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Integrated Information Theory is one of the leading models of consciousness. It aims to
describe both the quality and quantity of the conscious experience of a physical system,
such as the brain, in a particular state. In this contribution, we propound the mathematical
structure of the theory, separating the essentials from auxiliary formal tools. We provide a
definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT
introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the
theory which may serve as the starting point for future formal investigations and as an
introduction suitable for researchers with a formal background.
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1 INTRODUCTION

Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators [5, 45–47], has
emerged as one of the leading scientific theories of consciousness. At the heart of the latest version of
the theory [19, 25, 26, 31, 40] is an algorithm which, based on the level of integration of the internal
functional relationships of a physical system in a given state, aims to determine both the quality and
quantity (‘Φ value’) of its conscious experience.

While promising in itself [12, 43], the mathematical formulation of the theory is not
satisfying to date. The presentation in terms of examples and accompanying explanation veils
the essential mathematical structure of the theory and impedes philosophical and scientific
analysis. In addition, the current definition of the theory can only be applied to comparably
simple classical physical systems [1], which is problematic if the theory is taken to be a
fundamental theory of consciousness, and should eventually be reconciled with our present
theories of physics.

To resolve these problems, we examine the essentials of the IIT algorithm and formally define a
generalized notion of Integrated Information Theory. This notion captures the inherent
mathematical structure of IIT and offers a rigorous mathematical definition of the theory which
has ‘classical’ IIT 3.0 of Tononi et al. [25, 26, 31] as well as the more recently introduced Quantum
Integrated Information Theory of Zanardi, Tomka and Venuti [50] as special cases. In addition, this
generalization allows us to extend classical IIT, freeing it from a number of simplifying assumptions
identified in [3]. Our results are summarised in Figure 1.

In the associated article [44] we show more generally how the main notions of IIT, including
causation and integration, can be treated, and an IIT defined, starting from any suitable theory of
physical systems and processes described in terms of category theory. Restricting to classical or
quantum process then yields each of the above as special cases. This treatment makes IIT applicable
to a large class of physical systems and helps overcome the current restrictions.
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Our definition of IIT may serve as the starting point for
further mathematical analysis of IIT, in particular if related to
category theory [30, 49]. It also provides a simplification and
mathematical clarification of the IIT algorithm which extends
the technical analysis of the theory [1, 41, 42] and may
contribute to its ongoing critical discussion [2, 4, 8, 23, 27,
28, 33]. The concise presentation of IIT in this article should
also help to make IIT more easily accessible for
mathematicians, physicists and other researchers with a
strongly formal background.

This work is concerned with the most recent version of IIT as
proposed in [25, 26, 31, 40] and similar papers quoted below.
Thus our constructions recover the specific theory of
consciousness referred to as IIT 3.0 or IIT 3.x, which we will
call classical IIT in what follows. Earlier proposals by Tononi et al.
that also aim to explicate the general idea of an essential
connection between consciousness and integrated information
constitute alternative theories of consciousness which we do not
study here. A yet different approach would be to take the term
‘Integrated Information Theory’ to refer to the general idea of
associating conscious experience with some pre-theoretic notion
of integrated information, and to explore the different ways that
this notion could be defined in formal terms [4, 27, 28, 37].

Relation to Other Work
This work develops a thorough mathematical perspective of
one of the promising contemporary theories of
consciousness. As such it is part of a number of recent
contributions which seek to explore the role and prospects
of mathematical theories of consciousness [11, 15, 18, 30, 49],
to help overcome problems of existing models [17, 18, 34]
and to eventually develop new proposals [6, 13, 16, 20, 22,
29, 39].

1.1 Structure of Article
We begin by introducing the necessary ingredients of a
generalised Integrated Information Theory in Sections
2–4, namely physical systems, experience spaces and
cause-effect repertoires. Our approach is axiomatic in that
we state only the precise formal structure which is necessary
to apply the IIT algorithm. We neither motivate nor criticize
these structures as necessary or suitable to model
consciousness. Our goal is simply to recover IIT 3.0. In
Section 5, we introduce a simple formal tool which allows
us to present the definition of the algorithm of an IIT in a
concise form in Sections 6 and 7. Finally, in Section 8, we
summarise the full definition of such a theory. The result is
the definition of a generalized IIT. We call any application of
this definition ‘an IIT’.

Following this we give several examples including IIT 3.0
in Section 9 and Quantum IIT in Section 10. In Section 11
we discuss how our formulation allows one to extend classical
IIT in several fundamental ways, before discussing further
modifications to our approach and other future work in
Section 12. Finally, the appendix includes a detailed
explanation of how our generalization of IIT coincides
with its usual presentation in the case of classical IIT.

2 SYSTEMS

The first step in defining an Integrated Information Theory (IIT)
is to specify a class Sys of physical systems to be studied. Each
element S ∈ Sys is interpreted as a model of one particular
physical system. In order to apply the IIT algorithm, it is only
necessary that each element S come with the following features.

Definition 1. A system class Sys is a class each of whose
elements S, called systems, come with the following data:

1. A set St(S) of states;
2. for every s ∈ St(S), a set Subs(S) ⊂ Sys of subsystems and for

each M ∈ Subs(S) an induced state s|M ∈ St(M);
3. a set DS of decompositions, with a given trivial

decomposition 1 ∈ DS;
4. for each z ∈ DS a corresponding cut system Sz ∈ Sys and for

each state s ∈ St(S) a corresponding cut state sz ∈ St(Sz).
Moreover, we require that Sys contains a distinguished
empty system, denoted I, and that I ∈ Sub(S) for all S. For
the IIT algorithm to work, we need to assume furthermore that
the number of subsystems remains the same under cuts or
changes of states, i.e. that we have bijections Subs(S)xSubs’(S)
for all s, s’ ∈ St(S) and Subs(S)xSubsz(Sz) for all z ∈ DS.

Note that taking a subsystem of a system S requires
specifying a state s of S. An example class of systems is
illustrated in Figure 2. In this article we will assume that
each set Subs(S) is finite, discussing the extension to the infinite
case in Section 12. We will give examples of system classes and
for all following definitions in Sections 9 and 10.

3 EXPERIENCE

An IIT aims to specify for each system in a particular state its
conscious experience. As such, it will require a mathematical
model of such experiences. Examining classical IIT, we find
the following basic features of the final experiential states it
describes which are needed for its algorithm.

Firstly, each experience e should crucially comewith an intensity,
given by a number ||e|| in the non-negative reals R+ (including
zero). This intensity will finally correspond to the overall intensity of
experience, usually denoted by Φ. Next, in order to compare
experiences, we require a notion of distance d(e,e′) between any

FIGURE 1 | An Integrated Information Theory specifies for every system
in a particular state its conscious experience, described formally as an element
of an experience space. In our formalization, this is a map Sys →E Exp from the
system class Sys into a class Exp of experience spaces, which, first,
sends each system S to its space of possible experiences E(S), and, second,
sends each state s ∈ St(S) to the actual experience the system is having when
in that space, St(S)→ E(S), s1E(S, s) . The definition of this map in terms of
axiomatic descriptions of physical systems, experience spaces and further
structure used in classical IIT is given in the first half of this paper.
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pair of experiences e,e′. Finally, the algorithm will require us to be
able to rescale any given experience e to have any given intensity.
Mathematically, this is most easily encoded by letting us multiply
any experience e by any number r ∈ R+. In summary, a minimal
model of experience in a generalized IIT is the following.

Definition 2. An experience space is a set E with:

1. An intensity function ||.|| : E→R+
2. A distance function d : E × E→R+
3. A scalar multiplication R+ × E→ E, denoted (r, e)1r · e,

satisfying

‖r · e‖ � r · ‖e‖ r · (s · e) � (rs) · e 1 · e � e

for all e ∈ E and r, s ∈ R+.

We remark that this same axiomatisation will apply both to
the full space of experiences of a system, as well as to the spaces
describing components of the experiences (‘concepts’ and
‘proto-experiences’ defined in later sections). We note that
the distance function does not necessarily have to satisfy the
axioms of a metric. While this and further natural axioms such
as d(r · e, r · f ) � r · d(e, f ) might hold, they are not necessary
for the IIT algorithm.

The above definition is very general, and in any specific
application of IIT, the experiences may come with further
mathematical structure. The following example includes the
experience spaces used in classical IIT.

Example 3. Any metric space (X, d) may be extended to
an experience space X :� X × R+ in various ways. E.g., one can
define ||(x, r)|| � r, r · (x, s) � (x, rs) and define the distance as

d((x, r), (y, s)) � r d(x, y .) (1)

This is the definition used in classical IIT (cf. Section 9 and
Appendix A).

An important operation on experience spaces is taking their
product.

Definition 4. For experience spaces E and F, we define the
product to be the space E × F with distance

d((e, f ), (e′, f ′)) � d(e, e′) + d(f , f ′), (2)

intensity
����(e, f )���� � max{����e����, ����f ����} and scalar multiplication

r · (e, f ) � (r · e, r · f ). This generalizes to any finite product∏
i∈I
Ei of experience spaces.

4 REPERTOIRES

In order to define the experience space and individual experiences
of a system S, an IIT utilizes basic building blocks called
‘repertoires’, which we will now define. Next to the specification
of a system class, this is the essential data necessary for the IIT
algorithm to be applied.

Each repertoire describes a way of ‘decomposing’ experiences, in
the following sense. LetD denote any set with a distinguished element
1, for example the setDS of decompositions of a system S, where the
distinguished element is the trivial decomposition 1 ∈ DS.

Definition 5. Let e be an element of an experience space E. A
decomposition of e over D is a mapping e : D→ E with e(1) � e.

In more detail, a repertoire specifies a proto-experience for
every pair of subsystems and describes how this experience
changes if the subsystems are decomposed. This allows one to
assess how integrated the system is with respect to a
particular repertoire. Two repertoires are necessary for the
IIT algorithm to be applied, together called the cause-effect
repertoire.

For subsystemsM, P ∈ Subs(S), defineDM,P :� DM ×DP . This
set describes the decomposition of both subsystems simultaneously.
It has a distinguished element 1 � (1M , 1P).

Definition 6. A cause-effect repertoire at S is given by a
choice of experience space PE(S), called the space of proto-
experiences, and for each s ∈ St(S) and M, P ∈ Subs(S), a pair
of elements

FIGURE 2 | As an example of Definition 1 similar to IIT 3.0, consider simple systems given by sets of nodes (or ‘elements’), with a state assigning each node the
state ‘on’ (depicted green) or ‘off’ (red). Each system comes with a time evolution shown by labelling each node with how its state in the next time-step depends on the
states of the others. Decompositions of a system S correspond to binary partition of the nodes, such as z above. The cut system S z is given by modifying the time
evolution of S so that the two halves do not interact; in this case all connections between the halves are replaced by sources of noise which send ‘on’ or ‘off’ with
equal likelihood, depicted as black dots above. Given a current state s of S, any subset of the nodes (such as those below the dotted line) determines a subsystem S′,
with time evolution obtained from that of S by fixing the nodes in S ∖S′ (here, the upper node) to be in the state specified by s. Note that while in this example any
subsystem (subset of S) determines a decomposition (partition of S) we do not require such a relationship in general.
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causs(M, P), ef f s(M, P) ∈ PE(S) (3)

and for each of them a decomposition over DM,P.
Examples of cause-effect repertoires will be given in Sections 9

and 10. A general definition in terms of process theories is given
in [44]. For the IIT algorithm, a cause-effect repertoire needs to be
specified for every system S, as in the following definition.

Definition 7. A cause-effect structure is a specification of a
cause-effect repertoire for every S ∈ Sys such that

PE(S) � PE(Sz) for all z ∈ DS. (4)

The names ‘cause’ and ‘effect’ highlight that the definitions of
causs(M, P) and eff s(M, P) in classical and Quantum IIT describe
the causal dynamics of the system. They are intended to capture the
manner in which the ‘current’ state s of the system, when restricted to
M, constrains the ‘previous’ or ‘next’ state of P, respectively.

5 INTEGRATION

We have now introduced all of the data required to define an IIT;
namely, a system class along with a cause-effect structure. From
this, we will give an algorithm aiming to specify the conscious
experience of a system. Before proceeding to do so, we introduce a
conceptual short-cut which allows the algorithm to be stated in a
concise form. This captures the core ingredient of an IIT, namely
the computation of how integrated an entity is.

Definition 8. Let E be an experience space and e an element
with a decomposition over some set D. The integration level of e
relative to this decomposition is

ϕ(e) :� min
1≠z∈D

d(e, e(z)). (5)

Here, d denotes the distance function of E, and the minimum is
taken over all elements of D besides 1. The integration scaling of e
is then the element of E defined by

ι(e) :� ϕ(e) · ê, (6)

where ê denotes the normalization of e, defined as

ê :�
⎧⎪⎪⎨⎪⎪⎩

1

‖e‖ · e if ‖e‖≠ 0
e if ‖e‖ � 0.

Finally, the integration scaling of a pair e1, e2 of such elements is
the pair

ι(e1, e2) :� (ϕ · ê1, ϕ · ê2) (7)

where ϕ :� min(ϕ(e1), ϕ(e2)) is the minimum of their
integration levels.

We will also need to consider indexed collections of
decomposable elements. Let S be a system in a state s ∈ St(S)
and assume that for every M ∈ Subs(S) an element eM of some
experience space EM with a decomposition over some DM is given.
We call (eM)M∈Subs(S) a collection of decomposable elements, and
denote it as (eM)M.

Definition 9. The core of the collection (eM)M is the subsystem
C ∈ Subs(S) for which ϕ(eC) is maximal.1 The core integration
scaling of the collection is ι(eC). The core integration scaling of a
pair of collections ((eM)M, (fM)M) is ι(eC , fD), where C,D are the
cores of (eM)M and (fM)M, respectively.

6 CONSTRUCTIONS: MECHANISM LEVEL

Let S ∈ Sys be a physical system whose experience in a state
s ∈ St(S) is to be determined. The first level of the algorithm
involves fixing some subsystem M ∈ Subs(S), referred to as a
‘mechanism’, and associating to it an object called its ‘concept’
which belongs to the concept space

C(S) :� PE(S) × PE(S) . (8)

For every choice of P ∈ Subs(S), called a ‘purview’, the
repertoire values causs(M, P) and eff s(M, P) are elements
of PE(S) with given decompositions over DM,P . Fixing M,
they provide elements with decompositions over Sub(S)
given by

causs(M) :� (causs(M, P))P∈Sub(S)
eff s(M) :� (eff s(M, P))P∈Sub(S) . (9)

The concept ofM is then defined as the core integration scaling
of this pair of collections,

CS,s(M) :� Core integration scaling of (causs(M), eff s(M)).
(10)

It is an element of C(S). Unraveling our definitions, the
concept thus consists of the values of the cause and effect
repertoires at their respective ‘core’ purviews Pc, Pe, i.e. those
which make them ‘most integrated’. These values caus(M, Pc)
and eff(M, Pe) are then each rescaled to have intensity given by
the minima of their two integration levels.

7 CONSTRUCTIONS: SYSTEM LEVEL

The second level of the algorithm specifies the experience of
system S in state s. To this end, all concepts of a system are
collected to form its Q-shape, defined as

Qs(S) :� (CS,s(M))M∈Subs(S) . (11)

This Is an Element of the Space

E(S) � C(S)n(S) , (12)

where n(S) :� |Subs(S)|, which is finite and independent of the state
s according to our assumptions. We can also define a Q-shape for
any cut of S. Let z ∈ DS be a decomposition, Sz the corresponding
cut system and sz be the corresponding cut state. We define

1If the maximum does not exist, we define the core to be the empty system I.
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Qs(Sz) :� (CSz ,sz(M))M∈Subsz (Sz ) . (13)

Because of Eq. 4, and since the number of subsystems remains the
samewhen cutting,Qs(Sz) is also an element ofE(S). This gives amap

QS,s : DS → E(S)
z1Qs(Sz)

which is a decomposition ofQs(S) overDS. Considering this map for
every subsystem of S gives a collection of decompositions defined as

Q(S, s) :� (QM,s|M)M∈Subs(S)

This is the system level-object of relevance and is what specifies
the experience of a system according to IIT.

Definition 10. The experience of system S in the state
s ∈ St(S) is

E(S, s) :� Core integration scaling of Q(S, s) . (14)

The definition implies that E(S, s) ∈ E(M), whereM ∈ Subs(S) is
the core of the collection Q(S, s), called the major complex. It
describes which part of system S is actually conscious. In most
cases there will be a natural embedding E(M)→ E(S) for a
subsystem M of S, allowing us to view E(S, s) as an element of
E(S) itself. Assuming this embedding to exist allows us to define
an Integrated Information Theory concisely in the next section.

8 INTEGRATED INFORMATION THEORIES

We can now summarize all that we have said about IITs.

Definition 11. An Integrated Information Theory is determined
as follows. The data of the theory is a system class Sys along with a
cause-effect structure. The theory then gives a mapping

Sys →E Exp (15)

into the class Exp of all experience spaces, sending each system S
to its space of experiences E(S) defined in Eq. 12, and a mapping

St(S)→ E(S)
s1E(S, s) (16)

which determines the experience of the system when in a state s,
defined in Eq. 14.
The quantity of the system’s experience is given by

Φ(S, s) :� ‖E(S, s)‖ ,
and the quality of the system’s experience is given by the normalized
experience Ê(S, s). The experience is “located” in the core of the
collection Q(S, s), called the major complex, which is a subsystem
of S.

In the next sections we specify the data of several example IITs.

9 CLASSICAL IIT

In this section we show how IIT 3.0 [25, 26, 31, 48] fits in into
the framework developed here. A detailed explanation of how

our earlier algorithm fits with the usual presentation of IIT is
given in Appendix A. In [44] we give an alternative
categorical presentation of the theory.

9.1 Systems
We first describe the system class underlying classical IIT.
Physical systems S are considered to be built up of several
components S1, . . . , Sn, called elements. Each element Si
comes with a finite set of states St(Si), equipped with a
metric. A state of S is given by specifying a state of each
element, so that

St(S) � St(S1) ×/ × St(Sn). (17)

We define a metric d on St(S) by summing over the metrics of
the element state spaces St(Si) and denote the collection of
probability distributions over St(S) by P(S). Note that we may
view St(S) as a subset of P(S) by identifying any s ∈ St(S) with
its Dirac distribution δs ∈ P(S), which is why we abbreviate δs
by s occasionally in what follows.

Additionally, each system comes with a probabilistic
(discrete) time evolution operator or transition probability
matrix, sending each s ∈ St(S) to a probabilistic state
T(s) ∈ P(S). Equivalently it may be described as a convex-
linear map

T : P(S)→P(S) . (18)

Furthermore, the evolution T is required to satisfy a property
called conditional independence, which we define shortly.

The class Sys consists of all possible tuples S � ({Si}ni�1,T) of
this kind, with the trivial system I having only a single element
with a single state and trivial time evolution.

9.2 Conditioning and Marginalizing
In what follows, we will need to consider two operations on the
map T. LetM be any subset of the elements of a system andM⊥ its
complement. We again denote by St(M) the Cartesian product of
the states of all elements in M, and by P(M) the probability
distributions on St(M). For any p ∈ P(M), we define the
conditioning [26] of T on p as the map

T |p〉 : P(M⊥)→P(S)
p′1T(p · p′) (19)

where p · p′ denotes the multiplication of these probability
distributions to give a probability distribution over S. Next, we
define marginalisation over M as the map

〈M| : P(S)→P(M⊥) (20)

such that for each p ∈ P(S) and m2 ∈ St(M⊥) we have
〈M|p(m2) � ∑

m1∈St(M)
p(m1,m2) . (21)

In particular for any map T as above we call 〈M|T the
marginal of T over M and we write Ti :� 〈S⊥i

∣∣∣∣T for each
i � 1, . . . , n. Conditional independence of T may now be
defined as the requirement that
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T(p) � ∏n
i�1

Ti(p) for all p ∈ P(S) ,

where the right-hand side is again a probability distribution over
St(S).

9.3 Subsystems, Decompositions and Cuts
Let a system S in a state s ∈ St(S) be given. The subsystems are
characterized by subsets of the elements that constitute S. For any
subset M � {S1, . . . , Sm} of the elements of S, the corresponding
subsystem is also denoted M and St(M) is again given by the
product of the St(Si), with time evolution

TM :� 〈M⊥|T|sM⊥〉, (22)

where sM⊥ is the restriction of the state s to St(M⊥) and |sM⊥〉
denotes the conditioning on the Dirac distribution δsM⊥ .

The decomposition set DS of a system S consists of all
partitions of the set N of elements of S into two disjoint sets
M and M⊥. We denote such a partition by z � (M,M⊥). The
trivial decomposition 1 is the pair (N ,∅).

For any decomposition (M,M⊥) the corresponding cut
system S(M,M⊥) is the same as S but with a new time evolution
T(M,M⊥). Using conditional independence, it may be defined for
each i � 1, . . . , n as

T(M,M⊥)
i :� {Ti i ∈ M⊥

Ti|ωM⊥〉〈M⊥∣∣∣ i ∈ M
, (23)

where ωM ∈ P(M) denotes the uniform distribution on St(M).
This is interpreted in the graph depiction as removing all those
edges from the graph whose source is inM⊥ and whose target is in
M. The corresponding input of the target element is replaced by
noise, i.e. the uniform probability distribution over the source
element.

9.4 Proto-Experiences
For each system S, the first Wasserstein metric (or ‘Earth Mover’s
Distance’) makes P(S) a metric space (P(S), d). The space of
proto-experiences of classical IIT is

PE(S) :� P(S) , (24)

where P(S) is defined in Example 3. Thus elements of PE(S) are
of the form (p, r) for some p ∈ P(S) and r ∈ R+, with distance
function, intensity and scalar multiplication as defined in the
example.

9.5 Repertoires
It remains to define the cause-effect repertoires. Fixing a state s of
S, the first step will be to define maps causs′ and eff ′s which send
any choice of (M, P) ∈ Sub(S) × Sub(S) to an element of P(P).
These should describe the way in which the current state of M
constrains that of P in the next or previous time-steps. We begin
with the effect repertoire. For a single element purview Pi we
define

eff ′s(M, Pi) :� 〈P⊥
i

∣∣∣∣T|ωM⊥〉(sM), (25)

where sM denotes (the Dirac distribution of) the restriction of the
state s to M. While it is natural to use the same definition for
arbitrary purviews, IIT 3.0 in fact uses another definition based on
consideration of ‘virtual elements’ [25, 26, 48], which also makes
calculations more efficient (Supplementary Material S1 of [26]).
For general purviews P, this definition is

eff ′s(M, P) � ∏
Pi∈P

eff ′s(M, Pi), (26)

taking the product over all elements Pi in the purview P. Next, for
the cause repertoire, for a single element mechanismMi and each
~s ∈ St(P), we define

causs′(Mi, P)[~s] � λ〈M⊥
i

∣∣∣∣T|ωP⊥〉(δ~s)[sMi], (27)

where λ is the unique normalisation scalar making
causs′(Mi, P) a valid element of P(P). Here, for clarity, we
have indicated evaluation of probability distributions at
particular states by square brackets. If the time evolution
operator has an inverse T−1, this cause repertoire could be
defined similarly to (25) by causs′(Mi, P) �
〈P⊥

∣∣∣∣∣T− 1
∣∣∣∣∣ωM⊥

i
〉(sMi) , but classical IIT does not utilize this

definition.
For General Mechanisms M, we Then Define

causs′(M, P) � κ∏
Mi∈M

causs′(Mi, P) (28)

where the product is over all elements Mi in M and where
κ ∈ R+ is again a normalisation constant. We may at last now
define

causs(M, P) :� causs′(M, P) · causs′(∅, P⊥)
eff s(M, P) :� eff ′s(M, P) · eff ′s(∅, P⊥) , (29)

with intensity 1 when viewed as elements of PE(S). Here, the dot
indicates again the multiplication of probability distributions and
∅ denotes the empty mechanism.

The distributions causs′(∅, P⊥) and eff ′s(∅, P⊥) are called the
unconstrained cause and effect repertoires over P⊥.

Remark 12. It is in fact possible for the right-hand side of Eq.
28 to be equal to 0 for all ~s for some Mi ∈ M. In this case we set
causs′(M, P) � (ωS, 0) in PE(S).
Finally we must specify the decompositions of these elements
over DM,P . For any partitions zM � (M1,M2) of M and zP �
(P1, P2) of P, we define
causs(M,P)(zM ,zP) :�causs′(M1,P1) ·causs′(M2,P2) ·causs′(∅,P⊥)
eff s(M,P)(zM ,zP) :�eff ′s(M1,P1) ·eff ′s(M,

2P2) ·eff ′s(∅,P⊥), (30)

where we have abused notation by equating each subsetM1 and
M2 of nodes with their induced subsystems of S via the state s.

This concludes all data necessary to define classical IIT. If the
generalized definition of Section 8 is applied to this data, it
yields precisely classical IIT 3.0 defined by Tononi et al. In
Appendix A, we explain in detail how our definition of IIT,
equipped with this data, maps to the usual presentation of the
theory.
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10 QUANTUM IIT

In this section, we consider Quantum IIT defined in [50]. This is
also a special case of the definition in terms of process theories we
give in [44].

10.1 Systems
Similar to classical IIT, in Quantum IIT systems are conceived as
consisting of elements H1, . . . ,Hn. Here, each element Hi is
described by a finite dimensional Hilbert space and the state space
of system S is defined in terms of the element Hilbert spaces as

St(S) � S(HS) with HS �⊗
i�1

n

Hi,

where S(HS) ⊂ L(HS) describes the positive semidefinite
Hermitian operators of unit trace on HS, i.e. density matrices.
The time evolution of the system is again given by a time
evolution operator, which here is assumed to be a trace
preserving (and in [50] typically unital) completely positive map

T : L(HS)→ L(HS) .

10.2 Subsystems, Decompositions and Cuts
Subsystems are again defined to consist of subsetsM of the elements
of the system, with corresponding Hilbert space HM :�⊗i∈MHi.
The time-evolution T M : L(HM)→ L(HM) is defined as

T M(ρ) � trM⊥(T (trM⊥(s)⊗ ρ)) ,
where s ∈ S(HS) and trM⊥ denotes the trace over the Hilbert
space HM⊥ .

Decompositions are also defined via partitions z � (D,D⊥) ∈ DS

of the set of elements N into two disjoint subsets D and D⊥ whose
union is N. For any such decomposition, the cut system S(D,D⊥) is
defined to have the same set of states but time evolution

T (D,D⊥)(s) � T (trD⊥(s)⊗ωD⊥ ) ,
where ωD⊥ is the maximally mixed state on HD⊥ , i.e. ωD⊥ �

1
dim(HD⊥) 1HD⊥

.

10.3 Proto-Experiences
For any ρ, σ ∈ S(HS), the trace distance defined as

d(ρ, σ) � 1
2
trS( �������(ρ − σ)2√ )

turns (S(HS), d) into ametric space. The space of proto-experiences
is defined based on this metric space as described in Example 3,

PE(S) :� S(HS) .
10.4 Repertoires
We finally come to the definition of the cause-effect repertoire.
Unlike classical IIT, the definition in [50] does not consider virtual
elements. Let a system S in state s ∈ St(S) be given. As in Section
9.5, we utilize maps causs′ and eff ′s which here map subsystemsM
and P to St(P). They are defined as

eff ′s(M, P) � trP⊥T (trM⊥(s)⊗ωM⊥ )
causs′(M, P) � trP⊥T †(trM⊥(s)⊗ωM⊥ ) ,

where T † is the Hermitian adjoint of T . We then define

causs(M, P) :� causs′(M, P)⊗ causs′(∅, P⊥)
eff(M, P) :� eff ′s(M, P)⊗ eff ′s(∅, P⊥),

each with intensity 1, where∅ again denotes the empty mechanism.
Similarly, decompositions of these elements overDM,P are defined as

causs(M,P)(zM ,zP) :�caus′s(M1,P1)⊗caus′s(M2,P2)⊗caus′s(∅,P⊥)
eff s(M,P)(zM ,zP) :�eff ′s(M1,P1)⊗eff ′s(M2,P2)⊗eff ′s(∅,P⊥),

again with intensity 1, where zM � (M1,M2) ∈ DM and zP �
(P1, P2) ∈ DP.

11 EXTENSIONS OF CLASSICAL IIT

The physical systems to which IIT 3.0 may be applied are limited
in a number of ways: they must have a discrete time-evolution,
satisfy Markovian dynamics and exhibit a discrete set of states [3].
Since many physical systems do not satisfy these requirements, if
IIT is to be taken as a fundamental theory about reality, it must be
extended to overcome these limitations.

In this section, we show how IIT can be redefined to cope with
continuous time, non-Markovian dynamics and non-compact state
spaces, by a redefinition of the maps Eqs. 26 and 28 and, in the case
of non-compact state spaces, a slightly different choice of Eq. 24,
while leaving all of the remaining structure as it is. While we do not
think that our particular definitions are satisfying as a general
definition of IIT, these results show that the disentanglement of
the essential mathematical structure of IIT from auxiliary tools (the
particular definition of cause-effect repertoires used to date) can help
to overcome fundamental mathematical or conceptual problems.

In Section 11.3, we also explain which solution to the problem
of non-canonical metrics is suggested by our formalism.

11.1 Discrete Time and Markovian
Dynamics
In order to avoid the requirement of a discrete time and Markovian
dynamics, instead ofworkingwith the time evolution operatorEq. 18,
we define the cause- and effect repertoires in reference to a given
trajectory of a physical state s ∈ St(S). The resulting definitions can be
applied independently of whether trajectories are being determined
by Markovian dynamics in a particular application, or not.

Let t ∈ I denote the time parameter of a physical system. If
time is discrete, I is an ordered set. If time is continuous, I is
an interval of reals. For simplicity, we assume 0 ∈ I . In the
deterministic case, a trajectory of a state s ∈ St(S) is simply a
curve in St(S), which we denote by (s(t))t∈I with s(0) � s. For
probabilistic systems (such as neural networks with a
probabilistic update rule), it is a curve of probability
distributions P(S), which we denote by (p(t))t∈I , with p(0)
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equal to the Dirac distribution δs. The latter case includes the
former, again via Dirac distributions.

In what follows, we utilize the fact that in physics, state spaces are
defined such that the dynamical laws of a system allow to determine
the trajectory of each state. Thus for every s ∈ St(S), there is a
trajectory (ps(t))t∈I which describes the time evolution of s.

The idea behind the following is to define, for every
M, P ∈ Sub(S), a trajectory p(P,M)

s (t) in P(P) which quantifies
how much the state of the purview P at time t is being
constrained by imposing the state s at time t � 0 on the
mechanism M. This gives an alternative definition of the maps
(26) and (28), while the rest of classical IIT can be applied as before.

Let nowM, P ∈ Sub(S) and s ∈ St(S) be given. We first consider
the time evolution of the state (sM , v) ∈ St(S), where sM denotes the
restriction of s to St(M) as before and where v ∈ St(M⊥) is an
arbitrary state of M⊥. We denote the time evolution of this state by
p(sM ,v)(t) ∈ P(S). Marginalizing this distribution over P⊥ gives a
distribution on the states of P, which we denote as pP(sM ,v)(t) ∈ P(P).
Finally, we average over vusing the uniformdistributionωM⊥ . Because
state spaces are finite in classical IIT, this averaging can be defined
pointwise for every w ∈ St(P) by

p(P,M)
s (t)(w) :� κ ∑

v∈St(M⊥)
pP(sM ,v)(t)(w)ωM⊥(v), (31)

where κ is the unique normalization constant which ensures that
p(P,M)
s (t) ∈ P(P).
The probability distribution p(P,M)

s (t) ∈ P(P) describes how
much the state of the purview P at time t is being constrained by
imposing the state s on M at time t � 0 as desired. Thus, for every
t ∈ I , we have obtained a mapping of two subsystems M, P to an
element p(P,M)

s (t) of P(P) which has the same interpretation as the
map Eq. 26 considered in classical IIT. If deemed necessary, virtual
elements could be introduced just as in Eqs 27 and 29.

So far, our construction can be applied for any time t ∈ T . It
remains to fix this freedom in the choice of time. For the discrete
case, the obvious choice is to define Eqs 27 and 29 in terms of
neighboring time-steps. For the continuous case, several choices
exist. E.g., one could consider the positive and negative semi-
derivatives of p(P,M)

s (t) at t � 0, in case they exist, or add an
arbitrary but fixed time scaleΔ to define the cause-effect repertoires
in terms of p(P,M)

s (t0 ± Δ). However, the most reasonable choice is
in our eyes to work with limits, in case they exist, by defining

eff ′s(M, P) :� ∏
Pi ∈ P

lim
t→∞

p(Pi ,M)
s (t) (32)

to replace Eq. 27 and

causs′(M, P) :� κ∏
Mi∈M

lim
t→−∞

p(P,Mi)
s (t) (33)

to replace Eq. 29. The remainder of the definitions of classical IIT
can then be applied as before.

11.2 Discrete Set of States
The problem with applying the definitions of classical IIT to systems
with continuous state spaces (e.g., neuronmembrane potentials [3]) is
that in certain cases, uniform probability distributions do not exist.
E.g., if the state space of a system S consists of the positive real numbers

R+, no uniform distribution can be defined which has a finite total
volume, so that no uniform probability distribution ωS exists.

It is important to note that this problem is less universal than one
might think. E.g., if the state space of the system is a closed and
bounded subset of R+, e.g. an interval [a, b] ⊂ R+, a uniform
probability distribution can be defined using measure theory,
which is in fact the natural mathematical language for probabilities
and random variables. Nevertheless, the observation in [3] is correct
that if a system has a non-compact continuous state space, ωS might
not exist, which can be considered a problem w.r.t. the above-
mentioned working hypothesis.

This problem can be resolved for all well-understood physical
systems by replacing the uniform probability distribution ωS by
some other mathematical entity which allows to define a notion of
averaging states. For all relevant classical systems with non-compact
state spaces (whether continuous or not), there exists a canonical
uniform measure μS which allows to define the cause-effect
repertoires similar to the last section, as we now explain.
Examples for this canonical uniform measure are the Lebesgue
measure for subsets of Rn [35], or the Haar measure for locally
compact topological groups [36] such as Lie-groups.

In what follows, we explain how the construction of the last section
needs to be modified in order to be applied to this case.

In all relevant classical physical theories, St(S) is a metric space in
which every probability measure is a Radon measure, in particular
locally finite, and where a canonical locally finite uniform measure μS
exists.We defineP1(S) to be the space of probabilitymeasures whose
first moment is finite. For these, the firstWassersteinmetric (or ‘Earth
Mover’s Distance’)W1 exists, so that (P1(S),W1) is a metric space.

As before, the dynamical laws of the physical systems determine
for every state s ∈ St(S) a time evolution ps(t), which here is an
element of P1(S). Integration of this probability measure over
St(P⊥) yields the marginal probability measure pPs (t). As in the
last section, wemay consider these probability measures for the state
(sM , v) ∈ St(S), where v ∈ St(M⊥). Since μS is not normalizable, we
cannot define p(P,M)

s (t) as in (32), for the result might be infinite.
Using the fact that μS is locally finite, we may, however, define a

somewhat weaker equivalent. To this end, we note that for every state
sM⊥ , the local finiteness of μM⊥ implies that there is a neighborhood
Ns,M⊥ in St(M⊥) for which μM⊥(Ns,M⊥ ) is finite. We choose a
sufficiently large neighborhood which satisfies this condition.
Assuming pP(sM ,v)(t) to be a measurable function in v, for every A
in the σ-algebra of St(M⊥), we can thus define

p(P,M)
s (t)(A) :� κ ∫

Ns,M⊥

pP(sM ,v)(t)(A) dμM⊥(v), (34)

which is a finite quantity. The p(P,M)
s (t) so defined is non-negative,

vanishes for A � ∅ and satisfies countable additivity. Hence it is a
measure on St(P) as desired, but might not be normalizable.

All that remains for this to give a cause-effect repertoire as in the
last section, is to make sure that anymeasure (normalized or not) is
an element of PE(S). The theory is flexible enough to do this by
setting d(μ, ]) � ∣∣∣∣μ − ]

∣∣∣∣(St(P)) if either μ or ν is not inP1(S), and
W1(μ, ]) otherwise. Here,

∣∣∣∣μ − ]
∣∣∣∣ denotes the total variation of the

signed measure μ − ], and
∣∣∣∣μ − ]

∣∣∣∣(St(P)) is the volume thereof [10,
32]. While not a metric space any more, the tuple (M(S), d), with
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M(S) denoting all measures on St(S), can still be turned into a
space of proto-experiences as in Example 3. This gives

PE(S) :� M(S)
and finally allows one to construct cause-effect repertoires as in
the last section.

11.3 Non-canonical Metrics
Another criticism of IIT’s mathematical structure mentioned [3]
is that the metrics used in IIT’s algorithm are, to a certain extend,
chosen arbitrarily. Different choices indeed imply different results
of the algorithm, both concerning the quantity and quality of
conscious experience, which can be considered problematic.

The resolution of this problem is, however, not so much a
technical as a conceptual or philosophical task, for what is needed to
resolve this issue is a justification of why a particular metric should
be used. Various justifications are conceivable, e.g. identification of
desired behavior of the algorithm when applied to simple systems.
When considering our mathematical reconstruction of the theory,
the following natural justification offers itself.

Implicit in our definition of the theory as a map from systems to
experience spaces is the idea that the mathematical structure of
experiences spaces (Definition 2) reflects the phenomenological
structure of experience. This is so, most crucially, for the distance
function d, which describes how similar two elements of experience
spaces are. Since every element of an experience space corresponds
to a conscious experience, it is naturally to demand that the similarly
of the two mathematical objects should reflect the similarity of the
experiences they describe. Put differently, the distance function d of
an experience space should in factmirror (or “model”) the similarity
of conscious experiences as experienced by an experiencing subject.

This suggests that the metrics d used in the IIT algorithm
should, ultimately, be defined in terms of the phenomenological
structure of similarity of conscious experiences. For the case of
color qualia, this is in fact feasible [18, Example 3.18], [21, 38]. In
general, the mathematical structure of experience spaces should be
intimately tied to the phenomenology of experience, in our eyes.

12 SUMMARY AND OUTLOOK

In this article, we have propounded the mathematical structure of
Integrated Information Theory. First, we have studied which exact
structures the IIT algorithm uses in the mathematical description of
physical systems, on the one hand, and in the mathematical
description of conscious experience, on the other. Our findings are
the basis of definitions of a physical system class Sys and a class Exp
of experience spaces, and allowed us to view IIT as a map Sys→Exp.

Next, we needed to disentangle the essential mathematics of
the theory from auxiliary formal tools used in the contemporary
definition. To this end, we have introduced the precise notion of
decomposition of elements of an experience space required by the
IIT algorithm. The pivotal cause-effect repertoires are examples
of decompositions so defined, which allowed us to view any
particular choice, e.g. the one of ‘classical’ IIT developed by
Tononi et al., or the one of ‘quantum’ IIT recently introduced
by Zanardi et al. as data provided to a general IIT algorithm.

The formalization of cause-effect repertoires in terms of
decompositions then led us to define the essential ingredients
of IIT’s algorithm concisely in terms of integration levels,
integration scalings and cores. These definitions describe and
unify recurrent mathematical operations in the contemporary
presentation, and finally allowed to define IIT completely in
terms of a few lines of definition.

Throughout the paper, we have taken great care to make sure
our definitions reproduce exactly the contemporary version of IIT
3.0. The result of our work is a mathematically rigorous and
general definition of Integrated Information Theory. This
definition can be applied to any meaningful notion of systems
and cause-effect repertoires, and we have shown that this allows
one to overcome most of the mathematical problems of the
contemporary definition identified to date in the literature.

We believe that our mathematical reconstruction of the theory
can be the basis for refined mathematical and philosophical analysis
of IIT.We also hope that this mathematisationmaymake the theory
more amenable to study by mathematicians, physicists, computer
scientists and other researchers with a strongly formal background.

12.1 Process Theories
Our generalization of IIT is axiomatic in the sense that we have only
included those formal structures in the definition which are necessary
for the IIT algorithm to be applied. This ensured that our reconstruction
is as general as possible, while still true to IIT 3.0. As a result, several
notions used in classical IIT, e.g., system decomposition, subsystems or
causation, aremerely defined abstractly at first, without any reference to
the usual interpretation of these concepts in physics.

In the related article [44], we show that these concepts can be
meaningfully defined in any suitable process theory of physics,
formulated in the language of symmetric monoidal categories. This
approach can describe both classical and Quantum IIT and yields a
complete formulation of contemporary IIT in a categorical framework.

12.2 Further Development of IIT
IIT is constantly under development, with new and refined
definitions being added every few years. We hope that our
mathematical analysis of the theory might help to contribute
to this development. For example, the working hypothesis that
IIT is a fundamental theory, implies that technical problems of
the theory need to be resolved. We have shown that our
formalization allows one to address the technical problems
mentioned in the literature. However, there are others which
we have not addressed in this paper.

Most crucially, the IIT algorithm uses a series of maximalization
and minimalization operations, unified in the notion of core
subsystems in our formalization. In general, there is no guarantee
that these operations lead to unique results, neither in classical nor
Quantum IIT. Using different cores has major impact on the output of
the algorithm, including theΦ value, which is a case of ill-definedness.2

2The problem of ‘unique existence’ has been studied extensively in category theory
using universal properties and the notion of a limit. Rather than requiring that each
E ∈ E come with a metric, it may be possible to alter the IIT algorithm into a well-
defined categorical form involving limits to resolve this problem.
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Furthermore, the contemporary definition of IIT as well as our
formalization rely on there being a finite number of subsystems of
each system, whichmight not be the case in reality. Our formalisation
may be extendable to the infinite case by assuming that every system
has a fixed but potentially infinite indexing set Sub(S), so that each
Subs(S) is the image of a mapping Sub(S) × St(S)→ Sys, but we
have not considered this in detail in this paper.

Finally, concerning more operational questions, it would be
desirable to develop the connection to empirical measures such as
the Perturbational Complexity Index (PCI) [7, 9] in more detail,
as well as to define a controlled approximation of the theory
whose calculation is less expensive. Both of these tasks may be
achievable by substituting parts of our formalization with simpler
mathematical structure.

On the conceptual side of things, it would be desirable to have a
more proper understanding of how the mathematical structure of
experiences spaces corresponds to the phenomenology of experience,
both for the general definition used in our formalization—which
comprises the minimal mathematical structure which is required for
the IIT algorithm to be applied—and the specific definitions used in
classical and Quantum IIT. In particular, it would be desirable to
understand how it relates to the important notion of qualia, which is
often asserted to have characteristic features such as ineffability,
intrinsicality, non-contextuality, transparency or homogeneity [24].
For a first analysis toward this goal, cf [18]. A first proposal to add
additional structure to IIT that accounts for relations between
elements of consciousness in the case of spatial experiences was
recently given in [14].
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APPENDIX A: COMPARISON WITH
STANDARD PRESENTATION OF IIT 3.0

In Section 9, we have defined the system class and cause-effect
repertoires which underlie classical IIT. The goal of this appendix
is to explain in detail why applying our definition of the IIT
algorithm yields IIT 3.0 defined by Tononi et al. In doing so, we
will mainly refer to the terminology used in [25, 26, 31, 48]. We
remark that a particularly detailed presentation of the algorithm
of the theory, and of how the cause and effect repertoire are
calculated, is given in the Supplementary Material S1 of [26].

A.1 Physical Systems
The systems of classical IIT are given in Section 9.1. They are
often represented as graphs whose nodes are the elements
S1, . . . , Sn and edges represent functional dependence, thus
describing the time evolution of the system as a whole, which
we have taken as primitive in Eq. 18. This is similar to the
presentation of the theory in terms of a transition probability
function

p : St(S) × St(S)→ [0, 1]
in [25]. For each probability distribution ~p over St(S), this relates
to our time evolution operator T via

T(~p)[v] :� ∑
w∈St(S)

p(v,w) ~p(w) .

A.2 Cause-Effect Repertoires
In contemporary presentations of the theory ([25], p. 14] or [48]),
the effect repertoire is defined as

peffect(zi,mt) :� 1

|ΩMc | ∑
mc∈ΩMc

p(zi|do(mt ,m
c)) zi ∈ ΩZi (35)

and

peffect(z,mt) :� ∏|z|
i�1

peffect(zi,mt). (36)

Here, mt denotes a state of the mechanism M at time t. Mc

denotes the complement of the mechanism, denoted in our case
asM⊥,ΩMc denotes the state space of the complement, andmc an
element thereof. Zi denotes an element of the purview Z
(designated by P in our case), ΩZi denotes the state space of
this element, zi a state of this element and z a state of the whole
purview. |ΩMc | denotes the cardinality of the state space of Mc,
and |z| equals the number of elements in the purview. Finally, the
expression do(mt ,mc) denotes a variant of the so-called “do-
operator”. It indicates that the state of the system, here at time t, is
to be set to the term in brackets. This is called perturbing the
system into the state (mt ,mc). The notation p(zi|do(mt ,mc)) then
gives the probability of finding the purview element in the state zi
at time t + 1 given that the system is prepared in the state (mt ,mc)
at time t.

In our notation, the right hand side of Eq. 35 is exactly given by
the right-hand side of Eq. 25, i.e. eff ′s(M, Pi). The system is prepared

in a uniform distribution on Mc (described by the sum and
prefactor in Eq. 35) and with the restriction sM of the system
state, here denoted by mt , on M. Subsequently, T is applied to
evolve the system to time t + 1, and the marginalization 〈P⊥

i

∣∣∣∣
throws away all parts of the states except those of the purview
element Pi (denoted above as Zi). In total, Eq. 25 is a probability
distribution on the states of the purview element. When
evaluating this probability distribution at one particular state
zi of the element, one obtains the same numerical value as Eq.
35. Finally, taking the product in Eq. 36 corresponds exactly to
taking the product in Eq. 26.

Similarly, the cause repertoire is defined as ([25], p. 14]
or [48])

pcause(z∣∣∣∣mi,t) :� ∑zc∈ΩZc
p(mi,t

∣∣∣∣do(z, zc))∑s∈ΩS
p(mi,t

∣∣∣∣do(s)) z ∈ ΩZt−1 (37)

and

pcause(z|mt) :� 1
K

∏|mt |

i�1
pcause(z∣∣∣∣mi,t), (38)

where mi denotes the state of one element of the mechanism M,
with the subscript t indicating that the state is considered at time
t. Z again denotes a purview, z is a state of the purview and ΩZt−1
denotes the state space of the purview, where the subscript
indicates that the state is considered at time t − 1. K denotes a
normalization constant and |mt | gives the number of
elements in M.

Here, the whole right hand side of Eq. 37 gives the probability
of finding the purview in state z at time t − 1 if the system is
prepared in state mi,t at time t. In our terminology this same
distribution is given by Eq. 27, where λ is the denominator in Eq.
37. Taking the product of these distributions and re-normalising
is then precisely Eq. 28.

As a result, the cause and effect repertoire in the sense of [31]
correspond precisely in our notation to causs′(M, P) and
eff ′s(M, P), each being distributions over St(P). In
(Supplementary Material S1 of [26]), it is explained that these
need to be extended by the unconstrained repertoires before being
used in the IIT algorithm, which in our formalization is done in
Eq. 29, so that the cause-effect repertoires are now distributions
over St(S). These are in fact precisely what are called the extended
cause and effect repertoires or expansion to full state space of the
repertoires in [31].

The behavior of the cause- and effect-repertoires when
decomposing a system is described, in our formalism, by
decompositions (Definition 5). Hence a decomposition z ∈ DS

is what is called a parition in the classical formalism. For the case
of classical IIT, a decomposition is given precisely by a partition of
the set of elements of a system, and the cause-effect repertoires
belonging to the decomposition are defined in Eq. 30, which
corresponds exactly to the definition

pcutcause(z|mt) � pcause(z(1)∣∣∣∣m(1)
t ) × pcause(z(2)∣∣∣∣m(2)

t )
in [25], when expanded to the full state space, and equally so for
the effect repertoire.
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A.3 Algorithm: Mechanism Level
Next, we explicitly unpack our form of the IIT algorithm to see
how it compares in the case of classical IIT with [31]. In our
formalism, the integrated information φ of a mechanism M of
system S when in state s is

φmax(M) � ���CS,s(M)��� (39)

defined in Eq. 10. This definition conjoins several steps in the
definition of classical IIT. To explain why it corresponds exactly
to classical IIT, we disentangle this definition step by step.

First, consider causs(M, P) in Eq. 9. This is, by definition, a
decomposition map. The calculation of the integration level of
this decomposition map, cf. Eq. 5, amounts to comparing
causs(M, P) to the cause-effect repertoire associated with every
decomposition using the metric of the target space PE(S), which
for classical IIT is defined in Eq. 24 and Example 3, so that the
metric d used for comparison is indeed the Earth Mover’s
Distance. Since cause-effect repertoires have, by definition,
unit intensity, the factor r in the definition (1) of the metric
does not play a role at this stage. Therefore, the integration level of
causs(M, P) is exactly the integrated cause information,
denoted as

φMIP
cause(yt ,Zt−1)

in [48], where yt denotes the (induced state of the) mechanismM
in this notation, and Zt−1 denotes the purview P. Similarly, the
integration level of eff s(M, P) is exactly the integrated effect
information, denoted as

φMIP
effect(yt ,Zt+1) .

The integration scaling in Eq. 10 simply changes the intensity
of an element of PE(S) to match the integration level, using the
scalar multiplication, which is important for the system level
definitions. When applied to causs(M, P), this would result in an
element of PE(S) whose intensity is precisely φMIP

cause(yt ,Zt−1).
Consider now the collections (9) of decomposition maps.

Applying Definition 9, the core of causs(M) is that purview P
which gives the decomposition causs(M, P) with the highest
integration level, i.e. with the highest φMIP

cause(yt ,Zt−1). This is
called the core cause Pc of M, and similarly the core of
eff s(M) is called the core effect Pe of M.

Finally, to fully account for Eq. 10, we note that the integration
scaling of a pair of decomposition maps rescales both elements to
the minimum of the two integration levels. Hence the integration
scaling of the pair (causs(M, P), eff(M, P′)) fixes the scalar value
of both elements to be exactly the integrated information,
denoted as

φ(yt ,Zt ± 1) � min(φMIP
cause, φ

MIP
effect)

in [48], where P � Zt+1 and P′ � Zt−1.
In summary, the following operations are combined in Eq. 10.

The core of (causs(M), eff s(M)) picks out the core cause Pc and
core effect Pe. The core integration scaling subsequently considers
the pair (causs(M, Pc), eff(M, Pe)), called maximally irreducible
cause-effect repertoire, and determines the integration level of

each by analysing the behavior with respect to decompositions.
Finally, it rescales both to the minimum of the integration levels.
Thus it gives exactly what is called φmax in [48]. Using, finally, the
definition of the intensity of the product PE(S) × PE(S) in
Definition 4, this implies (39). The concept of M in our
formalization is given by the tuple

CS,s(M) :� ((causs(M, Pc),φmax(M)), (eff s(M, Pe),φmax(M)))
i.e., the pair of maximally irreducible repertoires scaled by
φmax(M). This is equivalent to what is called a concept, or
sometimes quale sensu stricto, in classcial IIT [48], and
denoted as q(yt).

We finally remark that it is also possible in classical IIT that a
cause repertoire value causs(M, P) vanishes (Remark 12). In our
formalization, it would hence be represented by (ωS, 0) in PE(S),
so that d(causs(M, P), q) � 0 for all q ∈ E(S) according to (1),
which certainly ensures that φMIP

cause(M, P) � 0.

A.4 Algorithm: System Level
We finally explain how the system level definitions correspond to
the usual definition of classical IIT.

The Q-shapeQs(S) is the collection of all concepts specified by
the mechanisms of a system. Since each concept has intensity
given by the corresponding integrated information of the
mechanism, this makes Qs(S) what is usually called the
conceptual structure or cause-effect structure. In [31], one does
not include a concept for any mechanism M with φmax(M) � 0.
This manual exclusion is unnecessary in our case because the
mathematical structure of experience spaces implies that
mechanisms with φmax(M) � 0 should be interpreted as
having no conscious experience, and the algorithm in fact
implies that they have ‘no effect’. Indeed we will now see that
they do not contribute to the distances in E(S) or any Φ values,
and so we do not manually exclude them.

When comparing Qs(S) with the Q-shape Eq. 13 obtained
after replacing S by any of its cuts, it is important to note that both
are elements of E(S) defined in Eq. 12, which is a product of
experience spaces. According to Definition 4, the distance
function on this product is

d(Qs(S),Qs(Sz)) :� ∑
M∈Sub(S)

d(CS,s(M),CSz ,sz(M)) .
Using Definition 3 and the fact that each concept’s intensity is
φmax(M) according to the mechanism level definitions, each
distance d(CS,s(M),CSz ,sz(M)) is equal to

φmax(M) · {d[causs(M, Pc
M), causzs(M, Pz,c

M )]
+ d[eff s(M, Pe

M), eff zs(M, Pz,e
M )]}, (40)

where φmax(M) denotes the integrated information of the concept
in the original system S, and where the right-hand cause and
effect repertoires are those of Sz at its own core causes and effects
for M. The factor φmax(M) ensures that the distance used here
corresponds precisely to the distance used in [31], there called the
extended Earth Mover’s Distance. If the integrated information
φmax(M) of a mechanism is non-zero, it follows that
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d(CS,s(M),CSz ,sz(M)) � 0 as mentioned above, so that this
concept does not contribute.

We remark that in Supplementary Material S1 of [26], an
additional step is mentioned which is not described in any of the
other papers we consider. Namely, if the integrated information
of a mechanism is non-zero before cutting but zero after cutting,
what is compared is not the distance of the corresponding
concepts as in Eq. 40, but in fact the distance of the original
concept with a special null concept, defined to be the
unconstrained repertoire of the cut system. We have not
included this step in our definitions, but it could be included
by adding a choice of distinguished point to Example 3 and
redefining the metric correspondingly.

In Eq. 14 the above comparison is being conducted for every
subsystem of a system S. The subsystems of S are what is called
candidate systems in [31], and which describe that ‘part’ of the
system that is going to be conscious according to the theory (cf.
below). Crucially, candidate systems are subsystems of S, whose
time evolution is defined in Eq. 22. This definition ensures that the
state of the elements of Swhich are not part of the candidate system
are fixed in their current state, i.e., constitute background conditions
as required in the contemporary version of classcial IIT [26].

Eq. 14 then compares the Q-shape of every candidate
system to the Q-shape of all of its cuts, using the distance
function described above, where the cuts are defined in Eq. 23.
The cut system with the smallest distance gives the system-
level minimum information partition and the integrated
(conceptual) information of that candidate system, denoted
as Φ(xt) in [48].

The core integration scaling finally picks out that candidate
system with the largest integrated information value. This
candidate system is the major complex M of S, the part of S
which is conscious according to the theory as part of the exclusion
postulate of IIT. Its Q-shape is the maximally irreducible
conceptual structure (MICS), also called quale sensu lato. The
overall integrated conceptual information is, finally, simply the
intensity of E(S, s) as defined in Eq. 14,

Φ(S, s) � E(S, s).

A.5 Constellation in Qualia Space
Expanding our definitions, and denoting the major complex byM
with statem � s|M , in our terminology the experience of system S
state s is

E(S, s) :� Φ(M,m)
||Qm(M)|| · Qm(M) . (41)

This encodes the Q-shape Qm(M), i.e. the maximally irreducible
conceptual structure of the major complex, sometimes called
quale sensu lato, which is taken to describe the quality of
conscious experience. By construction it also encodes the
integrated conceptual information of the major complex,
which captures its intensity, since we have
||E(S, s)|| � Φ(M,m). The rescaling of Qm(M) in Eq. 41
leaves the relative intensities of the concepts in the MICS
intact. Thus E(S, s) is the constellation of concepts in qualia
space E(M) of [31].
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