Skip to main content
Log in

Analysing Population Numbers of the House Sparrow in the Netherlands With a Matrix Model and Suggestions for Conservation Measures

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The House Sparrow (Passer domesticus), formerly a common bird species, has shown a rapid decline in Western Europe over recent decades. In The Netherlands, its decline is apparent from 1990 onwards. Many causes for this decline have been suggested that all decrease the vital rates, i.e. survival and reproduction, but their actual impact remains unknown. Although the House Sparrow has been dominant in The Netherlands, data on life history characteristics for this bird species are scarce: data on reproduction are non-existent, and here we first present survival estimates based on live encounters and dead recoveries of marked individuals over the period 1976–2003, 14 years before and 14 years during the decline, reported to the Dutch Ringing Centre. We show that there is an indication that both juvenile and adult survival are lower during the period of decline.

Secondly, to be able to analyse the relative impact of changes in the vital rates, we formulated a general matrix model based on a range of survival values between zero and one with a step size of 0.01 (both juvenile and adult yearly survival) and a range of realistic reproduction values (one, three or five fledglings per pair per year). With the matrix model, we calculated the finite rate of population change (λ) and applied elasticity analysis. To diagnose the cause of the decline in the Dutch House Sparrow, we parameterised the model with estimates of survival values before and during the decline and present the resulting λ. With the survival estimates from the declining period, λ < 1 only if reproduction is relatively low. We discuss this result within the light of available literature data on survival in the House Sparrow. Finally, we evaluate which of the suggested causes of population decline should be reversed to mitigate the decline and how this can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1990). Categorical Data Analysis. John Wiley and Sons, New York.

    Google Scholar 

  • Beissinger, S.R. and M.I. Westphal (1998). On the use of demographic models of population viability in endangered species management. Journal of Wildlife Management 62: 821–841.

    Google Scholar 

  • Benton, T.G. and A. Grant (1996). How to keep fit in the real world: Elasticity analyses and selection pressures on life histories in a variable environment. American Naturalist 147: 115–139.

    Article  Google Scholar 

  • Bergtold, W.H. (1921). The English sparrow (Passer domesticus) and the motor vehicle. Auk 38: 244–250.

    Google Scholar 

  • Bressers, M., E. Meelis, P. Haccou and M. Kruk (1991). When did it really start or stop: The impact of censored observations on the analysis of duration. Behavioural Processes 23: 1–20.

    Article  Google Scholar 

  • Brownie, C., D.R. Anderson, K.P. Burnham and D.S. Robson (1985). Statistical inference from band recovery data – a handbook, 2nd ed. Washington, D.C., US Fish and Wildlife Service.

    Google Scholar 

  • Buijs, R.J. and D.L. Thomson (2001). Van 1911 tot en met 2000: Een overzicht van geringde en teruggemelde vogels in Nederland. Op Het Vinkentouw 95: 1–88.

    Google Scholar 

  • Burnham, K.P. (1993). A theory for combined analysis of ringrecovery and recapture data. In: J.D Lebreton and P.M. North (eds.), Marked Individuals in the Study of Bird Populations. pp. 199–213. Basel, Switzerland, Birkhauser Verlag.

    Google Scholar 

  • Burnham, K.P. and D.R. Anderson (2001). Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28: 111–119.

    Article  Google Scholar 

  • Burnham, K.P. and D.R. Anderson (2002). Model Selection and Inference: a Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Caswell, H. (2001). Matrix Population Models, 2nd edition. Sinauer Assiociates, Inc, Massachusetts, Sunderland.

    Google Scholar 

  • Caswell, H., R.J. Naiman and R. Morin (1984). Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43: 123–134.

    Article  Google Scholar 

  • CBS (2005). http://www.cbs.nl/statline/index.htm.

  • Charlesworth, B. (1980). Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Churcher, P.P. and J.H. Lawton (1987). Predation by domestic cats in an English village. Journal of Zoology London 212: 439–455.

    Article  Google Scholar 

  • Claessen, D. (2005). Alternative life-history pathways and the elasticity of stochastic matrix models. American Naturalist 165: E27–E35.

    Article  Google Scholar 

  • Cooch, F. and G.White (2005). Program MARK A Gentle Introduction. 4th edition. http://www.phidot.org/software/mark/docs/book/.

  • Cramp, S. and C.M. Perrins (1994). Passer domesticus House Sparrow. In: S. Cramp and C.M. Perrins (eds.), The Handbook of the birds of Europe and the Middle East and North Africa; part VIII: Crows to Finches. pp. 289–308.Oxford University Press, Oxford.

    Google Scholar 

  • Crawley, M.J. (1993). GLIM for Ecologists. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Crick, H.Q.P., R.A. Robinson, G.F. Appleton, N.A. Clark and A.D. Rickard (2003). Investigation into the Causes of the Decline of Starlings and House Sparrows in Great Britain. DEFRA Publications, London.

    Google Scholar 

  • Crouse, D.T., L.B. Crowder and H. Caswell (1987). A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68: 1412–1423.

    Article  Google Scholar 

  • Deckert, G. (1969). Zur Ethologie und Ökologie des Haussperlings (Passer domesticus (L)). Beitrage zur Vogelkunde 15:1–84.

    Google Scholar 

  • Doak, D.F., K. Gross and W.F. Morris (2005). Understanding and predicting the effects of sparse data on demographic analyses. Ecology 86: 1154–1163.

    Google Scholar 

  • Doak, D.F., P. Kareiva and B. Kleptka (1994). Modeling population viability for the desert tortoise in the western Mojave Desert. Ecological Applications 4: 446–460.

    Article  Google Scholar 

  • Dyer, M.I., J. Pinowski and B. Pinowska (1977). Population dynamics. In: J. Pinowski and S.C. Kandeigh (eds.), Granivourous Birds in Ecosystems, pp. 53–105. University Press, Cambridge.

    Google Scholar 

  • Freeman, S.N. and H.Q.P. Crick (2002). Population dynamics of House Sparrows Passer domesticus breeding in Britain: an integrated analysis. In: H.Q.P. Crick, R.A. Robinson, G.F. Appleton, N.A. Clark and A.D. Rickard (eds.), Investigation into the Causes of the Decline of Starlings and House Sparrows in Great Britain. BTO Research Report No 290. pp. 193–212Bristol, DEFRA.

    Google Scholar 

  • Gibbons, D.W., W.J.B. Reid and R.A. Chapman (1993). The New Atlas of Breeding Birds in Britain and Ireland: 1988–1991. Carlton, Poyser.

    Google Scholar 

  • Gramet, P. (1948). Investigations on the feeding habits of the House Sparrow Passer domesticus and the Tree sparrow Passer montanus. Danish Review of Game Biology 1: 1–59.

    Google Scholar 

  • Gregory, R.D., D.G. Noble and J. Custance (2004). The state of play of farmland birds: population trends and conservation status of lowland farmbirds in the United Kingdom. Ibis 146 (Suppl. 2).

  • Heij, C.J. (1985). Comparative ecology of the House Sparrow Passer domesticus in rural, suburban and urban situations. Thesis, Free University of Amsterdam. 175 pp.

  • Heij, C.J. (2001). Mussen in de knel. Natura 3:76–78 (in Dutch).

    Google Scholar 

  • Heppell, S.S., H. Caswell and L.B. Crowder (1995). Life histories and elasticity patterns: perturbation analysis for species with minimal demographic data. Ecology 81: 654–665.

    Article  Google Scholar 

  • Hole, D.G. (2002). Adult and first-year survival in the house sparrow Passer domesticus. In: H.Q.P. Crick, R.A. Robinson, G.F. Appleton, N.A Clark and A.D. Rickard (eds.), Investigation into the Causes of the Decline of Starlings and House Sparrows in Great Britain. pp. 157–161. British Trust for Ornithology Research Report No 290. Bristol, DEFRA.

    Google Scholar 

  • Hole, D.G., M.J. Whittingham, R.B. Bradbury, G.Q.A. Anderson, P.L.M. Lee, J.D. Wilson and J.R. Krebs (2002). Widespread local house-sparrow extinctions. Nature 418: 931–932.

    Article  Google Scholar 

  • Kipps, C. (1953). Sold for a Farthing. London.

  • Kjellen, N. and G. Roos (2000). Population trends in Swedish raptors demonstrated by migration counts at Falsterbo, Sweden 1942–97. Bird Study 47: 195–211.

    Article  Google Scholar 

  • Kroon, H. de, A. Plaisier, J. van Groenendael and H. Caswell (1986). Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67: 1427–1431.

    Article  Google Scholar 

  • Lack, D. (1986). The Atlas of Wintering Birds in Britain and Ireland. Carlton, Poyser.

    Google Scholar 

  • Lebreton, J.D. and J. Clobert. (1991). Bird population dynamics, management, and conservation: the role of mathematical modelling. In: C.M. Perrins, J.D. Lebreton and G.J.M. Hirons (eds.), Bird Population Studies: Relevance to Conservation and Management. pp 105–125. Oxford University Press, Oxford.

    Google Scholar 

  • Lebreton, J.D., K.P. Burnham, J. Colbert and D.R. Anderson (1992). Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62: 67–118.

    Article  Google Scholar 

  • Marchant, J.H., R. Hudson, S.P. Carter and P.A. Whittington (1990). Population Trends in British Breeding Birds. British Trust for Ornitohology, Tring, England.

    Google Scholar 

  • Morris, W.F. and D.F. Doak (2004). Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. American Naturalist 163: 579–590.

    Article  Google Scholar 

  • Newton, I. (2004). The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146: 579–600.

    Article  Google Scholar 

  • Peach, W.J., G.M. Siriwardena, and R.D. Gregory (1999). Long-term changes in over-winter survival; rates explain the decline of reed buntings Emberiza schoeniclus in Britain. Journal of Applied Ecology 36: 798–811.

    Article  Google Scholar 

  • Robinson, R.A. and W.J. Sutherland (2002). Post-war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology 39: 157–176.

    Article  Google Scholar 

  • Saether, B.-E. and O. Bakke 2000. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81: 642–653.

    Article  Google Scholar 

  • Saether, B.-E, T.H. Ringsby, O. Bakke and E.J. Solber (1999). Spatial and temporal variation in demography of a House Sparrow metapopulation. Journal of Animal Ecology 68: 628–637.

    Article  Google Scholar 

  • Seel, D.C. (1968a). Breeding seasons of the House Sparrow and Tree Sparrow Passer spp. at Oxford. Ibis 110:129–144.

    Google Scholar 

  • Seel, D.C. (1968b). Clutch-size, incubation and hatching success in the House Sparrow Passer spp. at Oxford. Ibis 111: 270–282.

    Google Scholar 

  • Seel, D.C. (1970). Nestling survival and nestling weights in the House Sparrow and tree sparrow Passer spp. at Oxford. Ibis 112: 1–14.

    Google Scholar 

  • Silvertown, J. and D. Charlesworth (2001). Introduction to Plant Population Biology. 4th ed. Oxford, Blackwell.

    Google Scholar 

  • Siriwardena, G.M., S.R. Baillie, S.T. Buckland, R.M. Fewster, J.H. Marchant and J.H. Willson (1998). Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Bird Indices. Journal of Applied Ecology 35: 24–43.

    Article  Google Scholar 

  • Siriwardena, G.M., S.R. Baillie and J.H. Willson (1999). Temporal variation in the annual survival rates of six granivorous birds with contrasting population trends. Ibis 141: 621–636.

    Google Scholar 

  • Summers-Smith, J.D. (1956). Mortality of the House Sparrow. Bird Study 3: 265–270.

    Article  Google Scholar 

  • Summers-Smith, J.D. (1963). The House Sparrow. Collins, London.

    Google Scholar 

  • Summers-Smith, J.D. (1988). The Sparrows. Carlton, Poyser.

    Google Scholar 

  • Summers-Smith, J.D. (1999). Current status of the House Sparrow in Britain. British Wildlife 10: 381–386.

    Google Scholar 

  • Summers-Smith, J.D. (2000). Decline of House Sparrow in large towns. British Birds 93: 256–257.

    Google Scholar 

  • Tuljapurkar, S.D. (1990). Population dynamics in variable environments. Springer-Verlag, New York, USA.

    Google Scholar 

  • Van der Hoeven, N., L. Hemerik and P.A. Jansen (2005). Balancing statistics and ecology: lumping: experimental data for model selection In: T.A.C. Reydon and L. Hemerik (eds.), Current Themes in Theoretical Biology: A Dutch Perspective, Springer, Dordrecht.

    Google Scholar 

  • Van Noordwijk, A.J., G. Speek, J.A. Clark, Z. Rohde and R.D. Wassenaar (2003). The EURING exchange code 2000. Journal of Ornithology 144: 479–483.

    Article  Google Scholar 

  • Vidal, A. (1997). Bestandsentwickling der brutvogel in der kultuurlandschaft nordlich Regensburg. Ornithologischer Anzeiger 36: 185–196.

    Google Scholar 

  • White, G.C. and K.P. Burnham (1999). Program MARK: survival estimation from populations of marked animals. Bird Study 46 (Suppl.): 120–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Klok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klok, C., Holtkamp, R., van Apeldoorn, R. et al. Analysing Population Numbers of the House Sparrow in the Netherlands With a Matrix Model and Suggestions for Conservation Measures. Acta Biotheor 54, 161–178 (2006). https://doi.org/10.1007/s10441-006-7871-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-006-7871-2

Key Words:

Navigation