Skip to main content
Log in

The Semantic Morphology of Adolf Portmann: A Starting Point for the Biosemiotics of Organic Form?

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

This paper develops the ideas of the Swiss zoologist Adolf Portmann or, more precisely, his concept of organic self-representation, wherein Portmann considered the outer surface of living organisms as a specific organ that serves in a self-representational role. This idea is taken as a starting point from which to elaborate Portman’s ideas, so as to make them compatible with the theoretical framework of biosemiotics. Today, despite the many theories that help us understand aposematism, camouflage, deception and other phenomena related to the category of mimicry, there still is a need for a general theory of self-representation that would re-synthesize evolutionary, morphogenetic and semiotic aspects of the surface of organisms. Here, Adolf Portmann’s concept of self-representation is considered as an important step towards the biosemiotics of animal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A description of the species Phyllirrhoë bucephal from over 150 years ago makes us wonder about the intriguing architecture of the symmetrical corporeal composition of this animal: “The outer integument is perfectly transparent and lined by muscular bundles, disposed longitudinally, and somewhat more than their own breadth apart. These communicate with one another by oblique branching lips, which thus form a kind of network enclosing long lozenge-shaped spaces. Here and there nerve-trunks of considerable size accompany the longitudinal bundles, dividing off into smaller twigs, which distribute themselves at pretty equal distances in a direction more or less perpendicular to that of the muscular fibres.” (McDonald 1854: 363).

  2. Such explanation of function is termed “selected effect (SE) analysis of function” (Amundson and Lauder 1994).

References

  • Amundson, R., & Lauder, G. V. (1994). Function without purpose: The uses of causal role function in evolutionary biology. Biology & Philosophy, 9, 443–469.

    Article  Google Scholar 

  • Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003). The organic codes: An introduction to semantic biology. Cambridge: University Cambridge Press.

    Google Scholar 

  • Barbieri, M. (2007). Is the cell a semiotic system? In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 235–255). Dordrecht: Springer.

    Google Scholar 

  • Beldade, P., & Brakefield, P. M. (2003). Concerted evolution and developmental integration in modular butterfly wing patterns. Evolution & Development, 5, 169–179.

    Article  Google Scholar 

  • Beldade, P., Koops, K., & Brakefield, P. M. (2002a). Developmental constraints versus flexibility in morphological evolution. Nature, 416, 844–847.

    Article  PubMed  CAS  Google Scholar 

  • Beldade, P., Koops, K., & Brakefield, P. M. (2002b). Modularity, individuality, and evo-devo in butterfly wings. Proceedings of the National Academy of Sciences, 99, 14262–14267.

    Article  CAS  Google Scholar 

  • Blest, A. D. (1957). The function of eyespot patterns in the Lepidoptera. Behavior, 11, 209–256.

    Article  Google Scholar 

  • Castroviejo-Fisher, S., De la Riva, I., & Vilà, C. (2007). Transparent frogs show potential of natural world. Nature, 449, 972.

    Article  PubMed  CAS  Google Scholar 

  • French, V., & Monteiro, A. (1994). Butterfly wings: Colour patterns and new gene expression patterns. Bioessays, 16, 789–791.

    Article  Google Scholar 

  • Kleisner, K. (2008). Homosemiosis, Mimicry, and Superficial Similarity: Notes on the conceptualization of independent emergence of similarity in biology. Theory in Biosciences, 127, 15–21.

    Article  PubMed  Google Scholar 

  • Kleisner, K. (2007). The formation of the theory of homology in biological sciences. Acta Biotheoretica, 55, 317–340.

    Article  PubMed  Google Scholar 

  • Kleisner, K., & Markoš, M. (2005). The semetic rings: Towards the new concept of mimetic resemblances. Theory in Biosciences, 123, 209–222.

    Article  PubMed  Google Scholar 

  • Komárek, S. (2003). Mimicry, aposematism and related phenomena. Mimetism in nature and the history of its study. München: Lincolm Europa.

    Google Scholar 

  • Lyytinen, A., Brakefield, P. M., Lindström, L., & Mappes, J. (2004). Does predation maintain eyespot plasticity in Bicyclus anynana? Proceedings of the Royal Society of London B, 271, 279–283.

    Article  Google Scholar 

  • Macdonald, J. D. (1854–1855). Observations on the anatomy and affinities of the Phyllirrhoë bucephala (Peron). Proceedings of the Royal Society of London, 7, 363–368.

    Article  Google Scholar 

  • Maran, T. (2007). Semiotic interpretations of biological mimicry. Semiotica, 167, 223–248.

    Article  Google Scholar 

  • Markoš, A. (2002). Readers of the book of life: Contextualizing developmental evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Markoš, A., Grygar, F., Kleisner, K., & Neubauer, Z. (2007). Towards a Darwinian biosemiotics. Life as mutual understanding. In Introduction to biosemiotics (pp. 235–255). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Monteiro, A., Brakefield, P. M., & French, V. (1997a). Butterfly eyespots: The genetics and development of the color rings. Evolution, 51, 1207–1216.

    Article  Google Scholar 

  • Monteiro, A., Brakefield, P. M., & French, V. (1994). The evolutionary genetics and developmental basis of wing pattern variation in the butterfly Bicyclus anynana. Evolution, 48, 1147–1157.

    Article  Google Scholar 

  • Monteiro, A., Brakefield, P. M., & French, V. (1997b). The genetics and development of an eyespot pattern in the butterfly Bicyclus anynana: Response to selection for eyespot shape. Genetics, 146, 287–294.

    PubMed  CAS  Google Scholar 

  • Nijhout, H. F. (1980). Pattern formation on lepidoptera wings: Determination of an eyespot. Developmental Biology, 80, 287–305.

    Google Scholar 

  • Nijhout, H. F. (1991). The Development and Evolution of Butterfly Wing Patterns, Smithsonian Institution Press, Washington, D.C.

  • Portmann, A. (1960a). Neue Wege der Biologie. München: Piper.

    Google Scholar 

  • Portmann, A. (1960b). Die Tiergestalt. Studien über die Bedeutung der tierischen Ercheinung. Basel: Friedrich Reinhardt.

    Google Scholar 

  • Portmann, A. (1965). Neue Fronten der biologischen Arbeit. In: G. Schulz (Ed.), Transparente Welt. Festschrift zum 60. Geburtstag von Jean Gebser. Bern: Huber: 23–37.

  • Portmann, A. (1969). Einführung in die vergleichende Morphologie der Wirbeltiere. Basel: Schwabe & Co.

    Google Scholar 

  • Portmann, A. (1990). Essays in philosophical zoology by Adolf Portmann. The living form and seeing eye. Lewiston: Edwin Mellen.

    Google Scholar 

  • Robertson, K. A., & Monteiro, A. (2005). Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proceedings of the Royal Society of London B, 272, 1541–1546.

    Article  Google Scholar 

  • Russell, E. S. (1916). Form and function: A contribution to the history of animal morphology. London: Murray.

    Google Scholar 

  • Stevens, M. (2005). The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biological Reviews, 80, 573–588.

    Article  PubMed  Google Scholar 

  • Süffert, F. (1927). Zur vergleichenden Analyse der Schmetterlingzeichnung. Biologisches Zentralblatt, 47, 385–413.

    Google Scholar 

  • Tomasello, M., Hare, B., Lehmann, H., & Call, J. (2007). Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. Journal of Human Evolution, 52, 314–320.

    Article  PubMed  Google Scholar 

  • von Uexküll, J. (1921). Umwelt und Innenwelt der Tiere. Berlin: Springer.

    Google Scholar 

  • von Uexküll, J. (1928). Theoretische Biologie. Berlin: Springer.

    Google Scholar 

  • Wray, G. A., & Abouheif, E. (1998). When homology is not homology. Current Opinion in Genetics & Development, 8, 675–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Anton Markoš for his comments on the text. I also owe my thanks to Stanislav Komárek, who introduced me to the writings of Adolf Portmann, and to Zdeněk Neubauer, who prepared the first Czech translation of Portmann’s book during the time of communist repression and thus sowed the seeds of future interest in Portmann’s ideas. Last but not least, I thank Lucie Čermáková for the beautiful drawings published in this paper. This work has been supported by the Research Program CTS MSM 0021620845 and the GPSS Major Awards Program, a joint program of the Interdisciplinary University of Paris and Elon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Kleisner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleisner, K. The Semantic Morphology of Adolf Portmann: A Starting Point for the Biosemiotics of Organic Form?. Biosemiotics 1, 207–219 (2008). https://doi.org/10.1007/s12304-008-9014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-008-9014-4

Keywords

Navigation