -semi traceable.

Now suppose x is not Δ_1^1 -semitraceable. Let $f \leq_h x$ witnesses the property of x. Then P^f is not contained in any Δ^1_1 closed null set. It is shown in [7] that for any σ , assuming that $[\sigma] \cap P^f \neq \emptyset$, $[\sigma] \cap P^f$ is not contained in any Δ_1^1 closed null set. Then by an easy induction, one can construct a Δ_1^1 -Kurtz random real in P^f .

So x is not low for Δ_1^1 -Kurtz random.

So we have the following theorem.

Theorem 5.6. For any real $x \in 2^{\omega}$, the following are equivalent:

- (1) x is low for Δ_1^1 -Kurtz test;
- (2) x is low for Δ₁¹-Kurtz randomness;
 (3) x is Δ₁¹-dominated and -semi-traceable.

It is unknown whether there exists a nonhyperarithmetic real which is low for Π_1^1 Kurtz random. But we know that lowness for Π_1^1 -Kurtz randomness is a stronger notion.

Proposition 5.7. If x is low for Π_1^1 -Kurtz random, then x is low for Δ_1^1 -Kurtz random.

Proof. Suppose that x is low for Π_1^1 -Kurtz random, y is Δ_1^1 -Kurtz-random and there is a $\Delta_1^1(x)$ closed null set A with $y \in A$. Then by Theorem 2.7, the set

$$B = \bigcup \{C \mid C \text{ is a } \Delta^1_1 \text{ closed null set} \}$$

is a Π^1_1 null set. So A-B is a $\Sigma^1_1(x)$ nonempty set. Thus there must be some real $z\in A-B$ with $\omega^z_1=\omega^x_1=\omega^{\text{CK}}_1$. Since $z\not\in B$, z is Δ^1_1 -Kurtz random. So by Proposition 3.3, z is Π^1_1 -Kurtz random. This contradicts to that x is low for Π^1_1 -Kurtz random.

REFERENCES

- [1] Chi Tat Chong, André Nies, and Liang Yu. Higher randomness notions and their lowness properties. Israel Journal of Mathematics, 2008.
- [2] Paul J. Cohen. Set theory and the continuum hypothesis. W. A. Benjamin, Inc., New York-Amsterdam, 1966.
- [3] Rodney G. Downey, Evan J. Griffiths, and Stephanie Reid. On Kurtz randomness. Theor. Comput. Sci., 321(2-3):249-270, 2004.
- [4] Solomon Feferman. Some applications of the notions of forcing and generic sets. Fund. Math., 56:325–345, 1964/1965.
- [5] Solomon Feferman and Clifford Spector. Incompleteness along paths in progressions of theories. J. Symbolic Logic, 27:383–390, 1962.
- [6] Robin O. Gandy. Proof of Mostowski's conjecture. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8:571–575, 1960.
- [7] Noam Greenberg and Joseph Miller. Lowness for Kurtz randomness. Manuscript, 2008.
- [8] Greg Hjorth and André Nies. Randomness in effective descriptive set theory. J. London. Math. Soc., 75(2):495-508, 2007.
- [9] Alexander S. Kechris. Measure and category in effective descriptive set theory. Ann. Math. Logic, 5:337-384, 1972/73.
- [10] Per Martin-Löf. On the notion of randomness. In Intuitionism and Proof Theory (Proceedings Conference, Buffalo, N.Y., 1968), pages 73–78. North-Holland, Amsterdam, 1970.

- [11] André Nies. Computability and Randomness. Oxford University Press. To appear in the series Oxford Logic Guides.
- [12] Gerald E. Sacks. Measure-theoretic uniformity in recursion theory and set theory. *Trans. Amer. Math. Soc.*, 142:381–420, 1969.
- [13] Gerald E. Sacks. *Higher recursion theory*. Perspectives in Mathematical Logic. Springer, Heidelberg, 1990.
- [14] Clifford Spector. Hyperarithmetical quantifiers. Fund. Math., 48:313–320, 1959/1960.
- [15] Hisao Tanaka. A basis result for Π_1^1 -sets of postive measure. Comment. Math. Univ. St. Paul., 16:115-127, 1967/1968.
- [16] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. *The Journal of Symbolic Logic*, 66(3):1199–1205, 2001.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII AT MANOA, 2565 McCarthy Mall, Honolulu, HI 96822, USA

E-mail address: bjoern@math.hawaii.edu

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF AUCKLAND, PRIVATE BAG 92019, AUCKLAND, NEW ZEALAND

 $E ext{-}mail\ address: and renies @gmail.com}$

DEPARTMENTS OF MATHEMATICS AND COMPUTER SCIENCE, NATIONAL UNIVERSITY OF SINGAPORE, 2 SCIENCE DRIVE 2, SINGAPORE 117543, REPUBLIC OF SINGAPORE.

E-mail address: fstephan@comp.nus.edu.sg

INSTITUTE OF MATHEMATICAL SCIENCE, NANJING UNIVERSITY, NANJING, JIANGSU PROVINCE, 210093, P.R. OF CHINA

E-mail address: yuliang.nju@gmail.com