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Abstract. We point out a connection between reflection principles and generic
large cardinals. One principle of pure reflection is introduced that is as strong as
generic supercompactness of ω2 by σ-closed forcing. This new concept implies CH
and extends the reflection principles for stationary sets in a canonical way.

Introduction

Set theorists are familiar with the following well-known reflection of station-
ary sets called RP:

For every set E stationary in [ω2]ℵ0 there is a continuous ε-chain
〈Mξ : ξ < ω1〉 of elementary submodels of some Hλ such that
{ξ < ω1 : Mξ ∩ ω2 ∈ E} is stationary in ω1.

This is one of the strongest principles to reflect stationary subsets of ω2

and known to leave the power of the continuum undecided, which might be
ℵ1 or ℵ2 under RP (see [1], [2], [4] and [17]). An equivalent version of RP
is used in the literature sometimes: ’for every stationary E ⊆ [ω2]ℵ0 there is
an ω1-cofinal ordinal δ < ω2 such that E ∩ [δ]ℵ0 is stationary in [δ]ℵ0 ’.

Let us reformulate this principle in yet another way. We recall the club-
game Gδ(E) for an arbitrary set E ⊆ [ω2]ℵ0 : players I and II take turns in
playing ordinals

I α0 α2 α4 . . .
II α1 α3 α5 . . .

where all αi’s are below δ and I wins the game if {αi : i < ω} ∈ E .

This game is well known. We give a short proof of the following since
there doesn’t seem to be a reference for it:
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Proposition 1. Let δ be uncountable.

(a) I has a winning strategy in Gδ(E) iff E ∩ [δ]ℵ0 is club,
(b) II has a winning strategy in Gδ(E) iff E ∩ [δ]ℵ0 is non-stationary.

Proof. (a) and (b) can be seen equivalent by switching the players. We
will show (a): if I wins, we choose a winning strategy σ and N such that
σ ∈ N ≺ Hλ. Now play against this strategy and let player II list all elements
of N ∩ δ, no matter what I responds. Since player I wins, N ∩ δ ∈ E . We
just showed that {N ∩ δ : σ ∈ N ≺ Hλ} ⊆ E , so E ∩ [δ]ℵ0 is club.

Assuming E ∩ [δ]ℵ0 is club, we define a winning strategy for player I
inductively: if II plays the ordinal αn in the nth move, player I can find
An ∈ E that contains all αi (i ≤ n) and such that An−1 ⊆ An. Using a
pairing function, he creates his strategy by making sure that he lists all
elements of

⋃
i<ω An. This last set is in E , so I wins the play. ut

Now it is straightforward to check that RP is equivalent to the following:

If there is an ω1-club C ⊆ ω2 such that II has a winning strategy
in the club-game Gδ(E) for every δ ∈ C, then II has a winning
strategy in the club-game Gω2(E).

Let us cut this short: RP says that club-games of the form G(E) are
reflected at the cardinal ω2. The following question is natural.

Question. Is it possible that every game be reflected at ω2?

We will discover later in this article that a principle of full game reflection
is tightly connected with the generic compactness of ω2.

1. Preliminaries

We ventured deep into the topic right from the start, simply to catch the
reader’s attention. Let us define the basic notions that we used already. Our
notations δγ for the set of all functions from δ into γ and <δγ for the set
of all functions from ordinals smaller than δ into γ are common. We use
the symbol [A]λ for the set of all subsets of A with cardinality λ, [A]<λ is
defined analogously. P(A) denotes the power set of A.

We call a set C ⊆ κ club if it is closed and unbounded in κ. We define
the notion of club for subsets of [X]κ: C is closed and unbounded in [X]κ if

(i) for all a ∈ [X]κ there is a b ∈ C such that a ⊆ b,
(ii) whenever 〈aξ : ξ < κ〉 ⊆ C is an increasing sequence,

then
⋃

ξ<κ aξ ∈ C.

The above definition is common. Note that if κ > ω, our notion of club
no longer coincides with the property of being closed under an algebra of
functions.

We confuse the notions of being club and containing a club. Furthermore,
we need a more general version of clubs: a set of ordinals is λ-closed if it
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is closed under sequences of order-type λ. A λ-closed and unbounded set is
called λ-club. The same generalization carries over to clubs in [X]κ.

The string lh(s) is a notation for the length of a sequence s. We write
M ≺ N to say that M is an elementary submodel of N . An increasing chain
of models 〈Mξ : ξ < ω1〉 is an ε-chain if Mξ ∈ Mη for all ξ < η < ω1. The
term Sk(X) denotes the Skolem closure of the set X when it should be clear
from the context which superstructure we are working in, usually some Hλ

the collection of all sets hereditarily of size smaller than λ. Pretty often it
will go without saying that Hλ is sufficiently large. Furthermore, we denote
ideals by letters like I or J , where I+ is the collection of all positive sets
with respect to the ideal I. NSλ is the ideal of non-stationary subsets of λ,
the subscript will be dropped if it is clear from the context. An ideal on κ
is κ-complete if it closed under unions of size less than κ.

ZFC− is ZFC minus Power set and we use an abbreviation in the context
of elementary embeddings: j : M −→ N means that j is a non-trivial
elementary embedding from M into N such that M and N are transitive.
The critical point of such an embedding, i.e. the first ordinal moved by j, is
denoted by cp(j).

When it comes to forcing, we use the classical notation where p ≤ q
means that p is a stronger condition than q. Names are denoted with dots
on top (e.g. τ̇) but our notation shall not be too strict in this.

If λ is regular, we define the posets Col(λ, κ) and Coll(λ, < κ) to be the
(< λ)-closed Levy Collapses of κ to λ and of everything less than κ to λ
respectively:

Col(λ, κ) = {p : α −→ κ |α < λ}, (1.1)

Coll(λ, < κ) = {p |dom(p) ⊆ κ× λ, p(δ, α) < δ and p has
cardinality less than λ}. (1.2)

In both of these cases, the ordering is reverse inclusion.

Rado’s conjecture is known as the following statement: a family of in-
tervals of a linearly ordered set is the union of countably many disjoint
subfamilies if and only if every subfamily of size ℵ1 has this property.

Finally, we need the Extension Lemma which was first proved by Silver:

Lemma 1 (Extension Lemma). Let j : M −→ N and assume that G is
P-generic over M , H is j(P)-generic over N for a poset P. If j′′G ⊆ H then
there is a unique extension j∗ : M [G] −→ N [H] of j such that j∗(G) = H.

Proof. For each P-name τ̇ , simply let j∗(τ̇ [G]) = j(τ̇)[H]. ut

2. Reflecting games

Let’s pick up on what was said in the beginning. We want to formulate
our principle of game reflection using the ideas of the introduction. This is
based upon a very general notion of a game.

In what is going to follow, θ stands for an arbitrary regular cardinal.
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Definition 2. If A ⊆ <ω1θ, the game G(A) has length ω1 and is played as
follows:

I α0 α1 . . . αξ αξ+1 . . .
II β0 β1 . . . βξ βξ+1 . . .

both players I and II play ordinals below θ and

II wins iff 〈αξ, βξ : ξ < ω1〉 ∈ [A],

where [A] = {f ∈ ω1θ : f � ξ ∈ A for all ξ < ω1}.

For B ⊆ Hλ, define the game GB(A) by letting the winning conditions
be the same as in G(A) but imposing the restriction on both players to play
ordinals in B ∩ θ.

Definition 3. The Game Reflection Principle or GRP is the following state-
ment:

Let A ⊆ <ω1ω2. If there is an ω1-club C ⊆ ω2 such that II has a
winning strategy in Gα(A) for every α ∈ C, then II has a winning
strategy in G(A).

The global Game Reflection Principle or GRP+ is the following statement:

Let θ be regular and A ⊆ <ω1θ. If there is an ω1-club C ⊆ [θ]ℵ1

such that II has a winning strategy in GB(A) for every B ∈ C,
then II has a winning strategy in G(A).

The statement of GRP+ for θ = ω2 is just GRP.

Definition 4. A substructure M ≺ Hλ of size ℵ1 is called ε-approachable if
it is the limit of an ε-chain of countable elementary substructures, i.e. there
is an ε-chain 〈Mξ : ξ < ω1〉 with M =

⋃
ξ<ω1

Mξ.
We denote the set of all ε-approachable substructures of Hλ of size ℵ1

by EA.

Note.

– EA is ω1-club in [Hλ]ℵ1 .
– EA � θ = {M ∩ θ : M ∈ EA} is ω1-club in [θ]ℵ1 .
– EA � ω2 = {M ∩ ω2 : M ∈ EA} is ω1-club in ω2.

We use this Note crucially: it suffices to show that II wins GM (A) for
all M ∈ EA to apply the Game Reflection Principle.

It should be mentioned that every internally approachable M in the
sense of [4] is ε-approachable.1 The other direction might not be true in
general as the referee pointed out, but we will show that these two notions,
internally approachable and ε-approachable, are the same under CH:

1 M of size ℵ1 is called internally approachable if M is the limit of a sequence
〈Nξ : ξ < ω1〉 such that 〈Nξ : ξ < η〉 ∈ M for every η < ω1. If M is like this, build
an ε-chain by letting Mα+1 = Sk(Mα, 〈Nξ : ξ ≤ α〉).
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Lemma 5. Let M ≺ Hλ be of size ℵ1. The following are equivalent under
CH:

(1) M is ε-approachable,
(2) ωM ⊆ M .

Proof. (1) =⇒ (2): let M be the union of an ε-chain 〈Mξ : ξ < ω1〉. Now
if A ∈ [M ]ℵ0 , there is ζ < ω1 such that A ⊆ Mζ . But we are given that
P(Mζ) ∈ Mζ+1 ⊆ M and P(Mζ) has cardinality ℵ1 by CH. Note that M
contains all countable ordinals, so A ∈ P(Mζ) ⊆ M and we are done.

(2) =⇒ (1): let {xα}α<ω1 enumerate M . Build an increasing ε-chain by
letting

Mξ+1 = Sk(Mξ, xξ).

The union of this chain will end up being exactly M since M is closed under
countable sequences. ut

Remark.

(a) Notice that both formulations of the Game Reflection Principle are com-
pletely false when we replace the notion of an ordinary strategy with the
notion of a positional strategy.

(b) We are going to show in Theorem 8 that GRP implies the Continuum
Hypothesis. We can hence assume by Lemma 5 that all ε-approachable
substructures we consider are closed under countable sequences.

Let us note that there is a canonical ideal associated with GRP:

Definition 6. The Game Reflection Ideal JGR is defined as follows: for any
X ⊆ ω2, let X ∈ JGR if

there is A ⊆ <ω1ω2 such that II has no winning strategy for G(A),
but II has a winning strategy for Gα(A) whenever α ∈ X.

The ideal JGR is non-trivial if and only if GRP holds.

Proposition 7. JGR is normal.

Proof. Assume that Xν (ν < ω2) is a sequence in JGR witnessed by the
games Aν (ν < ω2). Build a game B ⊆ <ω1ω2 by letting player II choose
the index ν for the game Aν that he wants to play and then resume with
player I’s first move. II will then win the game G(B) iff he can win the
upcoming Aν-game. Note that II does not have a winning strategy for B
since he has none for the games Aν (ν < ω2). But now let α ∈ ∇ν<ω2Xν . In
this case, there is ν∗ < α such that α ∈ Xν∗ . We claim that player II has a
winning strategy in the game Gα(B) if he initiates it by selecting ν∗: since
Aν∗ witnesses that Xν∗ is a member of the ideal and α ∈ Xν∗ , we conclude
that there is a winning strategy for II in the game Gα(Aν∗). Therefore, II
wins Gα(B), and B witnesses that ∇ν<ω2Xν ∈ JGR. ut
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We will now fulfill the promise given earlier in this section. Theorem 8
shows that the Π1

1 -reflection of GRP implies CH. This contrasts the well-
known fact that the tree property for ω2, which is just as well a Π1

1 -reflection,
implies ¬CH.

Theorem 8. The Game Reflection Principle implies the Continuum Hypo-
thesis.

Proof. Assume that 2ℵ0 ≥ ℵ2. With the Axiom of Choice we can construct
a Bernstein set, i.e. a set B ⊆ R of size continuum that does not contain a
perfect subset (see e.g. [9, p.48]). So in particular we get a set A ⊆ R of size
ℵ2 that does not contain a perfect subset. Enumerate A = {rβ : β < ω2}
and define the game GCH as follows: a typical play of this game is

I α0 α1 α2 α3 . . .
II i0 i1 i2 i3 . . .

where αn < ω2 and in ∈ {0, 1} (n < ω). We say that II wins the game if
〈in : n < ω〉 = rβ ∈ A and β > supn<ω αn. Note that player II has a winning
strategy in the game GM

CH for every internally approachable M ≺ Hλ since
he can simply play the real r(M∩ω2). By the Game Reflection Principle, II has
a winning strategy σ for the game GCH. From this we deduce a contradiction:
let us identify our winning strategy with a function σ : <ωω2 −→ <ω2 such
that lh(ζ) = lh(σ(ζ)). For every s ∈ <ω2, choose a sequence of ordinals ζs

such that

(i) ζr ⊆ ζs whenever r ⊆ s are members of <ω2,
(ii) lh(r) = lh(s) −→ lh(ζr) = lh(ζs),
(iii) σ(ζs_0) 6= σ(ζs_1) holds for every s ∈ <ω2.

Note that the length of ζs typically differs from the length of s. Such a
sequence exists because σ is a winning strategy for player II. If there were
no such splitting, player I could predict the final outcome of II’s choices and
beat this very real. But now we claim:

Claim. S = {σ(ζs) � n : s ∈ <ω2 , n ≤ lh(ζs)} is a perfect tree.

Proof. By condition (iii) in the construction of the sequences ζs, we know
that for every element of S, there are two incomparable ones above. This is
enough to prove our Claim. a

But [S] is a subset of A, since for every branch through S there is a play
associated to it and moreover it is played according to II’s winning strategy
σ. So A contains a perfect subset by our claim. This finishes the proof,
because A ⊇ X was chosen to avoid at least one point in every perfect set.
ut

The consistency of the Game Reflection Principle will be established in
Corollary 18. We could go for this right now, but prefer to give an equivalent
formulation first in Section 3 and make the proofs more transparent.
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Our next result points further down the road: no winning strategies are
added in ω-closed forcing extensions. See the importance of it in the proofs
of Theorems 14 and 17.

Lemma 9. Let A ⊆ <ω1θ for some regular θ and A ∈ V . If P is ω-closed
and σ̇ a P-name for a winning strategy in the game G(A), then there is a
winning strategy τ for G(A) in V .

Proof. For simplicity we assume that σ̇ is a name for a winning strategy
of player II. We construct a winning strategy τ for player II in the ground
model, using ω-closedness of P.

Define τ as follows: first choose a condition p∅ 
 σ̇ is winning. Now for
all countable sequences of ordinals s = 〈αξ : ξ < γ〉, find conditions ps ∈ P
such that ps 
 σ̇(αξ : ξ < γ) = βs for some βs ∈ V and

s ⊆ s′ −→ ps ≥ ps′ .

Finally, let τ(αξ : ξ < γ) = βs. We show that τ is winning for player II: for
if there is a play

I α0 α1 . . . αξ αξ+1 . . .
II β0 β1 . . . βξ βξ+1 . . .

according to τ , we claim that II wins this play. Assume otherwise, then there
is γ < ω1 and a sequence s = 〈αξ : ξ < γ〉 such that 〈αξ, βξ : ξ < γ〉 /∈ A.
Remember that we constructed our tree of conditions in a way such that
ps 
 ’II wins the play αξ, βξ (ξ < γ)’, since ps extends p∅. We choose any
P-generic filter H in V that contains the condition ps. This will make the
following true:

V [H] |= 〈αξ, βξ : ξ < γ〉 ∈ A. (2.1)

But A is in the ground model, so we conclude

V |= 〈αξ, βξ : ξ < γ〉 ∈ A. (2.2)

We have reached a contradiction. This proves that τ is a winning strategy
for II in V . ut

In the near future, we are sometimes going to play with arbitrary ob-
jects instead of ordinals. This is no restriction though, because only the
cardinality of the underlying set matters: just fix any enumeration, make
sure that it appears in all referred to structures and define the payoff-set
relative to this enumeration. Note that we have to pay attention to this
only in the case of the weaker GRP, where the underlying set is supposed
to have cardinality at most ℵ2.
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3. Generic large cardinals

Now we shall prove a main result: we can characterize the new principle of
Game Reflection in terms of generic embeddings. The project of axiomatiz-
ing mathematics with the help of generic large cardinals has recently been
pursued by Cummings and Foreman (see [3] and [5]). These mathematical
universes, that we are going to live in while proving Theorems 11,14 and
17, have not been as carefully axiomatized as the respective forcing and
reflection axioms that go along with ¬CH. Examples of known axioms in
this well-studied ’world of ¬CH’ are SRP, SPFA or Woodin’s (*) (see [18]).

Definition 10. We redefine the hierarchy of large cardinals modulo forcing
extensions. The following properties can be true for smaller cardinals as
well. Let κ be a cardinal and Γ a class of posets.

κ is generically weak compact by Γ if whenever the transitive structure
M |= ZFC− is of size κ with κ ∈ M , then there is P ∈ Γ such that the
generic extension V P supports j : M −→ N with cp(j) = κ.

κ is generically supercompact by Γ if for every regular λ there is P ∈ Γ
such that V P supports j : V −→ M with cp(j) = κ, j(κ) > λ and j′′λ ∈ M .

It is usually the case that generic large cardinals have the same consis-
tency strength as their classical counterparts. A famous exception to this
rule has been the notion of generically almost huge though (see [11] and [4]).
But it might not entail such logical strength if a cardinal κ is generically
weak compact, supercompact, etc. by the class of all posets. From now on,
we will restrict Γ to the class of all ω-closed posets. This turns out to have
considerable impact on the combinatorics of the cardinal κ (see Section 4).

We have the well-known fact:

Theorem 11. Let P = Coll(ω1, < κ).

(a) If κ is weakly compact then

V P |= ω2 is generically weak compact by ω-closed forcing.

(b) If κ is supercompact then

V P |= ω2 is generically supercompact by ω-closed forcing.

Proof. (a): Assume that G is P-generic. If in V P, M∗ |= ZFC− is of size κ
and contains κ as an element, choose M |= ZFC− of size κ in the ground
model such that M∗ ⊆ M [G]. This can be accomplished by taking the
Skolem Hull of a big enough set of names. We may assume without restric-
tion that M∗ = M [G]. Now since κ is weakly compact, there is j : M −→ N
with cp(j) = κ. Note that

j(P) = Pj(κ) = Coll(ω1, < j(κ)),
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so we can identify j(P) ∼= P ∗ S, where S = Coll(ω1, [κ, j(κ))). Let H be
S-generic over V [G]. Using Silver’s argument (see Lemma 1), we can extend
j to

j∗ : M [G] −→ N [G ∗H].

This j∗ exists in V j(P) = V P∗S, but S is ω-closed, so we are done.

(b): This is an easy variation of (a). For any λ fix j : V −→ M in the
ground model such that cp(j) = κ and j′′λ ∈ M . Just like before we can
identify j(P) with P ∗S, where S = Coll(ω1, [κ, j(κ))). If G is P-generic over
V and H is S-generic over V [G], Silver’s Lemma will apply again to provide
us with

j∗ : V [G] −→ M [G ∗H].

Of course, j′′λ ∈ M [G ∗H] and S is once more ω-closed. This finishes the
proof. ut

The following Lemma is of considerable import and will be used quite
often later:

Lemma 12. Let cf(κ) > ω. Given that M ≺ Hλ, δ = M ∩ κ is an ordinal
below κ and δ ∈ E where E ∈ M . Then E is stationary in κ.

Proof. By elementarity it is enough to show that E hits every club in M .
So let C ∈ M be club in κ. Then C ∩ δ is unbounded in δ, thus we have
δ ∈ C. This means δ ∈ C ∩ E 6= ∅. ut

Definition 13. Let F ⊆ Xλ, for λ an ordinal and X an arbitrary set. Define
the filter-game G(F):

I f0 f1 . . . fξ fξ+1 . . .
II α0 α1 . . . αξ αξ+1 . . .

where fξ ∈ F , αξ < λ (ξ < ω1). II wins if the set⋂
ξ<γ

f−1
ξ (αξ)

contains at least 2 elements for every γ < ω1.

Theorem 14. The following are equivalent:

(1) GRP
(2) II has a winning strategy in the game G(F) for every F ⊆ ω2ω1 of

cardinality ℵ2.
(3) ω2 is generically weak compact by ω-closed forcing.

Proof. (1) =⇒ (2): let F be any collection of functions from ω2 to ω1 of
size ℵ2 and take an ε-approachable K ≺ Hλ that contains F . We claim that
player II wins the game GK(F): in the ξth move, he chooses αξ = fξ(δ),
the image of the point δ = K ∩ ω2. Since K is closed under countable
sequences by the Remark following Lemma 5, the set

⋂
ξ<γ f−1

ξ (αξ) is in
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K and contains δ for all γ < ω1. So this intersection is stationary in ω2 by
Lemma 12. By GRP, II has a winning strategy for the game G(F).

(2) =⇒ (3): let M |= ZFC− be of size ℵ2 with ω2 ∈ M and define
F = M ∩ ω2ω1. We fix a winning strategy σ for player II in the game G(F).
Now look at the game G(F) in MCol(ω1 ,ω2 ): let I play an enumeration
{fξ : ξ < ω1} of F of order-type ω1. The game proceeds:

I f0 f1 . . . fξ fξ+1 . . .
II α0 α1 . . . αξ αξ+1 . . .

where the αξ’s are played according to σ. Define the M -filter U by letting
U = {f−1

ξ (αξ) : ξ < ω1}. Since σ wins G(F), we are given that U is an ℵ2-
complete ultrafilter with respect to M , i.e. U is closed under ω1-sequences
in M and for every set A ⊆ ω2 in M , either A or its complement is in
U . For non-triviality of U we use the fact that

⋂
ξ<γ f−1

ξ (αξ) contains at
least 2 elements whenever γ < ω1. Hence, we can build the internal generic
ultrapower ω2M/U in M itself.2 Note that this does not depend on the
ultrafilter U being in M .

Claim. ω2M/U is well-founded.

Proof. Assume that there is an infinite descending chain

[f0]U > [f1]U > [f2]U > . . .

of ordinals in ω2M/U . Since our ultrapower is internal, all the witnesses
Ui = {α < ω2 : fi(α) > fi+1(α)} will be in M . But Col(ω1 , ω2 ) is ω-closed,
so 〈Ui : i < ω〉 is in M . By ℵ2-completeness of U for sequences in M , we
conclude

⋂
i<ω Ui ∈ U . Let α ∈

⋂
i<ω Ui, then

f0(α) > f1(α) > f2(α) > . . .

a contradiction. a

With this claim, we get an embedding

j : M −→ N

where N is the transitive collapse of ω2M/U . The fact that j � ω2 = id � ω2

follows from ℵ2-completeness of U . Of course, j(ω2) > ω2 by non-triviality.
(3) =⇒ (1): Let A ⊆ <ω1ω2 and assume that there is a set C ⊆ ω2

which is ω1-club and such that II has a winning strategy in Gα(A) for all
α ∈ C. Let M be the transitive collapse of Sk(A, C, α)α≤ω2 . This M is a
model of ZFC−, contains ω2 and has size ℵ2. Thus, we find an elementary
j : M −→ N with cp(j) = ω2 in some ω-closed extension V P. Let us work
in this extension. We have:

2 Arguments related to the equivalence between complete ultrafilters and el-
ementary embddings are very well understood. For more details the reader is
referred to the standard work [7, §5].
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Claim. ω2 ∈ j(C)

Proof. Note that the following is true:

j′′C = j(C) ∩ ω2. (3.1)

But the set j(C) is closed under sequences of length less than j(ω2), so we
finished. a

Using elementarity, the claim gives that II has a winning strategy for the
game Gω2(j(A)). Now we need the equation:

j′′A = j(A) ∩ <ω1ω2. (3.2)

(3.2) yields that II has a winning strategy for the game Gω2(j′′A) and since
j is the identity on ω2, a winning strategy for Gω2(A) = G(A) follows. It
is still necessary to pull this winning strategy back into the ground model,
but this can be done by Lemma 9. ut

Let us define generically measurable by Γ analogous to Definition 10
and say that κ has this property if there is P ∈ Γ such that V P supports
j : V −→ M with cp(j) = κ. It is possible to drop the restriction on the
size of the algebra F and modify the previous proof. We would be given the
following fact:

Corollary 15. The following are equivalent:

(1) II has a winning strategy in the game G(ω2ω1).
(2) II has a winning strategy in the game G({f ∈ ω2ω2 : f(α) < α}).
(3) ω2 is generically measurable by ω-closed forcing.

Proof. (2) =⇒ (1) is trivial and (1) =⇒ (3) follows the corresponding lines
of the proof of Theorem 14. (3) =⇒ (2) is similar to the proof of Theorem
14 too, so we only sketch it: we describe the winning strategy for player II
in the game G({f ∈ ω2ω2 : f(α) < α}). If in the ξth move player I plays
the regressive fξ : ω2 −→ ω2, look at the regressive function

j(fξ) : j(ω2) −→ j(ω2)

and answer with αξ = j(fξ)(ω2). By elementarity arguments, II is going to
win this play. ut

A very powerful way of constructing a generic embedding is to force with
I+, the collection of all positive sets with respect to some precipitous ideal
I. Laver proved consistent (see [6]) that there be a normal ideal on ω2 that
is σ-dense, i.e. I+ contains a σ-closed dense set. This means, of course, that
I+ is an ω-closed poset, so we have the following:

Corollary 16. If there is a normal σ-dense ideal on ω2 then ω2 is generi-
cally measurable by ω-closed forcing and hence GRP holds. ut
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Theorem 17. The following are equivalent:

(1) GRP+

(2) For every regular λ, II has a winning strategy in the game G(Fλ), where

Fλ = {f : [λ]ω1 −→ λ | f(A) ∈ A for every A in [λ]ω1}.

(3) ω2 is generically supercompact by ω-closed forcing.

Proof. (1) =⇒ (2): let λ be regular. Again, all we need is a winning strategy
for player II in the game GK(Fλ) whenever K ≺ H(2λ)+ is ε-approachable
and Fλ ∈ K. Our strategy is similar: we answer the regressive function
fξ : [λ]ω1 −→ λ with αξ = fξ(K ∩ λ). Such an answer is possible since
αξ ∈ K by regressiveness of fξ. Note that every subset of [λ]ω1 in K is
unbounded if it contains the element K∩λ. This makes our strategy winning
just like in the proof of Theorem 14.

(2) =⇒ (3): we continue in the same fashion as before. By collapsing
|Fλ| to ω1 with the ω-closed poset Col(ω1, |Fλ|), we fix an enumeration
{fξ : ξ < ω1} of Fλ of order-type ω1 in the generic extension. We let player
I play all functions in this enumeration and take into account II’s replies αξ

that make him win. Define the filter U = {f−1
ξ (αξ) : ξ < ω1}, this time on

the underlying set [λ]ω1 . Now U is a V -normal ultrafilter, i.e. normal with
respect to sequences in V . Let us build the generic ultrapower [λ]ω1

V/U in
V , yielding an elementary embedding3

j : V −→ M

where M is the transitive collapse of [λ]ω1
V/U . Note that the argument

for the well-foundedness of [λ]ω1
V/U was already given in Theorem 14. We

check the properties of j: again, j � ω2 = id � ω2 holds by ℵ2-completeness
of U . It is an easily reviewed fact of ultrapower-embeddings with normal
ultrafilters that j′′λ = [id]U , so j′′λ ∈ M is immediate. Finally, notice
that otp([id]U ) < j(ω2) since this inequality holds really everywhere. But
obviously,

λ = otp(j′′λ) = otp([id]U ) < j(ω2).

(3) =⇒ (1): Let A ⊆ <ω1θ and assume that there is an ω1-club C ⊆ [θ]ℵ1

such that II has a winning strategy in GB(A) for all B ∈ C. Choose λ > θℵ1

and an ω-closed partial order P such that in V P there is j : V −→ M with
cp(j) = ω2, j(ω2) > λ and j′′λ ∈ M . Set B = j′′θ ∈ M . From now on we
work in V P.

Claim. The following two equations can be established:

j′′A = j(A) ∩ <ω1B. (3.3)

j′′C = j(C) ∩ [B]ℵ1 . (3.4)

3 Basic facts about supercompact embeddings can be looked up in [7, §22].
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Proof. Consider (3.3): if y ∈ j(A), then y is of the form j(x) if and only if
y ∈ <ω1B. But x ∈ A if and only if y = j(x) ∈ j(A). a

Claim. B ∈ j(C)

Proof. By elementarity we know that j(C) is closed under sequences of
length less than j(ω2). From (3.4) we deduce that j(C) is unbounded in
[B]ℵ1 , so B is the union of a directed system in j(C) and B ∈ j(C) holds. a

By the second claim and elementarity, II wins the game GB(j(A)). By (3.3)
we have that II wins GB(j′′A). But j : θ −→ B is one-to-one, so II wins
Gθ(A) = G(A). All these arguments take place in V P, so this winning
strategy might only live in the generic extension, but we are done by an
application of Lemma 9. ut

Corollary 18. Let P = Coll(ω1, < κ).

(a) If κ is weakly compact then V P |= GRP.
(b) If κ is supercompact then V P |= GRP+.

Proof. By Theorems 11, 14 and 17. ut

4. Applications of GRP

This section is devoted to applications of either GRP or GRP+ respectively.
Some of these implications are already known for quite some time if we take
into account that both of these principles above are reformulations of generic
compactness. We still give their proofs in the language of games.

We want to point out first that in view of the game-representation of
clubs in [ω2]ℵ0 , we can easily see that GRP implies the diagonal reflection
of ω2-many stationary subsets of [ω2]ℵ0 simultaneously:

Proposition 19. Under GRP, for every sequence Eα (α < ω2) of stationary
subsets of [ω2]ℵ0 there is an ε-approachable

M =
⋃
〈Mξ : ξ < ω1〉

such that {ξ < ω1 : Mξ ∩ω2 ∈ Eα} is stationary in ω1 for every α ∈ M ∩ω2.

Proof. We play the following game:

I γ, α0 α1 α2 α3 . . .
II β0 β1 β2 β3 . . .

where γ and αn, βn (n < ω) are ordinals below ω2. We let player II win this
game if

{αn : n < ω} ∪ {βn : n < ω} ∈ Eγ .

Note that player I has no winning strategy in this game, since all Eα’s are
stationary. So there is an ε-approachable M for which he has no winning
strategy. This finishes the proof. ut
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There is an analogous result for GRP+. Simply play in some regular
cardinal θ instead of ω2 and the diagonal reflection for stationary subsets
of [θ]ℵ0 follows.

Now we are going to define a number of games that will be very useful
for further applications of the Game Reflection Principle.

Definition 20. If (P,≤) is a partial ordering, define the cut-and-choose
game Gκ(P) in the following way: the plays of Gκ(P) look like this

Empty p, A0 A1 A2 A3 . . .
Nonempty p0 p1 p2 p3 . . .

where p ∈ P, pn ∈ An (n < ω), A0 is a maximal antichain below p and
An+1 a maximal antichain below pn for n < ω. Furthermore, all maximal
antichains An (n < ω) are of size ≤ κ. Nonempty wins if there is q ∈ P such
that q ≤ pn for every n < ω.

The game G∞(P) is the same game as Gκ(P), except that there is no
restriction on the sizes of the antichains An (n < ω).

We often want to play G-games in Boolean algebras B. We abuse notation
and write Gκ(B) for Gκ(B+) in this case.

The first use of Definition 20 results in a well-known theorem of Gregory.

Proposition 21. GRP implies that ω2-Suslin-trees are essentially σ-closed.

Proof. Assume that T is ω2-Suslin. By results in [16], it is enough to show
that Nonempty has a winning strategy in the game G∞(T ).

Claim. If M is ε-approachable then Nonempty wins the game GM
∞ (T ).

Proof. Let δ = M ∩ ω2. To create his strategy, Nonempty picks any point
x ∈ Tδ. Note that by Suslinity, this point x is generic for M , i.e. the branch
of all predecessors of x hits every maximal antichain in the model. Now it’s
easy for Nonempty to refine Empty’s partitions along this branch and still
remain in the tree. a
This verifies a local winning strategy for Nonempty and we are done by an
application of the Game Reflection Principle. ut

Rado’s conjecture was first proved consistent by Todorčević in [14]. We
will sketch a game-reflection-proof of this combinatorial statement.

Proposition 22. GRP+ implies Rado’s conjecture.

Proof. It’s proved in [14] that Rado’s conjecture is equivalent to the follow-
ing statement: a tree T is the union of countably many antichains if and only
if every subtree of size ℵ1 is the union of countably many antichains. We
finish the proof of this proposition by noting that there is a canonical game
to characterize the notion of being the union of countably many antichains:
player I plays points in the tree and player II answers with rationals. After
ω1-many steps, player II wins if the play determines a strictly increasing
partial map from the tree into the rationals. ut
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Let us turn to cut-and-choose games where antichains are restricted in
size. We are going to see in the next theorem that GRP+ has a strong
influence on the ideal of non-stationary subsets of ω2.

Theorem 23. Under GRP+, Nonempty wins Gℵ1(P(ω2)/NS).

Proof. We investigate the game GM
ℵ1

(P(ω2)/NS) for an ε-approachable M :
it is helpful for Nonempty to consider the ’universal’ club set

CM = ω2 \
⋃

(NS ∩M).

By previous arguments we know that for all E ⊆ ω2 in M :

E ∈ NS+ iff E ∩ CM 6= ∅. (4.1)

Now Empty starts by playing a positive set E and an NS-partition P0 of E
of size ℵ1. It is Nonempty’s strategy to pick γ ∈ E ∩ CM and fix it for the
rest of the game.

Claim. There is E0 ∈ P0 such that γ ∈ E0.

Proof. Assume that there isn’t. In this case γ ∈ E \
⋃

P0. But then E \
⋃

P0

is stationary by (4.1) and disjoint from any member of the partition P0. So
P0 is not maximal, a contradiction. a

Let Nonempty play E0 as an answer to P0. Note that this is possible since
P0 ⊆ M holds by the restricted size of P0. Now Empty plays a partition P1

of E0 of size ℵ1. Nonempty repeats proving the claim for P1 and plays an
E1 as a response and so on. At the end of this game γ ∈

⋂
i<ω Ei will be

true. Since M is closed under countable sequences, we know that
⋂

i<ω Ei

is a member of M and so it is positive, again by (4.1). We have established
a winning strategy for Nonempty in the game GM

ℵ1
(P(ω2)/NS).

From GRP+ we can deduce that Nonempty has a winning strategy for
the game Gℵ1(P(ω2)/NS). ut

The just proved statement is an echo of Corollary 15. But there are
two important differences between the games G(F) and Gκ(P). On the one
hand, Empty’s freedom of choosing the set of ω-cofinal points at the start
of the game complicates things somewhat. On the other hand, the later
considered game has length ω only, so we might have to collapse ω1 in order
to construct a generic ultrafilter in the fashion of Theorems 14 or 17 just
from the conclusion of Theorem 23. Nevertheless, it implies strong Chang’s
conjecture4 heavy-handedly:

Proposition 24. If Nonempty wins Gℵ1(P(ω2)/NS), then strong Chang’s
conjecture holds.

4 Strong Chang’s conjecture was introduced by Shelah in [12]. It is equivalent
to saying that ’Namba forcing is semiproper’. See also [13].
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Proof. We show that for every countable substructure N , we can find an
ordinal γ /∈ N , ω1 < γ < ω2 such that f(γ) ∈ N for all Skolem functions
f : ω2 −→ ω1 ∈ N . We get such a γ by letting player I play all Skolem
functions in N and pick a big enough ordinal in the outcome of this play.
ut

To have a further estimate on the strength of this winning strategy,
we might also quote a result of Silver and Solovay, reproduced in [8, p.249],
that still provides an inner model with a measurable cardinal (see also [16]).
Their proof is actually a precursor of our Theorem 14 and shows that ω2 is
generically measurable by Col(ω, 2ω2).

We want to add that such a result is really optimal within the realm
of cut-and-choose games for this particular algebra since player Empty can
show up with a winning strategy for the more liberal game Gℵ2(P(ω2)/NS):

Theorem 25. Empty wins Gℵ2(P(ω2)/NS).

Proof. In the first move, Empty chooses to play on the ω-cofinals, i.e. he
picks the positive set {α < ω2 : cf(α) = ω}. He goes on to fix increasing
sequences αn (n < ω) for every ω-cofinal α. In the nth move, Empty plays
the partition fn : {α < ω2 : cf(α) = ω} −→ ω2 defined by fn(α) = αn. This
function fn is actually a regressive partition. Note that every regressive
partition contains an NS-partition by an easy application of the Pressing
Down Lemma. Now assume that Nonempty plays the ordinal βn in his nth
move indicating his choice, i.e. the preimage f−1

n (βn). At the end of the day,
the outcome will be⋂

n<ω

f−1
n (βn) = {α < ω2 : fn(α) = βn for all n < ω} =

= {α < ω2 : αn = βn for all n < ω}.

But this set contains at most one element and we finished the proof. ut

Theorems 23 and 25 show that there can be a huge difference between
cut-and-choose games with partitions f : ω2 −→ ω1 on the one hand as op-
posed to regressive partitions f : ω2 −→ ω2. Notice that the exact opposite
was true in Corollary 15.
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