
The Newman Problem of Consciousness Science

Johannes Kleiner1,2,3,4

1Munich Center for Mathematical Philosophy, LMU Munich
2Graduate School of Systemic Neurosciences, LMU Munich

3Institute for Psychology, University of Bamberg
4Association for Mathematical Consciousness Science

Abstract. The Newman problem is a fundamental problem that threatens to
undermine structural assumptions and structural theories throughout philoso-
phy and science. Here, we consider the problem in the context of consciousness
science. We introduce and discuss the problem, and explain why it is detrimen-
tal not only to structuralist assumptions, but also to theories of consciousness,
if left unconsidered. However, we show that if phenomenal spaces, and math-
ematical structures of conscious experience more generally, are understood in
the right way, the Newman problem does not arise. The upshot of our paper is
that consciousness science needs to be careful in which definition of structure
to consider, but if it is, the Newman problem disappears.

1. Introduction

The Newman problem is a fundamental
problem for structural theories and structural
assumptions throughout science. It was first
raised by Newman (1928) in response to Rus-
sel’s The Analysis of Matter, and concerns the-
ories or assumptions which posit that:

“ ‘There is a relation R such
that the structure of the ex-
ternal world with reference to
R is W .’ ” (Newman, 1928)1

Here, R denotes what would now be called
the type of a structure. This could, to take
a very simple example, be a partial order re-
lation. W is a specification of such structure,
meaning that it provides a set of mathematical
objects—the elements that are to be related—
and specifies which elements in that set are re-
lated by the binary relation.

The problem with such postulate is that
“[a]ny collection of things can be organised so
as to have the structure W , provided there are
the right number of them. Hence the doctrine

that only structure is known involves the doc-
trine that nothing can be known that is not
logically deducible from the mere fact of ex-
istence, except (‘theoretically’) the number of
constituting objects” (ibid.).

It should not be immediately clear or self-
evident why the antecedent of this statement
is true—why any collection of things can be
organised so as to have any structure W , pro-
vided there are the right number of them—,
and neither why, if the antecedent is indeed
true, it constitutes a problem. We explain why
it is true, and why it does constitute a problem
in Section 2.

Consciousness Science—the scientific inves-
tigation of conscious experience and its rela-
tion to the physical domain—is currently see-
ing early signs of a structural turn (Kleiner,
2024). As we will explain in Section 3, the
Newman problem can undermine structural
research and hence needs to be addressed for
any theory-based structural research program
to go ahead as intended.

1“The world consists of objects, forming an aggregate whose structure with regard to a certain relation R
is known, say W ; but of the relation R nothing is known (or nothing need be assumed to be known) but its
existence; that is, all we can say is, ‘There is a [type of] relation R such that the structure of the external world
with reference to R is W .’ ” (Newman, 1928).
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The goal of this paper is to show that phe-
nomenal spaces, and similar explications of the
mathematical structure of conscious experi-
ence, do not suffer from the Newman problem,
if the mathematical structure of conscious ex-
perience is understood in the right way. Noth-
ing hinges on the particularities of conscious-
ness here, other than that the methodology
of structural claims that resolves the Newman
problem was introduced in the context of con-
sciousness. Therefore, we hope that this work
might be of interest also to those who work
on structural questions independently of con-
sciousness.

1.1. Previous work. The Newman problem
is almost 100 years old. Hence, it is no surprise
that there is a large body of literature on the
topic that discusses and clarifies the problem,
as well as a host of different possible resolu-
tions. We locate the work presented here in
the landscape of existing resolutions in Sec-
tion 6 and recommend (Frigg & Votsis, 2011)
for an excellent review thereof.

In consciousness science, too, the problem
has been discussed and resolutions have been
proposed.

Lyre (2022) addresses the Newman problem
in the context of a proposed relation between
brain states and experiences called Neurophe-
nomenal Structuralism. Here, the Newman
problem threatens to undermine the claim
that neural structures represent the structures
of worldly states and processes. It constitutes
a problem about what a subject can know
about the world, so to speak. Lyre proposes
a solution for the Newman problem that fol-
lows Russel’s own answer to Newman (Russell,
2014), “that certain spatiotemporal [relations
in the domain of worldly states and processes]
do indeed carry over to [relations among neu-
ral states and processes]. We can indeed di-
rectly refer to certain spatiotemporal [rela-
tions in the domain of worldly states and pro-
cesses]—or, in Russell’s words, are ‘directly ac-
quainted’ with them.” (Lyre, 2022) That is the
case, according to Lyre, because the sense or-
gans encode the very spatiotemporal relations
that govern external states, for example spa-
tial changes or temporal differences.

Lyre’s proposal targets the ramifications of
the Newman problem for individual subjects

and their epistemic or representational capaci-
ties. This paper, in contrast, is concerned with
the abstract case of structural claims as part
of scientific or philosophical theorizing.

Chalmers (2022) explains the Newman
problem when applied to phenomenal con-
sciousness in the context of his compari-
son of Carnap’s logical construction of the
world and Lewis’s account of Humean super-
venience. Chalmers endorses Carnap’s resolu-
tion of the problem in terms of naturalness
conditions (cf. Section 7.2), and concludes
that “[b]ecause of Newman’s problem, any
construction system needs something extra-
logical in the base” (Chalmers, 2022). Our re-
sult, albeit not spelled out in terms of the sys-
tems applied by Carnap or Lewis, challenges
this claim.

The Newman problem also surfaces in
the discussion of consciousness’ potential in-
trinsic properties. Both (Seager, 2006)
and (Brüntrup, 2011), for example, take the
Newman problem to show that consciousness
must be taken to exhibit intrinsic properties or
intrinsic qualities. “It is very satisfying to see
that the intrinsic nature argument is exactly
what is required to avoid Newman’s problem,
and one would want it to be the case that both
Russell and Eddington’s deployment of con-
sciousness as an intrinsic nature was explicitly
directed at this issue” (Seager, 2006).

What our paper adds to this research is the
proposal that if spaces and structure of con-
scious experience are understood in the right
way from the start, no further resolution of
Newman’s problem is required.

1.2. Structure of this paper. After ex-
plaining Newman’s problem in Section 2, we
discuss it implications for consciousness sci-
ence in Sections 3 and 4. Section 5 is de-
voted to explaining how a suitable definition
of phenomenal spaces, and of mathematical
structure of conscious experience more gen-
erally, avoids the Newman problem from the
start. Section 6 explains how this generalizes
to structural claims that do not target con-
sciousness. Full mathematical details of the
resulting general proposal are given in Appen-
dix A. Section 7 discusses the limits of the
methodology we introduce, and concluding re-
marks are offered in Section 8.
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2. The Newman Problem

Newman’s problem arises because of what
expressions like

“the structure of the (...) world
with reference to R is W ” (2.1)

(Newman, 1928) are traditionally taken to
mean. For a mathematical structure W that
comprises a domain C (the ‘elements’ of the
structure) and a relation R , this traditional
meaning consists of the following two condi-
tions:

(D1) The elements of the domain C are
properties of the world.

(D2) The relation R as specified by W ex-
ist.2

Because a mathematical relation R is a col-
lection of tuples of elements of the underly-
ing domain, Condition (D2) is actually stating
that the tuples that constitute the relation R
as specified by W exist.

Expressions like (2.1) are taken to be true
if and only if (D1) and (D2) are true. Other
than (D2), “of the relation R nothing is known
(or nothing need be assumed to be known)
but its existence” (ibid.). That is the content
of (2.1) as traditionally conceived.

Let us consider, as an example, a partial
order structure. Mathematically speaking, a
partial order structure consists of a set of el-
ements C, called the domain of the structure,
on the one hand, and a binary relation R, on
the other hand. The binary relation R is a sub-
set of C×C, meaning that it is a collection of
tuples of the form (c1, c2), usually written as
c1 ≤ c2 in the case of partial orders. The fact
that the partial order structure W consists of
these two constituents is often expressed by
writing W = (C,R).

Condition (D1) then states that the ele-
ments of the domain C of the partial order (as
specified by W ) are properties of the world.
Condition (D2) states that there exists a bi-
nary relation (viz. a collection of pairs of el-
ements) that relates the elements as specified
by W . The elements need to be arranged in
tuples as specified by W for this condition to
be true. This is what is means to say that
a partial order structure W is a structure of

the world, according to the traditional under-
standing of expressions like (2.1).

The problem with this understanding
of (2.1) is that while elements in the domains
of the structure are required to have refer-
ents in the world (a structure is a structure of
the world only if there are properties as spec-
ified in the domain of W ), this isn’t true of
the relation. The relation is not required to
have a referent in the world. The condition on
the relation is only exposed qua condition on
the properties. In other words, the relation is
not required to correspond to any concretum
in the world, Condition (D2) only relates ab-
stract formalism in W to abstract descriptions
of the world. As a consequence, any abstract
specification of structure in the world will sat-
isfy (D2). This consequence is expressed by
the following theorem, presented in (Frigg &
Votsis, 2011; Ketland, 2004).

Theorem 1 (Newman’s Theorem). Let C
be a collection of individuals and let W be a
structure whose domain has the same cardi-
nality as C. Then there exists a structure WC

whose domain is C and which is isomorphic
to W .

That is to say, independently of whether
the world actually comprises a relation R as
specified by W , if the properties exist, one
can simply define a suitable relation to render
Condition (D2) true. “[G]iven any structure,
if collection C has the same cardinality as that
structure, then there is a system of relations
definable over the members of C so that C has
that structure. (...) [A]ll we have to do in or-
der to define a relation is to put elements in
ordered tuples and put these tuples together
in sets, which we can always do as long as we
have enough elements” (Frigg & Votsis, 2011).
Condition (D2) is not itself depending on any-
thing in the world over and above the depen-
dence already established by (D1). This is the
cause of the Newman problem.

There are a number of ways to resolve the
Newman problem, cf. (Frigg & Votsis, 2011,
Sec. 3.4) for an excellent discussion. When
the problem is presented as above, the obvious
route to a solution of the Newman problem is
to ask whether one could not replace (D2) by a

2This requirement is usually implicit in the requirement that the axioms of a structure (transitivity, reflex-
ivity, anti-symmetry, for example, in case of a partial order), have to hold.
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better condition, such that Theorem 1 ceases
to apply. This route is precisely the one we will
take in Section 5, but first we will discuss why
the Newman problem applies to consciousness
science, and which ramifications it has for con-
sciousness science.

3. The Newman Problem in
Consciousness Science

Consciousness science is seeing early signs
of what could be a structural turn. Virtually
every field that is involved in consciousness
science has started to employ mathemati-
cal spaces and mathematical structures as
means to investigate, model, or measure the
phenomenon.3 In doing so, many different
methodologies and ideas are applied, known
under various different names, including qual-
ity spaces (Clark, 1993; Rosenthal, 2015; Lee,
2021), qualia spaces (Stanley, 1999), experi-
ence spaces (Kleiner & Hoel, 2021; Kleiner
& Tull, 2021), qualia structure (Kawakita,
Zeleznikow-Johnston, Takeda, Tsuchiya, &
Oizumi, 2023; Tsuchiya, Phillips, & Saigo,
2022), Q-spaces (Chalmers & McQueen,
2022; Lyre, 2022), Q-structure (Lyre, 2022),
Φ-structures (Tononi, 2015), perceptual
spaces (Zaidi et al., 2013), phenomenal
spaces (Fink, Kob, & Lyre, 2021), spaces of
subjective experience (Tallon-Baudry, 2022),
and spaces of states of conscious experi-
ences (Kleiner, 2020). All of these proposals
attribute mathematical structure to conscious
experiences, which is why we will use the term
‘mathematical structure of conscious experi-
ence’ as an umbrella term to refer to these and
similar proposals.

In all of these proposals, there is a math-
ematical space or mathematical structure E
that is claimed to describe, represent or model
conscious experience. Modulo terminological
choices, all of these proposals endorse some

variant of the claim that

“the structure of
conscious experience is E”. (3.1)

In (Kleiner & Ludwig, 2024), we have ana-
lyzed those proposals that work with explicit
conditions to assert such claims, cf (Kleiner
& Ludwig, 2024, Sec. 1). Perhaps unsurpris-
ingly, other than explicit statements of the ax-
ioms that a mathematical structure is required
to satisfy, these are exactly Conditions (D1)
and (D2), with ‘properties of the world’ re-
placed by ‘properties of conscious experiences’
or analogous constructs.

In (Kleiner & Ludwig, 2024), we use the
term ‘aspect’ as a placeholder to denote con-
cepts like qualia, qualities, instantiated phe-
nomenal properties, phenomenal distinctions,
or similar, that feature in claims of the
form (3.1). For terminological simplicity, in
this paper, we will work with the concept of
phenomenal properties, which are properties
of the phenomenal character of an experience,
where ‘phenomenal character’ refers to what
it is like for an organism to be that organism
in a particular state (Nagel, 1974).4 However,
all we say below applies to other conceptual
choices (qualia, qualities, phenomenal distinc-
tions, etc.) as well.

In terms of phenomenal properties, we can
formulate the conditions placed on structural
claims in consciousness science as follows. Ex-
pressions like (3.1), where structure E =
(C,R) consists of domain C and relation R,
are taken to be true if and only if

(C1) The elements of the domain C are phe-
nomenal properties of conscious expe-
riences.

(C2) The relation R as specified by E ex-
ists.5

To give an example of this in conscious-
ness science, consider a metric space of color

3A list of references of current developments is given in Kleiner (2024).
4Philosophers often define an experience to be the instantiation of a phenomenal property by an experienc-

ing subject, so that an experience is an event. The phenomenal character of an experience in this framework is
what it is like for the subject to undergo such event. Cf. Nida-Rümelin (2018) for more details on and problems
of this way of thinking. Those from a more formal context often tend to take the term ‘conscious experience’
to refer directly to what it is like. In this paper, we will use the term ‘phenomenal character’ to denote what
it is like, in the hope that this choice is the largest common denominator across fields and backgrounds.

5As in the case of general structural claims (Section 2), this requirement is usually implicit in the requirement
that the axioms of a structure have to hold.

6For details on how quality spaces are constructed in consciousness science, cf. (Kleiner, 2024, Sec. 5).
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qualities. The requirement that a specifica-
tion E of such space is a structure of conscious
experience—a quality space, for short6 —
comprises, first, the condition that the points
of the metric space are color qualities (being
phenomenally presented with red, blue, etc.),
and that the real numbers that describe the
distances in a metric spaces are experienced
degrees of similarity of such color qualities (be-
ing phenomenally presented with a degree of
similarity). Color qualities are phenomenal
properties, hence this requirement is Condi-
tion (C1). Second, for any two color qualities,
there must be an experienced degree of simi-
larity of those color qualities as described by
the metric function.7 This just means that any
triple that consists of two color qualities and
the corresponding degree of similarity as spec-
ified of the metric function must exist. This is
Condition (C2). Only if both (C1) and (C2)
are satisfied, is this an instance of a quality
space.

Because conditions (C1) and (C2) are ex-
actly analogous to conditions (D1) and (D2),
the Newman problem applies to consciousness
science in the exact same way as it applies in
other domains. Explicitly, the Newman prob-
lem (Theorem 1) implies that any claim of the
form (3.1) is empty, as far as the structural
content is concerned. Nothing over and above
the cardinality of the set of phenomenal prop-
erties is endorsed in a claim like (3.1). This
has far-reaching consequences.

4. Implications for
Consciousness Science

The Newman problem has a number of
ramifications in consciousness science. On the
more obvious side of things are its ramifica-
tions for structuralist research programs. Less
obvious, maybe, is that the Newman problem
also undermines work on theories of conscious-
ness.

4.1. Structuralist Research. Structuralist
research programs in consciousness science
come in one of two flavors. They either target

the question of what can be known, scientifi-
cally or introspectively, about what it is like—
what can be known about phenomenal charac-
ter, in the terminology applied in this paper.
Or they target the question of what phenom-
enal character actually is—in which sense it
exists, so to speak. Following terminology of
philosophy of science, we might designate the
former as epistemic phenomenal structural re-
alism (EPSR), and the latter as ontic phenom-
enal structural realism (OPSR). OPSR says
that phenomenal structures are ontologically
basic: non-structural features of phenomenal
character, such as intrinsic qualities, do not
in fact exist; only claims of the form of (3.1)
can be true. EPSR is the view that all we
can know about phenomenal character is its
structure; only claims of the form (3.1) can
be known. Cf. (Frigg & Votsis, 2011) for the
corresponding distinction in philosophy of sci-
ence. Therefore, if claims like (3.1) are in
fact void over and above implications of car-
dinality, so are OPSR and EPSR. The New-
man problem, if unresolved, undermines these
research programs. This is well known, cf.
e.g. (Lyre, 2022) or (Chalmers, 2023).

4.2. Theories of Consciousness. What is
less well known, maybe, is that the Newman
problem also undermines theories of conscious-
ness. Specifically, it undermines theories that
address phenomenal structure, if those the-
ories are intended to be applicable to non-
human organisms or non-human systems more
generally.

That is the case because for non-human
systems, ostensive definitions of phenomenal
structures fail. We cannot use language to pick
out the referent of a structural claim like (3.1)
in non-structural terms, either because non-
human systems have no suitable language, or,
in the case of LLMs, because they do not use
language in the same way as we do. “The os-
tensive definition [only] explains the use—the
meaning—of the word when the overall role of
the word in a language is clear. Thus [only] if I
know that someone means to explain a colour-
word to me the ostensive definition ‘That is

7A metric space consists of two domains and one function. The domains are the set of points of the space
and the real numbers. The metric function maps any two points to one real number. For simplicity, we have
formulated (C2) in terms of relations only. Technically speaking, this condition can also be applied to functions
because any function d : C1 × C2 → R is a unary relation on C1 × C2 × R. We do think, however, that it is
good to distinguish relations and functions in such contexts, and do so in (Kleiner & Ludwig, 2024).
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called »sepia«’ will help me to understand the
word” (Wittgenstein, 1953). In human cases,
we can get around purely structural claims
like (3.1) by pointing out which phenomenal
structure a phenomenal claim like (3.1) is in-
tended to address. In non-human systems, be-
cause of the lack of shared meaning of lan-
guage, this is not an option. The only thing
we can do is to specify the structure abstractly,
as in (3.1), which is why the Newman problem
applies in full force.

This is particularly evident in one of the
mathematized theories of consciousness, Inte-
grated Information Theory (IIT) (Albantakis
et al., 2023; Oizumi, Albantakis, & Tononi,
2014). IIT comprises a carefully constructed
algorithm that specifies, for any mathemati-
cal description of a system in a specific state,
a complex mathematical structure called Φ-
structure (cf. Kleiner and Tull (2021) for a
structural exposition of IIT). The Φ-structure
is the output of IIT’s algorithm. In terms of
the terminology applied here, it specifies the
phenomenal character that a system is expe-
riencing when it occupies the respective state.
But IIT does not provide a phenomenal in-
terpretation of this structure, it only provides
the mathematics. This is a perfect example
of (3.1).

To provide a Φ-structure is a substantial
achievement of IIT. But if the Newman prob-
lem applies (which it must if (3.1) is under-
stood as (C1) and (C2)), then IIT’s structural
claim is entirely void, over and above the car-
dinally of the elements in the structure.

This is related to what Chalmers (2023) has
called the Rosetta Stone problem of IIT: the
problem of how to translate the mathematical
structure that IIT proposes into phenomeno-
logical terms. If Newman applies, it follows
that no such translation is possible, as the
structural claim is void; IIT’s structural claim
can always be satisfied simply by defining the
required structure over phenomenal proper-
ties.

The same applies to other theories of con-
sciousness if they make structural phenome-
nal claims. Theories are prone to Newman’s
problem because they are supposed to stand
on their own, they should be meaningful inde-
pendently of ostensive human-language point-
ers that specify which structure is what in

phenomenal character. It should suffice for a
theory to specify the phenomenal structure of
a system in terms of structural language; the
relevant parts of phenomenal character should
then be determined.

So how many theories address phenomenal
structure and are intended to be applicable to
non-human organisms or non-human systems?
At present, only a small fraction of theories
address phenomenal structure. Examples are
IIT, mentioned above, as well as Expected
Float Entropy Theory (Mason, 2021) and
Rosenthal’s quality-space version of higher or-
der thought theory (Rosenthal, 2010). How-
ever, it can be argued that addressing phe-
nomenal structure is inevitable once theories
start addressing phenomenal character more
faithfully than they presently do. Binary dis-
tinctions between whether a stimulus is be-
ing consciously perceived, or not, or whether
a system is conscious at all, or not, might
not suffice to explain phenomenal character
faithfully (Kleiner, 2024). Furthermore, it can
be argued that all theories of consciousness
should be formulated in such a way that they
can, in principle, be applied to non-human sys-
tems or organisms (Kanai & Fujisawa, 2023).
This might be part of the desiderata for a the-
ory to count as a meaningful theory of con-
sciousness.

Therefore, the class of theories that will
eventually come into the realm of the New-
man problem is large. It looks like the New-
man problem went by largely unnoticed, as
far as scientific theories of consciousness are
concerned, because most theories are not ad-
vanced enough at the present stage for them to
introduce the tools that the Newman problem
vexes. But once they do, the Newman prob-
lem might well undermine much of the effort
in constructing them, if unresolved.

5. Solving the Newman Problem
of Consciousness Science

The obvious solution to Newman’s prob-
lem, when presented as in Section 2, is to re-
place Condition (D2) resp. (C2) by another
condition, so as to modify the meaning that
expressions like (2.1) or (3.1) should have, in
such a way that Newman’s problem ceases to
apply. This amounts to proposing alternative
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definitions of expressions like (2.1) or (3.1)
that avoid Newman’s problem; just like one
proposes improved definitions of concepts like
qualia or phenomenal consciousness in philoso-
phy of mind to avoid problems the terms might
otherwise face.

When improving (D2) resp. ((C2)), a new
condition must remain compatible with the
spirit of (2.1) resp. (3.1). The major con-
straints this raises is that the condition should
also be formulated abstractly, and must only
make use of exist quantifiers (‘there exists ...’);
no direct reference of properties of the world
resp. phenomenal properties can be included.
We now discuss three proposals of how this
could be achieved. We employ the terminol-
ogy of phenomenal properties, but the same
points could be made with respect to proper-
ties of the world, as we explain in Section 6.

5.1. Higher-Order Phenomenal Proper-
ties. An immediate idea to improve Condi-
tion (C2) is to work with higher-order phe-
nomenal properties. Phenomenal properties
are properties of the phenomenal character of
a conscious experience, and much like first-
order phenomenal properties (presumably, for
example, being phenomenally presented with
red), there are higher-order properties (for
example, being phenomenally presented with
similarity of two shades of red).8

To improve (C2), one could simply add the
condition that there exists a higher-order phe-
nomenal property for every relation R in a
structure E. That would amount to replay-
ing (C2) by:

(C2′) The relation R as specified by E ex-
ists, and there is a higher-order phe-
nomenal property.

The idea is that for every relation R, there
is one higher order phenomenal property, and
that no two relations can have the higher-order
phenomenal property in common.

This condition would indeed resolve New-
man’s problem because the simple existence
of a structure with phenomenal properties as

its domain is not sufficient any more to sat-
isfy (C2′). Rather, there must be a phenom-
enal property (or something in the world, in
Newman’s terms). This is an additional re-
quirement whose satisfaction does not follow
from Theorem 1.

However, (C2′) is not a suitable proposal
because the structural phenomenal property
that needs to exist has nothing to do with the
relation R as specified by the mathematical
structure E. The condition does not pin down
the relation in any significant sense, over and
above the requirement that the number of re-
lations that exist is smaller than the number
of higher-order properties. It’s not enough to
just require some phenomenal property to ex-
ist.

5.2. Arity. In order to remedy the problem
of (C2′) that the mathematical structure of E
has nothing to do with the higher-order phe-
nomenal property that is required to exist, we
have to expand the requirements placed on the
higher-order phenomenal property.

While higher-order phenomenal properties
do not have, or cannot be taken to have in
this context, a mathematical structure that
one can simply reference, they do exhibit a fea-
ture that in mathematics is called arity, and in
philosophy may also be called adicity. It is the
number of lower-order properties the higher-
order property is instantiated relative to. For
example, if the higher-order property is being
phenomenally presented with similarity of two
different shades of red, it has an arity of 2.

Relations in the mathematical sense of the
term also have arity. It is the number of “slots”
in the relation, or in other words, the number
of elements that every tuple in the relation
comprises. A binary relation, for example, has
arity 2 because its tuples are pairs of elements.
A relation of arity n comprises n-tuples, each
of which consists of a list of n elements of the
domain. Making use of this fact, we could
modify (C2′) to read:

8In (Kleiner & Ludwig, 2024), we have called these ‘structural properties’, but this choice of terminology
might not be ideal as it suggests that these properties already have some structure in the mathematical sense
of the term. This is not the case. Rather, they only have arity (the number of lower-order properties they are
instantiated relative to, cf. Section 5.2 below).
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(C2′′) The relation R as specified by E ex-
ists, and there is a higher-order phe-
nomenal property that has the same
arity as R.

This is an improvement over (C2′) because
now the phenomenal property cannot be ar-
bitrary any more.

However, (C2′′) still fails because there are
vastly different relations of the same arity. Ar-
ity characterizes a relation to some extent, but
it still leaves most details of a relation unspec-
ified.

What is needed to arrive at a satisfying
condition is some way of characterizing a re-
lation’s mathematical form, that can also be
interpreted in terms of phenomenal character.

5.3. Automorphisms. One way to charac-
terize a mathematical structure in full (up to a
certain point, cf. Section 7) is given by its au-
tomorphism group. Automorphisms are func-
tions that map every element from a domain
of a structure to another element of the do-
main. The mapping has to be one-to-one (im-
plying that it has to be invertible), and has
to preserve the relations (and functions) de-
fined over a structure. If a structure consists
of one domain C and one binary relation R,
for example, this mapping takes the form

f : C → C ,

and the requirement that it preserves the re-
lation is formaly stated as

R(c1, c2) = R (f(c1), f(c2)) (5.1)

for all c1, c2 ∈ C.9 Automorphisms form a
group because they are invertible, and because
any two automorphisms can be concatenated
to give a new automorphism.

Automorphisms are intriguing objects in
the current context because, once a domain
is specified (qua Condition (C1)), a set of au-
tomorphism can be specified as a set of func-
tions {f1 : C → C, f2 : C → C, ....}. Neither
the relation R, nor the tuples that constitute
the relations, have to be specified when speci-
fying the functions in the set.

Of course, if one would only specify a set of
automorphisms, the Newman problem would
apply just as well. They are formal objects
and hence always exist, if the domain contains

enough elements. What is needed, in addition,
is a link between automorphisms and phenom-
enal properties. Such a link can be provided,
as we now explain.

Let us consider an arbitrary function (also
called ‘mapping’) f : C → C, where C is a do-
main of a structure that satisfies (C1). An ar-
bitrary mapping can or cannot be an automor-
phism of a structure E, depending on whether
it satisfies the definition of an automorphism,
or not—that is to say, depending on what the
structure E is, and depending on how elements
are mapped by the function. If a function is
an automorphism, one often says that it “pre-
serves” the structure. If it is not an automor-
phism, one says that it does “not preserve” the
structure. Those are abstract statements in
the domain of mathematics. (Cf. Definition 4
in Appendix A for formal details.)

But in cases where a domain C satis-
fies (C1), functions f : C → C can also be
understood as something concrete: they de-
scribe how phenomenal properties change. To
give a very simple example: if a subject has
an experience of seeing red, and that changes
to an experience of seeing blue, this can be
described as a (partial) function that maps
from phenomenal properties to phenomenal
properties; it maps being phenomenally pre-
sented with red to being phenomenally pre-
sented with blue. Such a variation of phe-
nomenal properties must, in turn, be under-
stood as a variation of the underlying experi-
ence whose phenomenal properties are at is-
sue. Variations of experiences are changes
from one experience to another, and for every
such change, there is a corresponding variation
of (instantiated) phenomenal properties.

Because functions can be interpreted in
both abstract and concrete terms, they pro-
vide the link between the abstract domain of
mathematics and the concrete domain of con-
scious experiences that is needed to amend
Condition (C2′′). They allow us to express the
requirement that the higher-order phenome-
nal property in (C2′) mirror the structure E
in terms of behavior of variations as follows:
a higher-order phenomenal property must be-
have as the structure does under variations.
This means that the higher-order phenomenal

9We write an equal sign here for notational simplicity. The formally correct statement would be R(c1, c2) ⇔
R (f(c1), f(c2)) for all c1, c2 ∈ C.
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property must prevail in phenomenal charac-
ter if the mapping between first-order proper-
ties induced by a variation preserves the struc-
ture; and it must disappear if the mapping be-
tween the first-order properties induced by a
variation does not preserve the structure. We
will say that in former case, the variation “pre-
serves” the higher-order phenomenal property,
whereas in the latter case it “does not pre-
serve” the higher-order phenomenal property
(cf. Definition 3 in Appendix A for formal de-
tails).

We call a higher-order property that satis-
fies this requirement for a relation R a phe-
nomenal R-property. In concise terms:

(SP) A phenomenal property p is an R-
property iff any variation that pre-
serves the relation R preserves p.

We note that this definition is only meaning-
ful if (C1) holds; (C1) provides the “baseline
correspondence” between mathematical struc-
ture and phenomenal properties that allows
to make sense of variations both in terms of
changes of phenomenal properties and auto-
morphisms.

We can thus present a suitable extension
of (C2) as:

(C2′′′) The relation R as specified by E
exists, and there is a corresponding
higher-order phenomenal R-property.

This is the meaning/definition of structural
claims like (3.1) we have arrived at, for inde-
pendent reasons, in (Kleiner & Ludwig, 2024)
as well. It makes use of variations which
form an important part of earlier proposals of
how to define spaces of conscious experiences,
for example Rosenthal (2015), and it retains
the original Condition (C2): since (C2′′′) im-
plies (C2), Condition (C2) is a necessary part
of Condition (C2′′′).

Condition (C2′′′) resolves the Newman
problem because the mere existence of some
structure is not sufficient to satisfy the con-
dition. The condition requires that there is a

phenomenal property of the right sort. This is
a requirement whose satisfaction does not fol-
low from Theorem 1. The condition further-
more leaves no freedom for the relation to vary
while the property is fixed, as (C2′) and (C2′′)
did. Hence it is, as far as we can see now, a
viable solution of the Newman problem of con-
sciousness science.

6. A general solution?

In the previous section, we have shown how
the Newman problem of consciousness science
can be resolved by providing a more careful
definition of what structural claims are taken
to be. Here, we discuss whether this affords
a solution of the Newman problem indepen-
dently of consciousness.

Before we embark on this discussion, we
would like to mention that there are several
viable solutions of the Newman problem al-
ready, discussed in detail in (Frigg & Votsis,
2011). A review of these solutions would go
beyond the scope of this paper, but suffice it
to say that the solution presented here might
be a case of the ‘Real vs. Fictional Relations’
class of solutions that attempt to distinguish
real relations in the world from those that are
merely defined (called ‘fictional’ by (Newman,
1928)).

The viability of our solution of the Newman
problem in consciousness science as a solution
of the general Newman problem depends on
whether the ingredients we have made use of
also exist in the general setting of the Newman
problem. These are higher-order phenomenal
properties, and the concept of variations.

The notion of higher-order phenomenal
property easily carries over to any context in
which a structural claim like (2.1) is made.
There are higher-order properties of the world
in a similar sense as there are higher-order
phenomenal properties.10

10If properties are conceived of as properties of things, one might want to distinguish the concept of higher-
order properties from the concept of relational properties. Relational properties are properties between things.
There can be both first-order relational properties, and higher-order relational properties. Properties which
are properties only of one thing are called monadic properties, and there are both first-order and higher-order
monadic properties, the latter of which are properties of properties of one thing. According to this conception
of properties, our proposal below could be defined in terms of either relational or higher-order properties, or
both; what matters is that the properties in question have arity, also called adicity. I would like to thank
Andrew Lee for pointing this out.
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The case of variations is more difficult. The
crucial property of variations that enables def-
inition (C2′′′) is that the variation changes
both the first-order property, and the higher-
order property. Can we make sense of such
variations? And if so, what defines the varia-
tions that exist as compared to those that do
not.

In a context like (2.1), where the reference
of a structural claim is “the world”, one could
make sense of variations in terms of possi-
ble world semantics as used in modal logic,
cf. e.g. (D. K. Lewis, 1986). Specifically, one
could consider the set of all nomologically pos-
sible worlds—the set of worlds that are com-
patible with the laws of nature, that is—and
then define a variation simply to be a map
from one nomological possible world w1 (e.g.,
the actual world) and all its properties to an-
other nomological world w2 and all its prop-
erties. Such a variation preserves a (possi-
bly higher-order) property if and only if it is
present before and after the variation, mean-
ing if it is a property of both w1 and w2, and
it preserves a structure S if and only if it is an
automorphism of S, where the latter definition
makes use of (D1).11

This gives rise to the following exposition
of structural claims like (2.1). The notion of
R-property is defined as:

(SP) A property p is a R-property iff any
variation that preserves the struc-
ture R preserves p.

Claim (2.1) is true if an only if the following
two conditions are true:

(D1′) The elements of the domain C of are
properties of the world.

(D2′) The relation R as specified by W ex-
ists, and there is a higher-order R-
property.

While abstract at first, this condition is highly
compatible with physical sciences, because
nomologically possible worlds should not be
understood as atomistic entities. Rather, the
set of nomologically possible worlds is inti-
mately connected with initial conditions of
natural laws, and a fortiori with repeated ex-
periments. Structural claims so defined can be

assessed empirically by considering “chunks” of
the actual world in scientific experiments, and
by studying how these chunks behave as time
or other parameters vary.

An alternative to this approach would be
to take properties in the world to be attached
to objects, or groups of objects, in the world,
and to consider variation of such (groups of)
objects. This would also provide a suitable
concept because a variation of a (group of) ob-
jects would vary both first-order and higher-
order properties of the object or group. A def-
inition of this kind would be of advantage be-
cause it would be more intuitive as the above.
However, it would not naturally align with the
foundations of physics, where existence of in-
dividual objects (rather than just one global
field with particles as modes or excitations
thereof) in an intuitive sense is somewhat con-
tested. Still, it might be a viable option, and
might actually correspond to the above defi-
nition if possible worlds are conceptualized in
the appropriate way.

We provide a full formal exposition of our
proposal in Appendix A, and discuss a limita-
tion of our approach in Section 7. The con-
sequences of this limitation are, on our view,
what ultimately determines the viability of our
proposal for purposes of solving the general
Newman problem. In the next section, we ex-
plain how our proposal relates to the Newman
problem when expressed in terms of Ramsey
sentences.

6.1. Ramsey sentence formulation of the
Newman problem. The Newman problem
is often stated in terms of Ramsey sentences,
introduced by Carnap (D. Lewis, 1970). In a
nutshell, for any theory T that contains obser-
vational predicates Qi and non-observational
predicates Pi, one can first form a logi-
cal conjunction of all of a theory’s postu-
lates/axioms/rules to write the theory as a
single formal sentence that is usually denoted
as (Frigg & Votsis, 2011)

T (P1, ..., Pm, Q1, ..., Qn) . (6.1)

The Ramsey sentence of such theory is the re-
sult of replacing all non-observational predi-
cates Pi by variables, which we denote as Xi,

11Because properties can disappear from w1, as in the case of consciousness, mappings must be understood
as partial functions. Because they need not be surjective, properties can appear in moving to w2. More details
on such mathematical subtleties are given in the appendix, and in (Kleiner & Ludwig, 2024).
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and adding an existential quantifier over these
variables, denoted by ‘∃’ to the sentence.12

This gives the theory’s Ramsey sentence TR,

∃X1 ...∃Xm T (X1, ..., Qn) . (6.2)

A Ramsey sentence encodes a theory’s full em-
pirical content. Because the predicates Pi are
non-observational predicates, they do not have
observational consequences over and above
their mere existence and role in the theory T .
Therefore, a theory and its Ramsey sentence
have the same observational consequences.
Furthermore, the Ramsey sentence (6.2) fol-
lows logically from (6.1). Cf. (Frigg & Votsis,
2011, Sec. 3.3) for more details.

Making use of Ramsey sentences, the New-
man problem can be stated as the following
theorem. Here, a model of a theory is u-
cardinality correct if it has the same cardinal-
ity as the unobservable predicates of a theory,
and empirically correct if its empirical sub-
structure is isomorphic to the empirical sub-
structure of the target domain (Frigg & Votsis,
2011).

Theorem 2 (Cardinality Theorem). The
Ramsey Sentence of theory T is true if, and
only if, T has a model S (i.e. S |= T ) which is
u-cardinality correct and empirically correct.

This theorem establishes that “all we can
infer from the truth of [a theory’s Ramsey
sentence] TR about the unobservable world
is a claim about its cardinality” (ibid.), and
that “any claim the [Ramsey sentence] may
make about the existence of unobservable re-
lations or their formal properties is automat-
ically true (or ‘trivially’ true, as the point is
often put)” (ibid.).

How does our proposal deal with the Ram-
sey sentence formulation of the Newman prob-
lem?

Our proposal amounts to a redefinition of
the truth-condition of structural claims. Ac-
cording to the received view of such truth-
conditions, a second-order predicate that ex-
presses a structural claim is true iff Condi-
tions (D1) and (D2) are true. According to
our proposal, a second-order predicate that a
expresses a structural claim is true iff Condi-
tions (D1′) and (D2′) are true.

This changes the implications of the exis-
tential quantifiers in (6.2). They do not as-
sert that there exists structure in the world
that satisfies (D1) and (D2), but rather that
there exists structure in the world that satis-
fies (D1′) and (D2′).

As a consequences, the right-to-left direc-
tion of Theorem 2 breaks down. While it is
still true that the truth of a Ramsey sentence
of a theory T implies that there is a model
which is u-cardinality correct and empirically
correct (Condition (D2) is still a necessary
part of Condition (D2′); this is the left-to-right
direction of the theorem), the opposite direc-
tion fails to hold: it is not the case that any
model which is u-cardinality correct and em-
pirically correct implies the truth of the Ram-
sey sentence, because it also needs to satisfy
the R-property condition in (D2′).

As a consequence, with the improved un-
derstanding of structural claims that we have
proposed above, it ceases to be true that “any
claim the RS may make about the existence
of unobservable relations or their formal prop-
erties is automatically true (or ‘trivially’ true,
as the point is often put)” (ibid.).

7. Objections

In this section, we would like to address one
objection to, and one fundamental worry of,
our proposal.

7.1. Reconstructing structure. The fun-
damental worry concerns the question of just
how much of a mathematical structure can be
identified (or “reconstructed”) from its auto-
morphism group.

Consider again the three proposals we have
made in Section 5. Starting from the fun-
damental idea to add existential quantifiers
of higher-order properties in (C2′), we have
subsequently expanded the condition so as to
limit the number of mathematical structures
that can be associated with a given higher-
order property. While Condition (C2′) did
not put any constraint on how the struc-
ture relates to a higher-order property, Con-
dition (C2′′) required arity to match up, and
Condition (C2′′′) required the variations that
constitute a structure’s automorphism group

12This is an instance of quantification over predicates, which presumes second-order logic.
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to match up with the variations that preserve
the higher-order property.

The problem we discuss here is that while it
is true that an automorphism in general char-
acterizes a mathematical structure in full, it
does not do so in extreme situations. Auto-
morphisms “min out” at some point. Once the
automorphism group is trivial, it remains triv-
ial even if more structure is added, as we now
explain.

Consider a mathematical structure W that
consists of a domain C and relation R, where
the relation R allows to individuate every ele-
ment of C uniquely based on relational infor-
mation alone. This is the case for graphs, for
example, if every node of a graph has a unique
number of edges that connect to that node,
called the degree of that node. The automor-
phism group of such structure contains only
the identity mapping, for every other map-
ping would not be able to preserve the edge
relation (cf. (5.1)). In this case, the automor-
phism group of the structure is called ‘trivial’.

Trivial automorphism groups constitute a
problem for our proposal because once the au-
tomorphism group is trivial, automorphisms
fail to track any further changes to structure
that preserve triviality. If, for example, a fur-
ther edge is added to a graph, while preserving
the condition that every node has a unique de-
gree, then the automorphism is trivial before
and after the change in structure. It can nei-
ther track, nor be used to reconstruct, the dif-
ference in structure. Put more abstractly, dif-
ferent relations that are defined over a given
(fixed) set of elements can all have the same
trivial automorphism group. The condition
for there to be an R-property is the same for
any relation R that satisfies (D1′) for a given
set C and whose automorphism group is triv-
ial. This problem of automorphism-based cri-
teria to distinguish structure is well-known in
the structural parsimony debate in philosophy
of physics (Barrett, Manchak, & Weatherall,
2023).

There are two different responses one can
give to this problem, and both apply.

First, one could argue that this problem in-
dicates that Condition (D2′) can still be im-
proved. Maybe some more advanced math

could be used to resolve structure via auto-
morphisms even if the automorphism group of
a structure is trivial. Local automorphisms
and sheaves come to mind. Or maybe there
is an entirely different way of formulating a
condition that replaces (D2). Both are viable
options to explore in further research.

Second, one could argue that the problem is
not actually detrimental to the proposal, be-
cause such relations cannot satisfy both Con-
ditions (D1′) and (D2′).

To see why this is the case, we first empha-
size that the problem we describe here only
applies if individual relations already imply
that the automorphism group of a structure
is trivial. That is because every relation R is
required to have a corresponding R-property.
If a structure contains more than one relation,
and the entirety of them render the automor-
phism group trivial, all is well.

Consider, therefore, a single relation R that
precludes non-trivial automorphisms. For this
relation to satisfy (D2′), there needs to be an
R-property p as described by (SP). This yields
two conditions: First, any variation that pre-
serves R needs to preserve p. And second, any
variation that does not preserve R must not
preserve p. The automorphism group being
trivial implies that only the second case ap-
plies, so that any variation whatsoever must
not preserve p. The mathematical formalism
of our proposal implies that if there is to be
an R-property p, any world which instantiates
the elements in one tuple of R must instan-
tiate p. Because the relation has trivial auto-
morphism, there must at least be two tuples in
the relation. Therefore, we must at least have
two worlds that instantiate p. But any varia-
tion from one of these worlds to the other of
these worlds preserves p, as it is instantiated
both in the source and target world of the vari-
ation. This violates the condition that there is
no variation that preserves p, and hence there
cannot be an R-property for a relation that
has trivial automorphism.13

The formal arguments behind this reason-
ing are provided rigorously in Appendix B (cf.
Lemma 2). In summary, the mathematics of
our proposal simply deny relations that in-
duce trivial automorphism groups the status
of viable objects of a structural claim. This

13For a formal proof of this claim, cf. Lemma 2 of Appendix B.
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is aligned with the idea that a mathematical
structure is only meaningful to the extend that
it can be probed by variations.

7.2. Does naturalness suffice? One way to
resolve the Newman problem is to assume that
“only natural relations should be taken into
account when pondering the structure of the
world; we need not, strictly speaking, deny
that the world instantiates (...) any relation
compatible with its cardinality, but we submit
that only natural relations are taken into ac-
count when it comes to assessing the claims of
a theory” (Frigg & Votsis, 2011). This idea
was introduced by D. Lewis (1983), and is
the solution endorsed by Chalmers (2022) in
the context of consciousness science, cf. Sec-
tion 1.1.

Given that our proposal in (D2′) introduces
a technical term, one could object that the
solution in terms of naturalness is preferable,
simply because it is a simpler solution. Is this
so?

The solution terms of naturalness amounts
to reinterpreting the ‘exists’ quantifier in (D2).
Instead of an abstract existential claim, it
would have to be interpreted as quantifying
over natural relations. If there is a natural re-
lation R as specified by W , then (D2) is true.
If not, (D2) is false.

This resolution of the Newman problem
is problematic, cf. (Frigg & Votsis, 2011,
Sec. 3.4.1(b)). One problem is that what
counts as a natural kind might change as sci-
ence progresses, cf. (Melia & Saatsi, 2006).
Another problem is that distinguishing natu-
ral kinds from non-natural kinds might require
non-structural language of the world to begin
with, cf. (Psillos, 2005).

But more fundamentally, even, for this so-
lution to work and be applicable one has to
presume that the world is mathematical, and
that mathematical terms refer “just like that”.
One has to presume that it is meaningful to
say there is a natural relation, where ‘relation’
is used in the mathematical sense of the term.

This is a substantive claim, and at least
when it comes to phenomenal character, there

are good reasons to think it is wrong. Con-
scious experiences do not come with mathe-
matical structure in any meaningful way. Phe-
nomenal character isn’t experienced as a met-
ric space, for example. There are experi-
ences, and mathematical formalism is useful
to describe or represent experiences. To say
that conscious experiences have a mathemat-
ical structure is a way of describing them,
not part of what they are naturally given as.
Similarly, natural kinds (or related concepts)
might not constitute mathematical structure
“just like this”.14

If this is true, then the naturalness solu-
tion is in fact solution (C2′), where ‘phenom-
enal properties’ are replaced by ‘natural prop-
erties’. The reasons for rejecting this proposal
in favor of (C2′′′) apply mutatis mutandis to
natural properties. As a result, the natural-
ness solution might not get around the intro-
duction of the technical terms in (D2′). It
might simply amount to (D2′) formulated with
(higher-order) natural properties. An impor-
tant change in cases where inflationary con-
ceptions of properties are involved, but other-
wise not substantially different.

8. Conclusion

We have considered how the Newman prob-
lem applies to consciousness science, and
shown that it threatens to undermine struc-
tural research and structural theories that tar-
get conscious experience.

The problem resides in the particular un-
derstanding of structural claims that is pre-
sumed when discussing phenomenal spaces,
quality spaces, qualia spaces, experience
spaces and the like. If unresolved, research
that subsumes this understanding is inher-
ently limited and prone to errors. As far
as theoretical work is concerned, use of such
spaces simply doesn’t make sense with the
usual subsumption of structural claims.

However, when one adopts are more care-
ful definition of structural claims, the New-
man problem ceases to apply. The upshot of
our discussion, framed in terms of phenomenal
properties for simplicity, is that if structural

14There is also a worry of circularity here, if in order to be able say that the world has some mathematical
structure, one needs to be able to say that natural kinds have such structure.
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claims like “the structure of conscious experi-
ence is E” are taken to be true if and only
if the following two conditions hold, the New-
man problem ceases to apply.

(C1) The elements of the domain C of are phe-
nomenal properties of conscious experi-
ences,

(C2) The relation R as specified by E exists,
and there is a corresponding higher-order
phenomenal R-property,

Here, a phenomenal property p is an R-
property iff any variation that preserves the re-
lation R preserves the phenomenal property p.

What distinguished our proposal from pre-
vious approaches is only the inclusion of R-
properties in (C2). This suffices to resolve
the Newman problem and the negative conse-
quences that otherwise apply. While abstract
at first, this proposal is straightforwardly ap-
plied to existing cases, and in fact builds on
previous definitions of quality spaces, as ex-
plained in (Kleiner & Ludwig, 2024).

For readers with a broader background in
philosophy, we have presented our proposal
in general, consciousness-independent terms in
Section 6 and Appendix A. Whether or not
this proposal is helpful in the general discus-
sion of the Newman problem, and whether it
can be applied to domains other than con-
sciousness, is an open question.
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Appendix A. Full Definitions

Here, we provide formal details of our pro-
posal of the general Newman problem as pre-
sented in Section 6. We denote a mathemati-
cal structure by S. It is a tuple

S =
(
(Ai)i∈I , (Sj)j∈J

)
of domains Ai and functions or relations Sj .
We denote the class of nomologically possible
worlds by W and the properties of a world
w ∈ W by A(w). For expository reasons, we
define the class of all properties of all worlds
by

A =
⋃

w∈W

A(w) . (A.1)

A variation of a world w changes w into an-
other world w′. Because worlds have struc-
ture, there may be various different ways to
go from w to w′.15 Therefore, in addition to
specifying w and w′, a variation is a partial
mapping

v : A(w) → A(w′) .

This mapping describes how properties of the
world w are replaced or reshuffled by the vari-
ation. A mapping which is not surjective,
meaning that it does not map to all properties
in A(w′), makes room for appearance of new
properties of w′. A mapping which is partial,
meaning that it does not specify a target for

15To illustrate this point, consider the following example, provided in (Kleiner & Ludwig, 2024). Let v

and v′ be mappings that map the numbers 1, 2, and 3 to the numbers 2, 4, and 6. The mapping v is the
multiplication of every number by 2, meaning that we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping v′, on
the other hand, is defined by v(1) = 6, v(2) = 2, v(3) = 4. If we only cared about the sets of elements that
these mappings connect, the mappings would be equivalent: there is no difference between the set {2, 4, 6},
which is the image of v, and {6, 2, 4}, which is the image of v′. If, however, we care about the structure of the
elements of the sets–in this case, the ordering of numbers–, then there is a difference. While 2 ≤ 4 ≤ 6, it is
not the case that 6 ≤ 2 ≤ 4. Because we care about the order of the elements, we need to say which element
goes where.
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every property in A(w), makes room for prop-
erties to disappear.

Higher-order properties are properties that
are instantiated relative to other properties. If
a property a requires other properties for its
instantiation, we will say that the aspect a is
instantiated relative to properties b1, ..., bm, or
simply that a is relative to b1, ..., bm. Higher-
order properties are the building blocks for our
proposal to define structual claims like (2.1).

Def 3. A variation v : A(w) → A(w′) does
not preserve a property a ∈ A(w) relative
to b1, ..., bm ∈ A(w) if and only if a is instan-
tiated relative to b1, ..., bm in A(w), but a is
not instantiated relative to v(b1), ..., v(bm) in
A(w′).16

In the case where a ∈ A(w) is not a higher-
order property, this definition reduces to the
simple condition that a ∈ A(w) but a ̸∈ A(w′).
The negation of the definition is also as intu-
itively expected: the property is present both
in the source and in the target.17

For applications it is important to under-
stand that this definition can fail to apply in
two ways. First, it can fail because there is
no a in A(w′) which is instantiated relative to
v(b1), ..., v(bm). This, in turn, can be the case
either because there is no a in A(w′) at all, or
because there is an a in A(w′) but it is instan-
tiated relative to other aspects. Second, it can
fail because one or more of the v(b1), ..., v(bm)
do not exist. The second case is possible be-
cause v is a partial mapping, which means as-
pects can disappear.

We use the term relata to designate those
elements of a domain that are related by a
structure. In the case where S is a relation
R on a domain A and has arity m, these are

the elements of the m-tuples (b1, ..., bm) ∈ R.
In the case where S is a function f : A1 ×
... × Am−1 → Am, the relata are the ele-
ments of the m-tuples (b1, ..., bm−1, bm) where
bm = f(b1, ..., bm−1), and where the other bi
range over their whole domains. For nota-
tional simplicity, we write b1, ..., bm instead
of (b1, ..., bm) when designating relata in what
follows.

Def 4. A variation v : A(w) → A(w′) pre-
serves a structure S with respect to relata
b1, ..., bm ∈ A(w) if and only if we have

(P1) R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
if

S is a relation R, or18

(P2) v
(
f(b1, ..., bm−1)

)
= f

(
v(b1), ..., v(bm−1)

)
if S is a function f .

As in the previous case, the negation of this
definition is exactly what is intuitively ex-
pected: a variation does not preserve the
structure if and only if the structure is satis-
fied before the variation, but not satisfied after
the variation.19

For applications it is again important to see
that the definition can fail for two reasons.
First, it could be the case that one or more
of the v(bi) do not exist in A(e′), if the corre-
sponding aspect disappears. Second, the iden-
tities may fail to hold.

Def 5. A property a ∈ A is a S-property
if and only if the following condition holds:
A variation does not preserve S with respect
to relata b1, ..., bm if and only if the variation
does not preserve a relative to b1, ..., bm.

This condition needs to hold true for all varia-
tions and all relata. This means that it needs
to hold true for all variations of all worlds w
in the class W that instantiate relata of the

16In (Kleiner & Ludwig, 2024), we use the term ‘changes’ rather than ‘does not preserve’. In hindsight, we
think it is easier to speak of preservation too in this case.

17Because the definiendum already includes the first part of the condition, the negation is as follows:
A variation v : A(w) → A(w′) preserves a property a ∈ A(w) relative to b1, ..., bm ∈ A(w) if and only if a is
instantiated relative to b1, ..., bm in A(w) and a is also instantiated relative to v(b1), ..., v(bm) in A(w′).

18For notational simplicity, we write R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
instead of R

(
b1, ..., bm

)
⇔

R
(
v(b1), ..., v(bm)

)
.

19A variation v : A(w) → A(w′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(w)
if and only if we have R

(
b1, ..., bm

)
̸= R

(
v(b1), ..., v(bm)

)
if S is a relation R, or v

(
f(b1, ..., bm−1

)
̸=

f
(
v(b1), ..., v(bm−1)

)
if S is a function f .

This negation agrees with the intuition because the definiendum already states part of the condition that fol-
lows, namely that b1, ..., bm are relata of the structure S in A(w), which implies that (b1, ..., bm) ∈ R if S is a
relation and that f(b1, ..., bm−1) exists in A(w) if S is a function, meaning that the structure is satisfied before
the variation.
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structure S. Definitions 3 to 5 allow us to de-
fine Conditions (D1′) and (D2′) in more detail.

Def 6. A mathematical structure S is a
mathematical structure of the world if
and only if the following two conditions hold:
(D1′) The domains Ai of S are subsets of A.
(D2′) For every Sj , there is a Sj-aspect in A.

Here, A denotes the set of all properties of the
worlds in W as defined in (A.1).

Appendix B. Objections

In this appendix, we provide the Lemmas
that underlie the explanations in Section 7.

Lemma 1. If a property a is a S-property,
every world that instantiates relata of S needs
to instantiate a relative to these relata.

Proof. Let a be a S-property and w be any
world that instantiates relata b1, ..., bm of S.
Definition 5 holds true for all variations of
all worlds that instantiate relata of the struc-
ture S. Because w instantiates relata, Defini-
tion 5 applies to any variation that maps from
w to any other world. Let v be any such vari-
ation. This variation either preserves S with
respect to relata b1, ..., bm, or it does not pre-
serve S with respect to relata b1, ..., bm.

Because a is a S-property, if v preserves S
with respect to relata b1, ..., bm, then it pre-
serves a relative to b1, ..., bm. But according to
Definition 3, this can only be true if a ∈ A(w)
relative to b1, ..., bm (cf. Footnote 17 for de-
tails). If, on the other hand, v does not pre-
serve S with respect to relata b1, ..., bm, then

it does not preserve a relative to b1, ..., bm.
But according to Definition 3, this too can
only be true if a ∈ A(w) relative to b1, ..., bm.
Thus both cases imply a ∈ A(w) relative to
b1, ..., bm. Thus the result follows. □

The condition that corresponds to the au-
tomorphism group of a structure being trivial
in the full formal setting of our definition in-
troduced in Appendix A is that no variation of
a structure, other than the identity, preserves
this structure. For this case, we have the fol-
lowing lemma.

Let S be a structure over a domain A0, and
assume that S contains at least two sets of re-
lata that are properties of least two worlds.

Lemma 2. If no variation preserves S with
respect to any of its relata, no S-property ex-
ists.

Proof. Let w1 and w2 be worlds that instan-
tiate the relata of S. Lemma 1 implies that if
there is a S-property a, both of these worlds
need to instantiate a relative to the relata that
they instantiate. Consider now a variation
from w1 to w2 which maps the relata instan-
tiated in w1 to the relata instantiated in w2.
According to Definition 3, this variation pre-
serves a relative to the relata instantiated in
w1 (cf. Footnote 17). Thus there is a vari-
ation that preserves a relative to said relata.
If a is a S-property, Definition 5 furthermore
implies that the variation preserves S with re-
spect to those relata. This contradicts the an-
tecedent of the claim in the Lemma. Hence no
S-property can exist. □
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