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ABSTRACT

In this paper I explore a position on which it is possible to eliminate the need
for postulating abstract objects through abstraction principles by treating terms
for abstracta as ‘incomplete symbols’, using Russell’s no-classes theory as a tem-
plate from which to generalize. I defend views of this stripe against objections,
most notably Richard Heck’s charge that syntactic forms of nominalism cannot
correctly deal with non-first-orderizable quantifcation over apparent abstracta.
I further discuss how number theory may be developed in a system treating
apparent terms for numbers using these definitions.

1. INTRODUCTION: ABSTRACT OBJECTS
AND ABSTRACTIONISM

As their name implies, we might describe abstract objects as those arrived at
through a process of abstraction. An informal description of abstraction might
be that it is a process whereby we recognize what is in common among a group
of things sharing a certain kind of relevant similarity despite certain irrelevant
differences. We overlook, ignore or ‘abstract away’ those differences, and what
is left is then reified and identified as an abstract ‘thing’. This informal charac-
terization is open to several criticisms. It almost makes it seem as if we could
turn one thing, a specific, possibly concrete thing, into an abstract thing just
by ignoring certain features of it, or perhaps even make more than one thing
‘the same’ by ignoring their differences. A thing is what it is regardless of what
aspects of it we choose to focus on or pay attention to. Frege was particularly
harsh in criticizing those who liked to describe a number such as three as arrived
at by ignoring or putting aside the differences among different collections of
three objects by thinking of the objects as ‘bare units’, indistinguishable from
the units in any other collection of three. He accused them of adopting such
absurd-on-their-face principles as the ‘principle of the non-differentiation of the

C© The Author [2015]. Published by Oxford University Press.

All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

–9

Advance Access publication October 1, 2015

• 91

1151

Philosophia Mathematica (III) Vol. 25  No.1

http://philmat.oxfordjournals.org/


different’ (see, e.g., [Frege, 1984]), whereby we simply ‘decide’ that different
things are the same.

Some post-Fregean philosophical literature portrays abstract objects instead
as those introduced, or at any rate introduce-able, by means of abstraction
principles, those of the form:

∀τ∀μ(ρ(τ) = ρ(μ) ↔ E(τ, μ)). (AP)

Here, τ and μ are variables of the same logical type (individuals, concepts, or
properties of individuals, relations, etc.), and E abbreviates some equivalence
relation ascribable to values of that type — that is, a reflexive, symmetric, and
transitive relation, which thereby ‘partitions’ the type into equivalence classes or
groups all of which bear E to each other and none of which bear E to something
outside the group. The functor ρ here maps entities of the type of τ and μ to
abstract objects; the abstraction principle guarantees that ρ will map relata
bearing E to each other to the same abstract object, and relata not bearing
E to different abstract objects. Examples of principles of this form might be
the direction of line l and the direction of line m are the same iff l and m are
parallel, which introduces the abstract notion of a direction, or the shape of
object o and the shape of object p are the same iff o and p are congruent, which
introduces shapes as abstract objects. It is these sorts of abstract objects which
I would like to focus on in what follows. For the purposes of this paper, I bracket
the question as to whether or not other abstract objects must be recognized.

Interest in abstraction principles among philosophers of mathematics dates
back at least to the 1880s; they are discussed in Frege’s Grundlagen and in the
writings of the Italian school led by Giuseppe Peano. More recently, Crispin
Wright and his associates have advocated an ‘abstractionist’ form of logicism
(see, e.g., [Hale and Wright, 2001; Wright, 1983]). On their view, the core of
mathematics rests on our acceptance of abstraction principles making use of
purely logically specifiable equivalence relations. They hold that these principles
can roughly be taken to have the logical and epistemological status of definitions:
they merely explicate what certain terminology means. The most important
example is what has come to be known as HP or Hume’s Principle:

∀F∀G(#(F ) = #(G) ↔ F ∼= G). (HP)

The number of F s is the number of Gs iff the F s are equinumerous with the
Gs. ‘Equinumerosity’ is the equivalence relation holding between F and G just
in case there is a 1–1 correlation between the F s and Gs, which can be defined
purely logically as follows:

F ∼= G =df (∃R){∀x∀y∀z∀w[Rxy ∧ Rzw → (x = z ↔ y = w)] ∧
∀x[Fx → ∃y(Gy ∧ Rxy)] ∧ ∀y[Gy → ∃x(Fx ∧ Rxy)]}.

In standard second-order logic, it is possible to derive all of the principles of
Peano arithmetic from HP as the sole axiom over and above the usual logical
axioms, with the functor #( ) as the sole addition to the usual logical primitives.
According to Wright, because (HP) can be seen as an analytic truth, specifying
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what we mean by talking of ‘numbers’ in logical terms, and this is evidence
that arithmetic itself is an analytic outgrowth of logic. Further research has
confirmed that similar abstraction principles may be used to derive the basic
principles of real analysis and other areas of mathematics.

This kind of attitude towards abstraction principles and abstract objects,
however, is not without its share of worries. HP, for example, is not a definition
in the usual sense, and merely from the fact that Peano arithmetic can be
derived from it shows that it has serious ontological consequences. It entails
the existence of infinitely many things, infinitely many numbers. Is it really
possible, by means of an analytic principle, to become aware of new objects
merely by considering whether or not a higher-order relation holds between
concepts? Such considerations naturally lead us back to general and ancient
philosophical worries about abstracta: how can we become aware of, refer to,
or discriminate, the causally inert? How can laws or principles about abstracta
be brought to bear, as mathematics clearly can, on the concrete world? Is not
postulating a realm of Platonic entities unnecessary, redundant, or puzzling?
Abstractionist forms of Platonism have other, more specific, objections to con-
sider as well. There are principles of the form AP, very similar to HP, which are
self-contradictory or inconsistent. Most notoriously, there is the principle which
states that the extension of F is the extension of G iff F and G bear to each
other the equivalence relation of coextensionality:

∀F∀G(ext(F ) = ext(G) ↔ ∀x(Fx ↔ Gx)). (BLV)

For all intents and purposes, this is Frege’s Basic Law V, and it easily gives
rise to the contradiction from Russell’s paradox. A similar principle postulating
order-types the same for all and only isomorphic relations gives rise to the
Burali-Forti paradox. Even abstraction principles that are consistent on their
own, such as HP, can often be shown to be inconsistent with other principles
also consistent on their own.

It is not my purpose here to evaluate fully these forms of Platonism about
abstract objects. There is nonetheless motivation for considering rival views
that do not take abstraction principles, or the abstract objects they apparently
introduce, at face value. This is not to say that all apparent talk about abstract
objects should be rejected out of hand. It is clearly intelligible at a certain level
to speak of directions, or shapes, or numbers — even extensions in most cases.
Such discourse is clearly also in some way closely related to speaking of parallel
lines, congruent objects, and so on. I here examine an alternative proposal for
how to understand that relationship.

2. SYNTACTIC REDUCTIONISM AND HECK’S CRITICISM
A nominalist is one who denies the existence of abstract objects, or at least
eschews commitment to them. If a nominalist is prepared to admit, as I just
have, that not all discourse apparently about abstract objects is unintelligible,
(s)he must be prepared to provide an explanation for how such discourse is
to be understood. Nominalists may disagree with one another about how to
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understand the syntax and semantics of what appear to be terms for abstract
objects. Following Richard Heck,1 we may divide possible nominalist approaches
into three groups:

Syntactic reductionism is the view that what appear to be terms
for abstract objects are not genuine syntactic terms at all; in a full or
correct representation of the syntax of sentences in which they appear
they can be shown not to be genuine individual terms at all.

Semantic reductionism is the view that what appear to be terms
for abstract objects are in fact genuine syntactic terms, and they do
refer, but the objects they refer to are not abstract objects.

Nominalist fictionalism is the view that what appear to be terms
for abstract objects are genuine terms from a syntactic point of view,
but they do not refer at all to anything, much like names in fictional
discourse.

For the purposes of the present paper, I wish to put the latter two types of
positions to the side. Nominalisms of these stripes deserve careful consideration
and scrutiny, but we cannot discuss them fully here. The view I wish to explore
is a form of syntactic reductionism, specifically one modeled on a generaliza-
tion of Russell’s no-classes theory. Although I am very sympathetic with this
approach, I am not confident enough to endorse it definitively. I shall mention
my reservations later on. Nevertheless, I think it is worth developing in greater
detail than, to my knowledge, it has been, and I also wish to respond to certain,
to my mind inconclusive, objections against syntactic reductionism, including
one of Heck’s.

In discussing this issue, Heck uses as example the type/token distinction for
word inscriptions. (‘Types’ here is not being used in the sense of logical types.)
It should be uncontroversial, and in some sense true, that the following line
contains three word-inscription tokens of the same word type:

banana banana banana.

The tokens we may take to be concrete objects. We also postulate a relation,
which I shall call W , which holds between tokens when and only when they
inscribe what it is tempting to call ‘the same word’, i.e., the same type. A
Platonist abstractionist then, might endorse an abstraction principle such as
the following:

∀x∀y(type(x) = type(y) ↔ Wxy). (T)

I assume here that the relation W can be characterized or defined without
appeal to types as abstract objects. In this particular case, this assumption

1See [Heck, 2011, chap. 8]; Heck calls the third view simply ‘fictionalism’; however, there

are views in the philosophy of fiction according to which fictional names refer to abstract

objects, or even to concrete objects. I have added the modifier ‘nominalist’ to discourage

the suggestion that such a view is under consideration here.
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might seem dubious. It is certainly difficult in English to attempt to state the
exemplification conditions for W without mentioning word types. This diffi-
culty might be overcome with careful consideration of the nature of words and
their inscriptions. However, nothing important for what follows turns on this
particular example. A Platonist abstractionist assumes it is possible to have
independent grasp of the equivalence relations involved in abstraction princi-
ples; this is necessary if postulating the principles can legitimately be seen as
introducing the notion of the kind of abstract object in question. For abstrac-
tion principles most important for the philosophy of mathematics, such as HP,
it would be difficult to deny that ∼= could be grasped without the notion of
number, since it can be defined in terms of logical constants that do not seem
to have a specifically mathematical meaning. If the same is not true for W ,
then the points made here nominally about W would nonetheless hold for other
equivalence relations.

Instead of postulating an abstraction principle such as T as a means of intro-
ducing a new kind of term, a syntactic reductionist would deny that expressions
of the form ‘type(a)’ (where a is a particular word inscription, say the second
occurrence of ‘banana’ above) need to be taken as genuine terms. If principle
T is acceptable, the left half of the biconditional must have a more compli-
cated form than it appears. Heck cites Russell’s theory of descriptions [Heck,
2011, p. 181] as an example of a theory that denies that what appear to be
genuine terms really are terms at all. While a sentence of the form ‘F (type(a))’
might appear to contain a term ‘type(a)’ naming a type, the true logical form of
‘F (type(a))’ is more complicated, and perhaps should be interpreted as making
a claim about all, some, or most of the tokens bearing W to a. For example,
perhaps to say that the word type ‘Paris’ has five letters is really to say that all
(most? some?) word tokens bearing R to a given token of ‘Paris’ have five letter
inscriptions, and so on. Ideally, a syntactic reductionist should be able to pro-
vide a translation of all apparent discourse about types into more complicated
discourse about tokens and relation W .

In the next section, I sketch such a theory. It is worth first considering one of
Heck’s objections to any form of syntactic reductionism that does not collapse
into semantic reductionism. Heck concedes that for every first-order statement
about types, the syntactic reductionist can provide a translation eliminating
terms for types. His objection to syntactic reductionism involves statements
about types using ‘non-first-orderizable’ quantifiers such as ‘most’, ‘more’, ‘just
as many’, etc. It is perhaps plausible that for every predicate for types, there
is a corresponding predicate for tokens; following Heck I shall use capitalized
words for type predicates (e.g., ‘Short’) and their uncapitalized counterparts
for token predicates (‘short’). Notice, however, that the claim that ‘most word
types are Short’ cannot be analyzed in a way that makes it basically mean that
‘most word tokens are short’. It is easy to imagine Short word types having more
tokens than Long word types so that there might be more short word tokens
even if there are fewer Short word types. Heck conjectures that the best (only?)
recourse for the syntactic reductionist would be to count types by choosing
representative tokens, one for each type, and analyze the claim that most word
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types are Short as claiming not that most tokens are short, but that most
representative tokens are. But doing this in effect requires there to be genuine
terms of the form ‘ρ(a),’ which for each token a, names the representative token
which bears W to a, and such terms in effect play the role of terms for types, at
least formally speaking. The function ρ maps tokens bearing W to each other
to the same thing, and tokens not bearing W to each other to distinct things,
and so this function would satisfy principle T. The reductionist may insist that
these terms do not refer to abstract objects, but to take this line is to switch to
semantic reductionism and to abandon syntactic reductionism. This is Heck’s
worry.

I believe that the most plausible forms of syntactic reductionism have other,
not only more plausible, but in many ways more natural ways, to deal with
the problem of ‘non-first-orderizable’ quantification over types. Those I have
in mind would be formulated in terms of a higher-order base language. This
complicates matters and deserves some further discussion. Through the bulk of
his discussion, Heck seems to assume that the syntactic reductionist would be
making use of a first-order language, perhaps supplemented by some additional
not usually first-order quantifiers taken as primitive. This is perhaps in part
because the nominalists Heck cites while setting up the issue are Quine and
Goodman, who of course prefer their logic first-order only. And certainly a case
could be made that higher-order logic and nominalistic philosophies make an
uneasy partnership. But there are many possibilities within this logical space.
A nominalist might prefer higher-order languages but have in mind a substitu-
tional account of higher-order quantification, or perhaps have in mind the kind
of plural understanding of higher-order variables suggested by Boolos [1984],
and in neither case is it clear that the use of a higher-order language is by itself
incompatible with nominalism. Or perhaps she is only a first-order nominalist,
and is happy to admit abstracta as values of higher-order variables, content only
to establish that there are no abstract objects or individuals. In any case, further
argumentation would be needed to rule out the combination.

If we agree to consider approaches in this area of logical space, it unfor-
tunately blurs the distinction between semantic and syntactic reductionism.
Consider someone who holds that apparent terms for abstract objects are,
despite their appearance, really substituends of higher-order variables, or higher-
order ‘terms’. There is much to be said about views in this vicinity. Types,
perhaps, are really properties of, or concepts applicable to, tokens. Number
terms, despite appearing to be singular terms for objects, are really quantifiers,
or second-level concepts. Heck suggests that such a view would amount to a kind
of semantic reductionism.2 The issue is perhaps purely one of terminology —
how precisely we delimit ‘semantic reductionism’ — but it seems misleading to

2See [Heck, 2011, p. 198, note 29]. There he mentions a view on which, e.g.,

types would be understood as second-level concepts, restricted quantifiers of the form

∀x(Wbx → . . . x . . . ); another natural view might identify the type of an inscription b

with the first-level concept which x falls under just in case Wbx, though this may require
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me to claim that this is just that. True, this position does not involve claiming
that terms for abstract objects are not terms in any sense of the word ‘term’,
but insofar as terms of different logical types are syntactically different (which
would be the case for many, if not most, higher-order logics) then it seems that,
to the extent that such a theory is a first-order nominalism, that nominalism
takes the form of a syntactic nominalism, which is then combined either with a
semantic higher-order nominalism, or perhaps even a higher-order realism. The
first-order nominalism is syntactic, however.

The form of syntactic reductionism that most interests me is not one I am
most tempted to describe as holding the simple view that apparent terms for
abstract objects ‘just are’ higher-order terms. What I have in mind is mod-
eled much more closely on Russell’s theory of descriptions, whereupon certain
‘apparent’ terms are ‘defined away’ in the context of their use. The problem,
however, is that even Russell’s theory of descriptions, when applied in the con-
text of a higher-order language (as of course Russell himself did!), is susceptible
to being redescribed as a view according to which descriptions are terms all
right, only not first-order terms. That is, Russell’s theory of descriptions is not
obviously different from the view that a description ‘the ϕ’ should be seen as
standing for a certain kind of second-level concept or special restricted quanti-
fier, true of first-level concept G just in case there is one and only one ϕ and G
holds of that thing, or formally:

( ιx)ϕx =df λf.(∃x(∀y(ϕy ↔ y = x) ∧ fx)).

Reading the f in f(( ιx)ϕx) as the argument to this second-level function, along
with β-reduction, yields Russell’s familiar contextual definition:

f(( ιx)ϕx) ↔ ∃x(∀y(ϕy ↔ y = x) ∧ fx).

Of course, not all proponents of the theory of descriptions would welcome this
redescription.3 One possible reason (but not the only one), would be the kind
of first-order purism espoused by Quine. But if we are working in a higher-order
base language, it becomes difficult to separate out the syntactic elimination of
descriptive terms from their redescription as falling in a different syntactic and
thus semantic category. If the theory of descriptions cannot be pointed to as
a model for the kind of syntactic elimination of terms the syntactic reduction-
ist is aiming for, then it becomes difficult even to understand what syntactic

taking on an extensional view of concepts to get something like T to work out. But the

point made here applies either way.
3I here bracket the question as to whether or not Russell himself would accept this

redescription. It does seem, however, that Russell’s understanding of incomplete symbols

as symbols which appear to be of one type but in fact are not really symbols of that type

at all is important for understanding his diagnosis of the paradoxes. The fact that we are

tempted to accept the kinds of reasoning that leads to the paradoxes shows that there are

ways of writing certain symbols as if they were of one type whereas either they really have

a different type or are not really unified symbols at all explains why something which is

not well formed at all might at times appear to be. Thanks to a referee for this observation.
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reductionism could possibly be. It seems as if we have simply defined syntac-
tic reductionism out of existence rather than addressing it in any serious way.
Therefore, I shall proceed as if theories modeling their elimination of terms on
something like the theory of descriptions can count as syntactic reductionisms,
even if such proposals are technically equivalent to ones whereupon apparent
singular terms for abstract objects are taken instead as complex higher-order
terms.

In my introduction, I sketched what a natural view about what the process
of abstraction amounts to. The informal description of the process suggests to
me a natural informal response a nominalist might give to Heck’s worry. For the
nominalist, when we think about a type, we are really thinking about tokens,
but we ‘abstract away’ the differences between relevantly similar tokens. We
treat tokens as counting ‘as the same’ when they bear W to each other. In
effect, we substitute W for identity in our thinking. This is again loose talk,
and cannot be taken too seriously. Identity is identity, and W is W . But as an
equivalence relation, perhaps W is formally enough like identity that many of the
concepts that can be defined or specified in terms of identity will have analogues
formulated with W instead. Heck concedes that the syntactic reductionist will
be able to provide a replacement for first-order-analyzable claims about numbers
of types. One way of doing this, would be to take the corresponding statements
from a first-order treatment quantifying over types, replace the quantifiers with
quantifiers for tokens, replace any predicates for types with the corresponding
predicates for the tokens (‘short’ vs. ‘Short’, etc.) and in line with the present
viewpoint, replace identity with W . So instead of writing ‘there are at least two
word types that are Short’ as:

∃x∃y(Short(x) ∧ Short(y) ∧ x �= y),

we instead get:

∃x∃y(short(x) ∧ short(y) ∧ ¬Wxy);

i.e., there are at least two tokens which are short, and do not bear W to each
other. Perhaps because he is assuming that the syntactic reductionist would
be making use of a first-order language, Heck seems to think that statements
sensitive to the cardinalities of types that are not first-order-analyzable cannot
be given a similar treatment. If we assume that the syntactic reductionist can
make use of the higher-order definitions of such quantifiers as ‘most’, ‘just as
many’, ‘more’, etc., rather than taking these as primitive, matters are not so
clear. For the sake of simplicity, I shall take ‘just as many’ to mean simply being
equinumerous, or standing in a 1–1 correlation. Corresponding to this relation
is a similar one where the equivalence relation W between tokens of the same
type takes over the role of identity:

F ∼=W G =df (∃R){∀x∀y∀z∀w[Rxy ∧ Rzw → (Wxz ↔ Wyw)] ∧
∀x[Fx → ∃y(Gy ∧ Rxy)] ∧ ∀y[Gy → ∃x(Fx ∧ Rxy)]}.
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Fig. 1. A correlation between tokens of three long and three short word types.

We can read this as saying that the F s and the Gs are alike in number when
‘counting by W ’, i.e., when using W in the place of strict identity when deter-
mining what counts as ‘the same’. The correlation R here need not be 1–1 in
the strict sense, but it must ‘keep within type’, so to speak. Each F -token may
be paired up with more than one G-token, but all those G-tokens with which
it is paired up must bear W to each other, and vice versa. This is illustrated in
Figure 1. At the top we have short word tokens, and at the bottom with have
long word tokens. Although there are more short tokens than long ones, there
are equally many types, as whenever the long same token on the bottom is linked
with more than one token on the top (or vice versa), the tokens it is linked with
bear W to each other. This contrasts with Heck’s solution in which one would
ignore any but one (say, the first) of each type and focus only it. My approach
poses no need for a mechanism whereby one token is chosen as ‘representative’
or especially important. It, and not Heck’s, seems to me to be the natural way
for a nominalist to make cardinality comparisons for types, and as near as I
can tell, it works out simply to replace the claim that there are just as many
Short types as Long types with the claim that the short tokens and long tokens
are alike in number when ‘counting by W ’, or ‘λx.short(x) ∼=W λx.long(x)’.
Other non-first-orderizable quantifiers can be tackled in similar fashion. ‘There
are more F s than Gs’ can be taken to mean that the Gs can be put in 1–1
correspondence with a subconcept of F , but the F s cannot be put in 1–1 corre-
spondence with a subconcept of G. Simply replacing the ‘=’s in these definitions
with ‘W ’s would appear to me to do the trick for saying, e.g., that there are
more Long types than Short. ‘Few’ and ‘most’ are perhaps somewhat vague, but
if we were to take ‘most F s are Gs’ to mean that there are more F s-that-are-G
than F s-that-are-not-G, we have already sketched enough to make it clear how
we might handle it.

This is not yet a complete answer to Heck. Still, it is the kind of response to
his worry that I think it is most promising for a syntactic reductionist to give.
In the next section I want to provide a more complete systematic methodology
for eliminating reference to, and quantification over, types and other abstract
objects for which a solution of this kind simply falls out of more general rules
for eliminating apparent terms for abstract objects.

3. GENERALIZING ON RUSSELL’S NO-CLASS THEORY
An approach for eliminating terms for abstract objects similar to Russell’s the-
ory of descriptions can be found in Russell’s own work. I refer of course to the
other half of Russell’s doctrine of ‘incomplete symbols’: his no-classes theory, the
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parallels of which to the theory of descriptions are stressed by Russell himself
(in Chap. 3 of the introduction to Principia Mathematica (PM ), for example).
According to this theory, just as one cannot provide an explicit definition of
the description ‘the F ’ on its own, one cannot provide an explicit definition of
an apparent term ‘the class of F s’ on its own. However, one can eliminate such
apparent terms in the context of their use as follows:

A (x̂Fx) =df ∃G(∀x(Gx ↔ Fx) ∧ A (G)). (NoClasses1)

Putting aside for the moment complications brought on by ramification in Rus-
sellian logic — we are free to adopt simple type theory instead — it is useful to
contrast this with introducing classes or extensions by the abstraction princi-
ple BLV. In both cases, we give pride of place to a certain equivalence relation
between concepts (in Frege’s terminology) or propositional functions (in Rus-
sell’s), coextensionality. Frege suggests that when F and G bear this relation to
each other, there is some ‘thing’ they have in common, and this thing is what
the term for the class or extension refers to. The Russellian instead suggests that
the appearance of a ‘term’ is illusory, and to make a claim apparently about a
class is just to say that there is a coextensive function of which what we are
saying about the class is true. Notice that what is really effected here, as Russell
himself explains [PM, p. 75], is to take the context A (. . .), which may not have
been an extensional context for functions, and from it manufacture a context
for F to go into which is definitely extensional, thus guaranteeing that it holds
regardless of which coextensive function is used to define the class. Class talk
is thus a method for redescribing claims about functions in a way that makes
what we are saying extensional.

I think perhaps it is likely that Russell chose existential quantification simply
to increase the syntactic similarity of this contextual definition with the one for
descriptions. As Carnap [1956, pp. 147–149] has stressed, Russell might just as
well have interpreted the claim about the class of F s as asserting something
about all functions coextensive with F instead:

A (x̂Fx) =df ∀G(∀x(Gx ↔ Fx) → A (G)). (NoClasses2)

This too has the effect of ‘manufacturing’ an extensional context from a (pos-
sibly) non-extensional one. (And since the mathematical project of PM made
use of only extensional language anyway, swapping one contextual definition for
another would not have damaged his project.)

When it comes to the other kinds of abstract objects a Platonist might be
tempted to introduce by abstraction principles, Russell’s own practice was to
replace reference to them with apparent terms for the associated equivalence
classes. Since, on the no-classes theory, terms for such equivalence classes are
only ‘apparent terms’, it seems to me that Russell’s approach counts as a syn-
tactic reductionism (despite his higher-order logic). His form seems to me to
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be under-appreciated and often misunderstood, and definitely still worthy of
further scrutiny and study.4

What I wish to explore here is another Russellian, though not Russell’s own,
tack for syntactically eliminating reference to abstract objects. This approach
takes the no-classes theory, and its dispatch of the need for an abstraction prin-
ciple like BLV as programmatic or exemplary as an instance of a generic method
for providing contextual definitions for doing away with abstract objects and
their associated abstraction principles. For every abstraction principle AP, one
may make use instead of a contextual definition that defines away apparent
terms of the form ‘ρ(μ)’ by means of existential claims to the effect that some-
thing bears the appropriate equivalence relation to μ and reinterprets the claim
as about it, or schematically (— I dub this ‘ES’ for ‘elimination schema’):

A (ρ(μ)) =df (∃τ)(E(τ, μ) ∧ A (τ)). (ES)

In the case of cardinal numbers as introduced by the abstraction principle HP,
a neo-Russellian might instead provide a contextual definition of ‘#(. . . )’ as
follows:

A (#(F )) =df ∃G(G ∼= F ∧ A (G)). (NoNumbers)

Just as Russell’s contextual definition of apparent terms for classes/extensions
took a context and manufactured an extensional context, what this does is take
a context and manufacture a cardinality-congruent context. Something holds of
the number of F s just in case there is a equinumerous concept of which that
something holds. (Or we might give the universally quantified version instead.)
Clearly, then whatever is true of the number of F s will also be true of the
number of F ′s if the F s and F ′s are equinumerous.

It should be noted then that the symbol ‘#(F )’ could only appear in a posi-
tion that would allow a first-level function name. There is then no possible
interpretation for a sentence such as ‘Caesar = #(F )’, dissolving the so-called
‘Julius Caesar problem’ in the philosophy of mathematics. However, as ‘#(F )’
may appear to be of the same shape as a term for an object, one has an explana-
tion of why some might be tempted to raise the issue, despite its meaninglessness
when fully analyzed.

In the case of ‘types’ from the type/token distinction, where W again is
the equivalence relation sorting the tokens into types, the associated contextual
definition of ‘type(. . .)’ runs as follows:

A (type(x)) =df ∃y(Wyx ∧ A (y)). (NoTypes1)

This takes a context, and manufactures a type-congruent one. An apparent
claim about ‘the type of x’ is really a quantified claim about tokens bearing W

4And indeed, I think Russell’s views possess some distinct advantages over more recent

logicisms, as I argue in my [2012]; in [Klement, 2010], I argue that certain widespread

objections to Russell’s views are based on misunderstandings.
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to x. Again, we would be free to use a universally quantified version instead.5

A (type(x)) =df ∀y(Wyx → A (y)). (NoTypes2)

There may be some superficial reasons to prefer (NoTypes2), which I will dis-
cuss in Section 5 below. There are also some additional possibilities (involving
the addition of modal operators, perhaps) in the vicinity also worth consider-
ing. However, in order to preserve an easy comparison with Russell’s no-classes
theory, I shall proceed assuming we have adopted (NoTypes1). One annoying
complication is that, since we have not defined ‘type(x)’, but only ‘A (type(x))’,
as in both Russell’s no-classes theory and the theory of descriptions, this nota-
tion gives rise to scope ambiguities. For example, ‘¬F (type(a))’ may be read
where the ‘incomplete symbol’ has narrow or secondary scope: ‘¬∃y(Wya ∧
Fy)’, or it may be read with primary or wide scope ‘∃y(Wya ∧ ¬Fy)’. Care will
thus need to be taken to disambiguate. I shall adopt the convention, similar
to Russell’s, that unless otherwise indicated, the scope of ‘type(a)’ is to be the
narrowest possible, and if there is more than one such ‘incomplete symbol’ in
what would otherwise be an atomic statement, the scope of those on the left
are greater than those on the right.

How then do we analyze type(x) = type(y)? Given the scope convention I
just adopted, how we read this depends on whether ‘=’ is a primitive predicate
or a defined one. If it is primitive, then we have:

∃z(Wzx ∧ ∃w(Wwy ∧ z = w)). (ID1)

If x = y is defined as, say, ∀F (Fx → Fy), then narrower scopes are possible; so
we get:

∀F (∃z(Wzx ∧ Fz) → ∃z(Wzy ∧ Fz)). (ID2)

Either way,6 from the assumption that R is an equivalence relation, we will be
able to derive what looks like the abstraction principle T:

∀x∀y(type(x) = type(y) ↔ Wxy). (T′)

Of course, however, this has a more complicated syntax than it appears to have:
the left side of the biconditional is not an identity statement between genuine
terms, but is unpacked as (ID1) or (ID2) depending on how identity is treated.
This gives us the desired identity conditions for types, making it clear in what
sense W can operate similarly to identity.

We also want ways of quantifying over types. We can take the way Russell
introduces defined quantifiers for classes in PM *20.07 as our guide. He intro-
duces what look like new variable letters α, β (and associated quantifiers) to

5This would bring us very close to a suggestion once made by Goodman [1972].
6If we were to opt for (NoTypes2), there would be some pressure to adopt some-

thing more like the second method for dealing with identity, since ∀F (∀z(Wzx →
Fz) → ∀z(Wzy → Fz)) is equivalent with Wxy when W is an equivalence relation, but

∀z1(Wz1x → ∀z2(Wz2y → z1 = z2)) would not be.
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range over classes. But all such notation is in principle eliminable.

∀αA (α) =df ∀FA (x̂Fx).

The corresponding move for our no-types theory would be to use, say t and s
as special variables for types, eliminable as follows:

∀tA (t) =df ∀xA (type(x))

∃tA (t) =df ∃xA (type(x)).

Care needs to be taken with scope ambiguities here too. The A (. . .) here is
schematic, and A (t) may contain more than one occurrence of t. My intention
is that one would first unpack this definition, and then, for each occurrence of
‘type(x)’, unpack it with the narrowest scope possible. So if A is complex, even
while adoping (NoTypes1), ∀tA (t) is not necessarily the same as:

∀x∃y(Wyx ∧ A (y)).

For example, if we use ∀F (Fx → Fy) as our definition of identity, then:

∀t(t = t)

first becomes:

∀x∀F (F (type(x)) → F (type(x))),

and then that becomes:

∀x∀F (∃y(Wyx ∧ Fy) → ∃y(Wyx ∧ Fy)).

(Similar snafus in the order of unpacking contextual definitions are familiar to
serious scholars of PM.) ‘There are at least two Short types’ can be written in
an abbreviated form in a way that looks very similar to how the Platonist might
write it:7

∃t∃s(short(t) ∧ short(s) ∧ t �= s).

However, the simplicity is only apparent. This unpacks to:

∃x∃y(∃z(Wzx ∧ short(z)) ∧ ∃z(Wzy ∧ short(z)) ∧ type(x) �= type(y)).

The last conjunct here, written in full, will be the negation of something either
like (ID1) or like (ID2) depending on the treatment of identity. This conjunct
will be equivalent, by T′, to ¬Rxy, and so assuming both that W is an equiv-
alence relation, and that whenever x is short, so is anything to which it bears
W , the above is equivalent to our earlier, more ‘natural’:

∃x∃y(short(x) ∧ short(y) ∧ ¬Wxy).

Non-first-orderizable quantification seems to be no problem either. I am again
here presupposing that the syntactic nominalist can appeal to the standard

7There is no need to use ‘Short’ here, the contextual definition will produce the needed

switch to a type-congruent context.
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higher-order definitions of such quantifiers as just as many and most. We
can use our special eliminable variables t, s as before. We state a version of
equinumerosity changed from the normal definition only to use these variables:

F ∼=∗ G =df (∃C){∀t∀s∀t′∀s′[Cts ∧ Ct′s′ → (t = t′ ↔ s = s′)] ∧
∀t[Ft → ∃s(Gs ∧ Cts)] ∧ ∀s[Gs → ∃t(Ft ∧ Cts)]}.

With the above treatment of ∀t and ∃s, etc, this could also be stated:

F ∼=∗ G =df (∃R){∀x∀y∀z∀w[R(type(x), type(y)) ∧ R(type(z), type(w)) →
(type(x) = type(z) ↔ type(y) = type(w))] ∧
∀x[F (type(x)) → ∃y(G(type(y)) ∧ R(type(x), type(y)))] ∧
∀y[G(type(y)) → ∃x(F (type(x)) ∧ R(type(x), type(y)))]}.

And to write it even more fully, each ‘apparent term’ of the form ‘type(x)’
should be eliminated using the smallest possible scope.

The adequacy of this as a way of comparing the cardinalities of ‘types’, as a
response to Heck’s worry, is evident from the fact that this way of comparing
cardinalities for types is equivalent to the ‘counting by W ’ method mentioned
in the previous section as a ‘natural’ response for the syntactic nominalist to
give. That is, we can prove:

F ∼=∗ G ↔ F ∼=W G.

A proof of this result is briefly sketched in Appendix A. It uses nothing other
than standard second-order logic, the definitions given earlier, and the fact
that W is an equivalence relation. ∼=∗ can then be used to analyze ‘more’-
type, ‘most’-type, etc. quantifiers for types. Nothing in the result makes use of
anything peculiar to (NoTypes1); the same result would hold for any instance
of elimination schema ES as a means for eliminating abstract objects, so long
as W above is replaced with whatever equivalence relation E is involved in
the instance of ES (and, if needed, the variables replaced by variables for the
appropriate logical type for relata to E).

4. NUMBER-ELIMINATIVE ARITHMETIC
If what I have been arguing is correct, the form of syntactic eliminativism that
uses contextual definitions for apparent terms for abstract objects of the form of
ES can provide a general response to Heck’s worries about non-first-orderizable
quantification. At this point, I would like to sketch how Peano arithmetic can
be developed in a system that makes use of (NoNumbers) to eliminate apparent
terms for numbers. This is meant as an example to test how far such an approach
can go in providing a full replacement for realist or Platonist accounts of abstract
objects. Assuming we have a second-order identity relation between concepts,
F = G, which we could perhaps define using third-order quantification, i.e.,
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∀Q(Q(F ) → Q(G)), (NoNumbers) allows us to derive what looks like HP:

∀F∀G(#(F ) = #(G) ↔ F ∼= G). (HP′)

However, the left side of the biconditional is not a simple identity between two
genuine terms, even higher-order terms. Assuming identity between concepts
‘F = G’ is defined as ‘∀Q(Q(F ) → Q(G))’, ‘#(F ) = #(G)’ unpacks as:

∀Q(∃H(H ∼= F ∧ Q(H)) → ∃H(H ∼= G ∧ Q(H))).

We will need special eliminable quantifiers for numbers. We use n, m (with
primes if need be) in much the same way that we used t, s, etc., for types. Such
quantification is in principle eliminable in favor of second-order quantification:

∀nA (n) =df ∀FA (#(F ))

∃nA (n) =df ∃FA (#(F )).

Again, here the pseudo-term ‘#(F )’ may occur in A (#(F )) any number of
times; after unpacking this definition, we unpack each of these occurrences using
the narrowest scope possible in the context. We may define 0 as the number of
non-self-identical things:

0 =df #(λx.x �= x).

Of course, ‘0’ is no more a genuine term than ‘#(λx.x �= x)’; it would be more
explicit to put:

A (0) =df A (#(λx.x �= x)) =df ∃F (F ∼= λx.x �= x ∧ A (F )).

Next we define the relation of immediate predecessor:

m P n =df ∃F [#(F ) = n ∧ ∃x(Fx ∧ #(λy.(Fy ∧ y �= x)) = m)].

The ‘n’ and ‘m’ here are placeholders for pseudo-terms of the form #(F ); in
the context of application they will also be replaced by such expressions, or by
variables eliminable by their use. To say that m precedes n then means that
there is a concept F where n is the number of things that are F , something x is
F and the number of things that are F but not x is m. A natural number can
be defined as a number having all properties Q held by 0 and hereditary with
respect to the relation P .

N(n) =df ∀Q[Q(0) ∧ ∀m∀m′(Q(m) ∧ m P m′ → Q(m′)) → Q(n)].

The variable Q here is a (third-order) variable for concepts of concepts; this is
required, given the way number pseudo-terms are eliminated: the context Q(n)
will become something of the form ∃G(G ∼= F ∧ Q(G)).

With these definitions, four of the five Peano ‘axioms’ can be derived as
theorems in standard third-order predicate logic with no non-logical axioms at
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all, viz :

N(0); (PP1)

¬∃n n P 0; (PP3)

∀m∀m′∀n(m P n ∧ m′ P n → m = m′); (PP4)

∀Q[Q(0) ∧ ∀m∀m′(N(m) ∧ Q(m) ∧ m P m′ → Q(m′)) → (PP5)

∀n(N(n) → Q(n))].

These state, roughly and respectively, that zero is a natural number, that no
number precedes 0, that no two distinct numbers precede the same number,
and that whatever is true of 0 and true of the successor of a natural number
whenever it is true of that number is true of all natural numbers (the principle of
mathematical induction). The remaining Peano ‘axiom’ informally asserts that
every natural number has a unique successor which is also a natural number.
Two ‘pieces’ of this assertion can be proven purely logically, viz., that successors
of natural numbers are always natural numbers, and that no natural number
has more than one successor.

∀m∀n(N(m) ∧ m P n → N(n)); (PP2a)

∀m∀n∀n′(m P n ∧ m P n′ → n = n′). (PP2b)

All that remains to be proven is that every natural number has at least one
successor:

∀m(N(m) → ∃n mPn). (PP2c)

The quantifiers here for numbers are eliminated in terms of quantifiers for
concepts, concepts applicable to genuine individuals, the values of the gen-
uine first-order variables. If there is no concept of a given cardinality, then the
corresponding ‘number’ cannot be proven to exist. Because number terms are
not genuine terms, and not substituends of first-order variables, we cannot use
numbers themselves to prove the existence of concepts of the appropriate cardi-
nalities. Thus we must assume that there are concepts of every finite cardinality;
in effect, we must assume an axiom of infinity. This can take the form of assum-
ing that no concept whose number is a natural number applies to all things; for
such a concept, there will always be something not falling under it.

∀F (N(#(F )) → ∃x¬Fx). (Inf)

(PP2c) can be proven from (Inf), and thus the whole of Peano arithmetic is
interpretable in the system containing standard third-order predicate logic with
(Inf) as the sole non-logical axiom. Sketches of proofs of all these results are
given in Appendix B.

The need for a principle of infinity here is quite similar to the need for it
in Russell’s own construction of numbers as classes of classes in the no-classes
theory, or in the sort of theory that defines numbers as numerically definite
quantifiers, or concepts applicable to concepts just in case those concepts have
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a certain cardinality. On these ways of proceeding, numbers are not values of
first-order quantifiers, the ‘terms’ flanking the identity on the sides of HP′ (or
similar) are not valid substituends of such variables. Hence, they cannot be used
to prove the existence of concepts applicable to more and more things, in the
‘bootstrapping’ method suggested by Frege in Grundlagen (§79) and endorsed
by contemporary proponents of the stronger version of HP. The bootstrapping
approach is able to prove that for every natural number n, there is a concept
whose cardinality is the next natural number, viz., the concept of being a number
in the number sequence up to and including n. There is 1 number up to and
including 0, 2 numbers up to and including 1, 3 numbers up to and including 2,
and so on. But if numbers are not ‘things’, not values of the individual variables,
this method cannot be used. This certainly may seem like a disadvantage to
those attracted to logicism, and (Inf) does not seem like a logically necessary
principle. However, it may also be seen as an advantage, as the consequence
that the domain must be infinite is also often given as a reason for rejecting HP
as a logical or analytic principle.

It might be argued, however, that the failure of the bootstrapping method
in the treatment of numbers considered here points to another weakness: that
it is simply too weak to ‘count’ numbers, or at least too weak to count num-
bers using the ‘same’ numbers as used to count individuals. This objection is
too quick. First, it should be noted that numbers are generally apiece with
quantification. Anyone employing a standard higher-order logic accepts that
quantifying over individuals is distinct from quantifying over concepts, and this
is usually not seen as problematic, at least not by proponents of higher-order
logic. By employing the methodology discussed for types, we can similarly make
non-first-orderizable quantified judgments for numbers, and even develop num-
bers of numbers, and so on. Indeed, by making use of heterogeneously typed
relations, we can even state that a concept of one type is equinumerous with
that of another type.8 Suppose that Q is a variable for concepts of concepts.
By using heterogeneous functions, we might introduce a pseudo-term ‘#(Q)’
defined using the same type quantifiers as those used for pseudo-terms of the
form ‘#(F )’, i.e., instead of:

A (#(Q)) = ∃Q′(Q′ ∼= Q ∧ A (Q′)),

we could use the definition:

A (#(Q)) = ∃G(G ∼=′ Q ∧ A (G)),

where the ‘∼=′’ here postulates a heterogeneous 1–1 function between the Qs
and the F s:

G ∼=′ Q =df (∃R){∀x∀x′∀F∀F ′[R(x, F ) ∧ R(x′, F ′) → (x = x′ ↔ F = F ′)] ∧
∀x[Gx → ∃F (Q(F ) ∧ R(x, F ))] ∧ ∀F [Q(F ) → ∃x(Gx ∧ R(x, F ))]}.

8For more on this general strategy, see [Landini, 2006].
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Notice that pseudo-terms of the form ‘#(Q)’ would be interpretable when placed
in the same positions as those of the form ‘#(F )’. This would allow us to
interpret identity statements between numbers formed from concepts of different
types:

#(F ) = #(Q).

Expanding only slightly further would allow us to speak of numbers of con-
cepts applicable to numbers and even compare them with numbers of concepts
applicable to things:

A (#n(F (n))) = ∃G(G ∼=∗′ F ∧ A (G)).

The relation ∼=∗′ involves partly making the kinds of changes we made to ∼=
to get ∼=′ and partly making the kind of change involved in moving from ∼=
to ∼=∗ discussed in Section 3 (except with number quantifiers instead of type
quantifiers).

G ∼=∗′ F =df (∃R){∀x∀x′∀n∀n′[R(x, n) ∧ R(x′, n′) → (x = x′ ↔ n = n′)] ∧
∀x[G(x) → ∃n(F (n) ∧ R(x, n))] ∧ ∀n[F (n) → ∃x(G(x) ∧ R(x, n))]}.

This allows us to speak of numbers of numbers in a way that permits their
being identified and/or distinguished from numbers of anything else. It still
does not provide a method of ‘bootstrapping’ without an explicit postulation
of infinity, but this is perhaps how it should be. One might object that with-
out being able to provide a logical proof that there is an infinity of objects,
one is left without a logical proof of the usual principles of number theory,
and thus one is forced to abandon logicism. One response might be to accept
this: if a correct philosophical account of abstract objects is incompatible with
logicisms, perhaps so much the worse for logicism. Another response, however,
would be to question whether logicism requires that we obtain the principles
of number theory in their usual form. This raises issues we cannot fully settle
here.9

5. ORDINARY LANGUAGE AND RELATED PHILOSOPHICAL
CONCERNS

Philosophical and reductive analyses of numbers or other abstract objects are
sometimes rejected on the grounds that they validate claims which seem clearly
false, or perhaps meaningless, according to our ordinary-language intuitions
about numbers and their properties. Famously, Paul Benacerraf [1965, p. 54]
tells a story about two people, having learned two different set-theoretic reduc-
tions of the natural numbers, quibbling over whether or not 3 belongs to 17.
Dedekind, apparently, (see his [1932, pp. 489–490]) rejected a set-theoretic
definition of real numbers of the grounds that questions one could ask of sets

9For a defense of a logicist position which calls into question the need for a principle of

infinity, and for my own thoughts, see [Landini, 2007] and [Klement, 2012].
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seemed out of place when asked of the reals.10 Clearly, the analysis I have offered
for discourse about abstract objects in terms of elimination schema (ES) may
give rise to similar kinds of concerns, and might form the basis for an objection
that this is ‘clearly not what we mean’ when we speak of numbers, or of word
types, and so on. It is plausible to suppose that we do not really mean that
‘something bearing W to such-and-such a token is three letters long’ when we
inquire whether or not the word type ‘cat’ is three letters long. Indeed, someone
might argue that the present analysis clearly provides the wrong truth condi-
tions for say ‘Green(type(w))’ and ‘Red(type(w))’, both of which might come
out as true for the same word type if some tokens of that type are green and
some red.

To those who worry about such things, matters might be improved if we
adopted (NoTypes2) instead, so that all tokens would have to be red for
‘Red(type(w))’ to come out as true. Still, that might be accidentally true
for words rarely written. Someone concerned with more closely matching our
ordinary intuitions might suggest adding a modal operator into the mix, so
that ‘F(type(w))’ would only come out as true if necessarily all the appro-
priate tokens were F . Indeed, a rough sketch of what we seem to be willing
to attribute to types, or other abstract objects, are those traits which follow
necessarily about their tokens in virtue of the defining equivalence relation.
Depending on how stringent we take the exemplification conditions for W to
be, it may or may not be required that all tokens of ‘cat’ be properly spelled;
if so, then all tokens will have three-letter inscriptions. This is perhaps why
we seem willing to accept that it is a property of the word type ‘cat’ that it
be three letters long, whereas being red would never be considered a prop-
erty of the type, since clearly the color of the inscription is not going to
feature into the conditions for the holding or non-holding of W . Teasing out
exactly how our thought and ordinary-language discourse about types works
would be a very difficult empirical endeavor, one which I surmise has hardly
begun.

However, I think there are limits to how relevant such investigations would
be for evaluating the importance of syntactic reductionisms of the sort consid-
ered in the previous sections. The philosophically interesting issue — at least
to my mind — is not the question of how ordinary-language and mathemat-
ical and other abstract cognitions do work, but how a language in general
could work. I would propose that we look upon the kinds of analyses here
as a kind of simplified model of how it is that talk about the abstract
could be introduced or made possible. In science, one often creates simplified

10For discussion of this and related issues, see [Shapiro, 2006]. Russell himself at times

rejected the importance of such concerns for his own logicist analyses — see, e.g., [Russell,

1931, §242] — though as his career developed he gave varying weight to the importance

of matching ordinary thought or language when giving philosophical analyses. Forthcom-

ing secondary work by James Levine nicely sketches the different conceptions of analysis,

sometimes in tension with one another, used by Russell throughout his career.
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environments — those without friction and air resistance — to test a general
theory without the full complications of the physical environments we are used
to. Ordinary language, with everything going on in it, with the rich diver-
sity of syntactic and semantic structures it offers, with its tight integration
with complicated cognitive processes, including perhaps an equally compli-
cated ‘language of thought’, is for purely practical reasons a difficult context
in which to test general metaphysical theses. Predicate logic, first- or higher-
order, is by comparison a much simpler and better-governed system, and yet
one known to have rich expressive power. By showing how things that look
like terms for abstract objects can be introduced by means of syntactic con-
ventions, but without officially adding any genuinely new syntactic or semantic
types, we show something about the possibilities implicit in any language rich
enough to quantify over, identify, and differentiate, things and concepts appli-
cable thereto. So long as certain equivalence relations can be captured, the
ability, as it were, to speak about mathematical or other abstract objects
emerges naturally. What is more, it does so without the need to postulate any
new semantic values, or entities in the world, corresponding to the syntactic
conventions.

It is only of an artificial language that one could definitely claim that it
embodies a form of syntactic reductionism. In the above, I stipulated how to
unpack pseudo-terms such as ‘type(w)’ and ‘#(F )’ contextually, and thereby
stipulated that these are not to be taken as genuine object-language terms. In
the study of natural language, where one is not free to ‘stipulate’ one’s syntactic
conventions, it is very unclear under what conditions someone could admit that
a phrase ‘behaves’ very much like a term, and yet is not one. Nonetheless, the
question that seems of philosophical interest to me is not whether or not ordi-
nary language embodies syntactic reductionism, but whether or not anything
important is lost (and indeed, perhaps, whether anything is gained) in number
theory or other abstract science if we choose to employ an artificial language
that decidedly does. That such a language may produce ‘extra baggage’ such
as making ‘Red(type(w))’ come out as true seems uninteresting so long as the
theory is capable of capturing what is theoretically important about a theory
of word types.

We are of course also free (along the lines of a proposal found in the work
of Hodes — see his [1990]) to construct a language in which there are numerals
which are syntactically of the same type as other terms, but interpret sentences
containing such terms in a way that takes them not as referring to objects,
but instead, as expressing higher-order truths in a syntactically different way.
And if it is possible to develop an object language with such numerals, then
it is also possible to develop a metalanguage with its own numerals. In that
metalanguage, it will then be natural to use the verb ‘refer’ between expressions
that mention object-language numerals and its own numerals, e.g., ‘ “2” refers
to two’. None of this shows, however, that such languages provide a better
metaphysical picture of reality than rival languages which eschew such terms
in favor of eliminable pseudo-terms. Moreover, it does not seem to me to be
philosophically important whether empirical research into ordinary language
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reveals it to be more like one kind of language or more like the other.11 The
issue of which is to be preferred remains open.

It is tempting to go further and cite Occam’s razor in favor of some kind of
nominalist approach. An abstract science that treats its special expressions in
an eliminative, nominalist, way is metaphysically simpler than one that postu-
lates abstracta as genuine references of its terms, or as values of ontologically
committing variables. But this is perhaps to take too narrow a view of what is
involved in the intellectual virtue of ‘simplicity’. It is not simply a matter of
how many, or how many kinds, of things are presupposed. It may have to do
with the simplicity and unity of the basic principles assumed in the theory, how
well integrated such a theory is with other theories, and so on. Tracing how well
the eliminative theories sketched here fare on these matters is a difficult task,
and I cannot provide a full evaluation here. However, I think the advantages,
even the advantages regarding simplicity, are not limited to a reduction in what
is quantified over. The approach, I believe, simplifies our epistemology in so far
as we do not need an account of special de re knowledge of abstract objects. It
simplifies our semantic theories, in so far as we do not need a special theory of
reference for such terms. Depending on the abstract entities eliminated, it may
simplify our logic, as certain abstract objects (extensions, ordinal numbers) are
prone to lead to contradictions if taken realistically. It may simplify our account
of the applicability of abstract studies to the concrete world, as our account of
abstract objects resolves such discourse into quantification over concrete entities
(and concepts applicable to them).

But there are costs and disadvantages as well, which is why even I am reluc-
tant to put forth these analyses with any great confidence. One of the greatest
disadvantages, as I see it, with this approach is that, because abstract objects
are introduced by means of quantifiers over concrete objects which is some
sense ‘participate’ in them, we are left without a view of the ‘unparticipated-in’
abstract notions. For example, (NoTypes1) provides no room for word types of
which there are no tokens. It is not hard to imagine, e.g., rare verbs for which
certain conjugations have never been used; yet such conjugations still exist as
words, someone might argue. Our account of numbers does not leave room for
numbers of cardinalities where no concepts apply to that number of things;
this could be seen as the reason (Inf) was needed to capture the basic laws of
finite numbers. I think these concerns are genuine, and here I offer only the tu
quoque reply that a similar difficulty would arise for a Platonist who wished to
introduce abstract objects by means of abstraction principles of the form (AP)
as well. While HP may help in proving certain concepts of finite cardinality to
exist, it does not get all the cardinalities discussed in, e.g., contemporary set
theory. Taking T as an axiom does not help at all with types of which there

11In the philosophical literature, Hofweber’s work, e.g., [2005], takes the empirical ques-

tions somewhat seriously, with results neither fully at odds nor fully in accord with the

approach suggested here.
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are no tokens. There are many historical precedents of these worries, from those
surrounding Aristotle’s in re theory of universals onward.

APPENDICES

Proof of Equivalence of ∼=∗ and ∼=W
For →, suppose that F ∼=∗ G. There is then an R such that

(a) ∀x∀y∀z∀w[R(type(x), type(y)) ∧R(type(z), type(w))→ (type(x) =
type(z)↔ type(y) = type(w))],

(b) ∀x[F (type(x))→ ∃y(G(type(y)) ∧R(type(x), type(y)))], and
(c) ∀y[G(type(y))→ ∃x(F (type(x)) ∧R(type(x), type(y)))].

We will show that the existential posit of F ∼=W G is satisfied by the relation R′

holding between x and y just in case ∃x′∃y′(Wxx′ ∧Wyy′ ∧Rxy). Firstly, suppose
for arbitrary x, y, z, w that R′xy ∧R′zw. Then there is an a, b, c, and d such that Wxa,
Wyb, Wzc, Wwd, Rab, and Rcd. Thus R(type(x), type(y)) and R(type(z), type(w)).
By (a) above, type(x) = type(z)↔ type(y) = type(w). Suppose that Wxz. By T′,
type(x) = type(z), whence type(y) = type(w), and again by T′, Wyw. Hence Wxz →
Wyw and by a parallel argument, Wyw →Wxz. This establishes the first conjunct of
what needs to be shown for R′. For the second, for arbitrary x, suppose Fx. Because
W is reflexive, it holds that Wxx and thereby ∃y(Wyx ∧ Fy), and thus F (type(x)).
By (b) above, there is some a such that G(type(a)) ∧R(type(x), type(a)). There is
then some a′ such that Wa′a and Ga′. Also, there are a b and c such that Wbx,
Wca, and Rbc. By the symmetry of W , Wxb, and by its symmetry and transitivity,
Wa′c. Hence, R′xa′. Because Ga′, ∃y(Gy ∧R′xy) for arbitrary Fx. This establishes
the second conjunct of what needs to be shown for R′. By similar reasoning using (c)
instead of (b), we can establish the third conjunct. Thus, F ∼=W G.

For ←, suppose that F ∼=W G. This means that there is a relation R such that

(a) ∀x∀y∀z∀w[Rxy ∧Rzw → (Wxz ↔Wyw)],
(b) ∀x[Fx→ ∃y(Gy ∧Rxy)], and
(c) ∀y[Gy → ∃x(Fx ∧Rxy)].

We can show that R itself satisfies the needed condition to show that F ∼=∗ G. Consider
arbitrary x, y, z, and w such that R(type(x), type(y)) ∧R(type(z), type(w)). There
are then a, b, c, and d such that Wax, Wby, Rab, Wcz, Wdw, and Rcd. By (a),
it follows that (d) Wac↔Wbd. Suppose further that W (type(x), type(z)). There
are then an a′ and c′ such that Wa′x, Wc′z, and Wa′c′. Because W is symmetric
and transitive, Wac, and thus, by (d), Wbd. Because Wby and Wdw, it follows that
W (type(y), type(w)). Discharging, W (type(x), type(z))→W (type(y), type(w)), and
the converse holds by parallel reasoning. This establishes the first conjunct of what
needs to be shown for R. Consider now some arbitrary x such that F (type(x)). There
is then some a such that Wax ∧ Fa. By (b), above, there is a b such that Gb ∧Rab.
Because W is reflexive, Wbb and thus G(type(b)) and R(a, type(b)), and so, because
Wax, we have that R(type(x), type(b)) and so ∃y(G(type(y)) ∧R(type(x), type(y))).
This establishes the second conjunct of what needs to be shown for R, and a very
similar argument using (c) in place of (b) establishes the third. Hence, F ∼=∗ G.
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Proof of Peano Axioms

PP1
PP1 follows directly by generalizing on the tautology

Q(0) ∧ ∀m∀m′(Q(m) ∧m P m′ → Q(m′))→ Q(0).

PP3
Suppose for reductio that #(G) P 0. By the definition of P , there is an F such that
#(F ) = 0 ∧ ∃x(Fx ∧#(λy.(Fy ∧ y 	= x)) = #(G)). By the second conjunct there is
an a such that Fa. But #(F ) = #(λx.x 	= x), and so by HP′, F ∼= λx.x 	= x. The 1–1
correlation R must map a to some entity b such that b 	= b, but this is absurd. Hence,
¬#(G) P 0. Since G was arbitrary, by generalizing, ∀G ¬#(G) P 0, i.e., ∀n ¬n P 0,
or equivalently, ¬∃n n P 0.

PP4
For arbitrary F , F ′, G suppose that #(F ) P #(G) and #(F ′) P #(G). By definition,
there are then concepts H and H′ and entities a and b such that #(H) = #(G),
#(H′) = #(G), #(λx.(Hx ∧ x 	= a)) = #(F ) and #(λx.(H′x ∧ x 	= b)) = #(F ′). By
HP′, and the symmetry and transitivity of ∼=, H ∼= H′. Let C be the 1–1 correspon-
dence between the Hs and H′s. By HP′, λx.(H′x ∧ x 	= b) ∼= F ′ and λx.(Hx ∧ x 	=
a) ∼= F . Let R be the 1–1 correlation between the Hs other than a and the F s, and let
R′ be the 1–1 correlation between the H′s other than b and the F ′s. Either Cab or not.
If Cab, then let C′ be the relation that holds between arbitrary x in y just in case Cxy
but x 	= a. If not Cab, then let C′ by the relation that holds between x and y just in
case x 	= a and y 	= b and either Cxy or both Cxb and Cay. In either case, clearly C′ is
a 1–1 relation whose domain is the Hs that are not a and whose range is the H′s that
are not b. Now let S be the relation that holds between x and y just in case Fx and
F ′y and there are z, z′ such that Hz, H′z′, Rzx, C′zz′ and R′z′y all hold. S is clearly
a 1–1 correlation between the F s and the F ′s. Hence, #(F ) = #(F ′). Discharging our
assumption #(F ) P #(G) and #(F ′) P #(G)→ #(F ) = #(F ′). Generalizing, and
replacing variables with numeric ones, ∀m∀m′∀n(m P n ∧m′ P n→ m = m′).

PP2a
Suppose for arbitrary F and G that N(#(F )) and #(F ) P #(G). Suppose for arbitrary
Q that Q(0) and ∀m∀m′(Q(m) ∧m P m′ → Q(m′)). Instantiating m and m′ to #(F )
and #(G), respectively, we get Q(#(G)). Discharging and generalizing, ∀Q[Q(0) ∧
∀m∀m′(Q(m) ∧m P m′ → Q(m′))→ Q(#(G))], i.e., N(#(G)). Again, discharging
and generalizing, ∀F∀G(N(#(F )) ∧#(F ) P #(G)→ N(#(G))); rewriting, we get
∀m∀n(N(m) ∧m P n→ N(n)).

PP2b
Suppose for arbitrary F , G, and G′ that #(F ) P #(G) and #(F ) P #(G′). Then
there are concepts H and H′ such that #(H) = #(G) and #(H′) = #(G′), and
there are entities a and b such that Ha and H′b and #(λx.(Hx ∧ x 	= a)) = #(F )
and #(λx.(H′x ∧ x 	= b)) = #(F ). By HP′ and the symmetry and transitivity of ∼=,
λx.(Hx ∧ x 	= a) ∼= λx.(H′x ∧ x 	= b). Let R be the 1–1 correlation between these con-
cepts. Let R′ be the relation holding between arbitrary x and y just in case Rxy or
x = a and y = b. Clearly C′ is a 1–1 correspondence between H and H′ and hence
H ∼= H′. By HP′, we also have that H ∼= G and H′ ∼= G. By symmetry and transitivity
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of ∼=, G ∼= G′, whence #(G) = #(G′). Discharging our supposition and general-
izing, ∀F∀G∀G′(#(F ) P #(G) ∧#(F ) P #(G′)→ #(G) = #(G′)). Rewriting with
number variables, ∀m∀n∀n′(m P n ∧m P n′ → n = n′).

PP5
For arbitary Q, suppose both (a) Q(0) and (b) ∀m∀m′(N(m) ∧Q(m) ∧m P
m′ → Q(m′)). Next, for arbitrary F , suppose N(#(F )). That is: (c) ∀Q[Q(0) ∧
∀m∀m′(Q(m) ∧m P m′ → Q(m′))→ Q(#(F ))]. More fully written out (c) is

∀Q[Q(0) ∧ ∀G∀G′(Q(#(G)) ∧#(G) P #(G′)→ Q(#(G′)))→ Q(#(F ))].

Let Q′ be λH.(N(#(H)) ∧Q(#(H))). By (c), we get (d):

Q′(0) ∧ ∀G∀G′(Q′(#(G)) ∧#(G) P #(G′)→ Q′(#(G′)))→ Q′(#(F )).

At (a) we have Q(0), viz., ∃H(H ∼= λx.x 	= x ∧Q(H)). Let H′ be the null concept
making this true. Hence, #(H′) = 0 by HP′, and by the reflexivity of ∼=, ∃H(H ≡
H′ ∧Q(H)). Hence we have N(#(H′)) ∧Q(#(H′)). Therefore Q′(H′), and since
H′ ∼= λx.x 	= x, ∃H(H ∼= λx.x 	= x ∧Q′(H)), i.e., Q′(0). Next, for arbitrary G and G′

suppose Q′(#(G)) and #(G) P #(G′). Q′(#(G)) means that there is a G′′ such that
G′′ ∼= G and Q′(G′′). Thus, N(#(G′′)) ∧Q(#(G′′)). But #(G) = #(G′′) by HP′ and
so N(#(G)) ∧Q(#(G)). By (b) earlier it follows that Q(#(G′)). By PP2a, N(#(G′)),
and so Q′(G′). By reflexivity of ∼=, ∃F (F ∼= G′ ∧Q′(F )), i.e., Q′(#(G′)). Discharging
and generalizing, ∀G∀G′(Q′(#(G)) ∧#(G) P #(G′)→ Q′(#(G′))), and so, by (d)
Q′(#(F )). Thus, there is an F ′ such that F ′ ∼= F and Q′(F ′). Therefore, N(#(F ′)) ∧
Q(#(F ′)). Hence, there is some F ′′ such that F ′′ ∼= F ′ and Q(F ′′). By symmetry and
transitivity of ∼=, F ′′ ∼= F , and so ∃G(G ∼= F ∧Q(G)), i.e., Q(#(F )). Discharging the
assumption that N(#(F )) and generalizing, ∀F (N(#(F ))→ Q(#(F ))), or more sim-
ply, ∀n(N(n)→ Q(n)). Discharing the initial assumptions (a) and (b), and generalizing
on Q, we get PP5.

PP2c (Using (Inf))
For arbitrary F , suppose that N(#(F )). By (Inf), ∃x¬Fx. Call it a; hence ¬Fa.
Let F ′ be λx.(Fx ∨ x = a). Clearly #(F ′) = #(F ′). Also, F ′a and ∀x(λy.(F ′y ∧
y 	= a)x↔ Fx). Hence λy.(F ′y ∧ y 	= a) ∼= F and #(λy.(F ′y ∧ y 	= a)) = #(F ). Thus
∃x(Fx ∧#(λy.(F ′y ∧ y 	= x)) = #(F )). Therefore #(F ) P #(F ′). Hence, ∃n #(F ) P
n. Discharging and generalizing, ∀F (N(#(F ))→ ∃n #(F ) P n), i.e., ∀m(N(m)→
∃n m P n).
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