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Abstract 

This paper aims to understand how recent discussion of novel and robust behaviour in physics 

might be applied in biology and other special sciences. In particular, it looks at the prospects 

for extending an account of novel explanation to biological examples. Despite the differences 

in the disciplines, the prospects look good, at least when we look at a biological example in 

which a certain kind of reduction is possible. 

I. Introduction 

The study of intertheoretic relations has been undergoing something of a renaissance in both 

philosophy of physics and philosophy of biology. Both disciplines are moving away from the 

battle lines set in the mid twentieth century; the field is no longer defined by the debate over 

reductionism. The focus has moved instead to features of intertheoretic relations that could be 

present even when the formal relationship between levels is well understood. In the 

philosophy of physics, recent discussions of novel and robust physical behaviour1 have shed 

light on the sense in which physical phenomena can class as autonomous, while in biology, a 

discussion of biological robustness (and, more generally, causal mechanisms) is helping us to 

understand how biological systems maintain their behaviour through underlying change. 

This paper is an attempt by one all-too-biologically-ill-informed philosopher of physics to make 

some connections between these two areas of development. In particular, I’m interested in 

whether an account of novelty as novel explanation offered in two recent papers (Knox 2016; 

Franklin and Knox 2017) might be applicable to biological cases. What follows will look at one 

biological example, and argue that the prospects for extending the account look good, despite 

differences in the nature of the two fields.  

To set the scene, it is worth saying something about how the connection between recent 

literatures in the two disciplines does not work. One way of characterising the discussion of 

novel and robust behaviour in physics is as discussing emergence. Biological robustness may be 

thought of as a type of multiple realisation.2 One might then think that the connection 

between discussions in physics and biology was obvious: if emergence entails the failure of 

reduction, as does multiple realisation, then the two literatures might very well be getting at 

the same thing. But I accept neither of the statements on which this link is premised. 

Emergence in the philosophy of physics is used more in the physicist’s sense than in the 

philosopher’s and is not generally taken to imply the failure of reduction. And there are good 

                                                           
1 Discussion of the importance of novel and robust behaviour originates with Jeremy Butterfield (2011a; 
2011b). 
2 Although we’ll see in section IV that there is reason to at least qualify this claim. 
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reasons enumerated elsewhere3 not to accept the Putnam-Fodor argument from multiple 

realisation to the failure of reduction. 

Instead, the connection between recent work in biology and novelty in physics (or at least, my 

account of it) is more subtle. Biological robustness4 is often a feature of properties that lead to 

interesting explanatory abstractions. And, in many cases, the explanatory value of these 

abstractions is not obvious when the description is translated into the language of some lower 

level science. This explanatory novelty of a higher level science gives us one sense in which 

higher level science might be autonomous of more detailed description even where reductions 

are available.5 

Section II will discuss the idea above as it applies in physics, illustrating the case with a simple 

example – that of normal modes of a simple harmonic oscillator. In this case, a change of 

variables allows new explanatory abstractions. But it’s not immediately obvious that the 

relevant features carry over to biological cases; for one thing, the example given involves laws 

formulated entirely in mathematical language. 

 Section III will discuss a biological example – the characteristic output patterns of the 

stomatogastric ganglion of a lobster (which is a simple neuronal network). Interestingly, this 

example has much in common with the normal modes case, despite being a paradigmatically 

biological system, and one not entirely characterised by mathematical laws. Characteristic 

patterns of the stomatogastric ganglion play a role in explanatory abstractions that may seem 

mysterious at the level of the neurons themselves. 

But one might think that a system like the stomatogastric ganglion exhibits a deeper novelty 

than non-biological systems. This is because biological traits characteristically are said to 

possess a particularly strong form of robustness; biological systems evolve to exhibit certain 

traits even under diverse conditions. Section IV will discuss this robustness alongside related 

ideas in physics, and conclude that it is the same kind of robustness that we find in physics. As 

a result, our two examples are analogous in important respects, and many of the morals drawn 

in physics may well go over to a subject like biology. 

II. Explanatory novelty in physics 

In two recent papers (Knox 2016;  Franklin and Knox 2017), Alex Franklin and I offer an account 

of novelty in physics that claims that one level of description in physics can be novel relative to 

another just as a result of the explanatory abstractions that are made available when we 

change the variables that we use to describe a system. This account of novelty (which I’ll 

explain further shortly) is intended to fill a lacuna in an interesting account of emergence in 

physics offered by Jeremy Butterfield (2011a; 2011b). Butterfield analyses emergent behaviour 

of a system as behaviour that is “novel and robust relative to some comparison 

class”(Butterfield 2011b p.1065), for example, relative to characteristic behaviour at smaller 

                                                           
3 As will become clear, I find the arguments given in (Wilson 1985) particularly persuasive. 
4 For a discussion of biological robustness see (Boone 2016) . What follows here relies heavily for its 
biological ideas on this piece of work, which first introduced me to the stomatogastric ganglion. 
5 Ours is not the only current work focussing on the importance of explanatory abstractions at different 
levels. For an interesting, related, account see (Haug 2011). 
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scales. This account promises to offer an account of the kind of emergence that physicists 

discuss – an emergence that is often explicitly held to be compatible with reduction.6  

This account requires an explanation of the relevant senses of robustness and novelty. 

Butterfield takes robustness to mean the maintenance of some higher level behaviour despite 

perturbations in the lower level description. This phenomenon, which will be discussed in 

detail in section IV, has been relatively well-explained in recent philosophy of physics 

literature. But providing an account of novelty is more difficult, particularly if the kind of 

novelty we seek must be explicitly compatible with reduction. Butterfield and others7 look to 

asymptotic limiting relations between theories to reveal a relevant kind of novelty; in (Franklin 

and Knox 2017), Alex Franklin and I argue that this kind of novelty will not extend to important 

cases.  

Instead, we think many cases are characterised by explanatory novelty that arises when we 

change the variables or quantities with which we describe the system and then perform 

explanatory abstractions based on the new variables. This idea is premised on an account of 

explanation on which abstraction leads to better explanation; it assumes that Peter Railton 

(1981) is wrong when he claims that a perfectly detailed explatory text is ideal. Instead, the 

account at hand builds on numerous contemporary accounts of explanation8 that focus on the 

importance of eliminating irrelevant detail to our explanatory practice. If we accept that 

abstracting away from detail is a central part of offering a good explanation, then a change of 

variables can make available better explanations, because it offers the opportunity for new 

abstractions. Where this happens, the new description has novel explanatory value. 

To see how this kind of novelty might arise, consider a simple physics example (also discussed 

in Franklin and Knox 2017): 

 

Fig. 1: Two masses on springs.  

 

Figure 1 shows two particles of equal mass m oscillating on springs with constants k and k'. 

This system obeys the following equations of motion: 

                                                           
6 I will say more about reduction in section III, but for the time being, I mean something like Nagelian 
reduction (deduction of the higher level theory from a lower level theory) with a relatively liberal notion 
of what can constitute a bridge law. 
7 For example, Bob Batterman (2002a; 2009; 1995; 2010; 2002b; 2005). But much of Batterman’s work 
explicitly endorses anti-reductionism, so the sense in which he thinks higher level theories are novel is 
clear. 
8 For example, those given in (Strevens 2008) and (Batterman 2002b). I intend what follows here to be 
independent of the actual model of explanation offered, as long as whatever model we choose agrees 
on the importance of abstraction. While Strevens offers an account of the importance of abstraction to 
causal explanation, Batterman moves between causal explanations and other kinds. 
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1 1 1 2( )mx kx k x x      (1) 

  
2 2 2 1( )mx kx k x x      (2) 

In order to solve these equations, we change our variables to ‘normal mode variables’: 

 
1 1 2 ,x x     (3) 

 
2 1 2,x x     (4) 

With this change of variables, the equations of motion decouple and become:  

 
1 1m k     (5) 

 
2 2( 2 ) .m k k      (6) 

 These are simple harmonic oscillator equations, and have familiar solutions: 

 1 2 cos( )s s

k
A t

m
     (7) 

 2

2
2 cos( )f f

k k
A t

m
 


    (8) 

With this change of variables we’ve characterised the system in terms of its two modes of 

oscillation, instead of in terms of the displacements of the two masses; one mode corresponds 

to the two masses oscillating in tandem, and the other to oscillation with the masses moving in 

opposite directions. This change makes calculations much easier, but it may also enable us to 

give a better explanation for certain phenomena. 

Suppose we place a light in the central spring that lights whenever the spring is compressed 

beyond a certain point, and set the system going in its second normal mode η2. If we would 

like to explain the frequency of the light flashing, then the first normal mode η1 and its 

associated equation are irrelevant to our explanation – we can explain the phenomenon in 

terms of one equation and a single variable. But any explanation in terms of the original 

variables will involve two variables;9 our simpler and better, abstracted explanation is only 

available after the variable change. It’s precisely because the abstraction at the higher level 

‘cuts across’ the variables at the lower level that it provides explanatory value not available at 

the lower level. 

For those who believe that abstraction leads to better explanations, this should be enough to 

establish that variable changes can come with a change in explanatory value. But we might 

think that the novelty here is relatively weak; we can translate the explanation back to the 

displacement variables, even if the reasons for the choice of a particular presentation of the 

displacement variables isn’t obvious without the normal modes variable change. But if we 

                                                           
9 In fact, without changing the variable, any explanation will also likely involve two equations; it’s only 
the variable change that makes it obvious how we decouple the equations. Of course, once we have the 
decoupled equations in the new variables, we can always translate back into displacement variables. 
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move to a more complex example,10 with many more than two displacement variables, then 

back translations will become less and less illuminating, and, in some cases, where information 

is lost in the variable change, the back translation will not be possible at all. Novelty, perhaps, 

admits of degrees – our normal modes variable change above allows for explanations that 

display a weak kind of novelty, but in more complex examples, a stronger form of novelty may 

emerge. 

If this account is correct, then moves between different levels of description in physics will 

often lead to novel explanations because they will almost always allow for new abstractions. 

But might this kind of novelty also arise in the special sciences? The account so far has been 

highly mathematical, and the changes in descriptive quantities described are changes of 

variable in the precise mathematical sense. It’s not obvious that this account could go over to, 

say, biology, where characteristic quantities and properties are not always connected by 

mathematical relationships. 

That said, explanatory abstractions are just as important in the special sciences as in physics; 

choosing the right quantities and properties with which to describe a system (and omitting 

irrelevant information) is very much the name of the game when describing complex systems. 

So one might expect something like the above to apply outside physics.  

III. An example from biology 

This section will discuss a biological (and neurophysiological) system which has several 

features that are similar to the normal modes example above. The stomatogastric ganglion of 

a lobster is a simple neuronal network that controls the digestive function of the animal. It’s of 

particular interest because, although the neurons themselves are much like neurons in any 

animal (including mammals), the network is simple enough to be straightforwardly modelled 

and understood. This means that it’s not only an interesting example for neuroscientists, but 

also for philosophers interested in understanding how descriptions at the level of individual 

neurons relate to descriptions at the level of network-wide outputs.  

The stomatogastric ganglion is a system of 30 neurons located on the wall of the digestive tract 

of the lobster. It contains two central pattern generators (CPGs): that is, generators of 

characteristic signals that control basic digestive behaviours. The pyloric CPG controls 

peristaltic motions that pass food down the gut. Of interest to us here, however, is the gastric 

CPG, which controls the motion of three internal teeth.11  The gastric CPG typically generates 

two different patterns, which move the teeth in different ways: Type 1 patterns cause the 

three teeth to squeeze together simultaneously and Type 2 patterns cause the two lateral 

teeth to move in opposition to the medial tooth in a cut and grind motion. 

Figure 2 shows recordings of muscle contractions in live lobsters. The gastric mill CPG is 

comprised of 10 motor neurons that stimulate muscles, and just one connecting neuron, so 

muscle contraction is an accurate proxy for groups of neurons firing.12 The top two signals 

show the muscles that contract and retract the two lateral teeth, and the bottom one the 

muscle that retracts the medial tooth. Squeeze chewing happens when the contraction is 

simultaneous, as in B1, and cut and grind when the muscle contraction is out of phase, as in B2. 

                                                           
10 One could, for example, consider the normal modes of vibration in the atoms of a macroscopic crystal, 
with displacement variables on the order of 1026. Franklin and Knox (2017) discusses just this example. 
11 Interestingly, lobsters have teeth located well past what we’d think of as the mouth (the mandibles). 
12 For more on this, and a general overview of the function of the gastric mill, see (Heinzel 1988). 
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Fig. 2: Gastric Mill output patterns as measured in live lobsters. Pattern B1 leads to the 

squeeze mode of chewing, while pattern B2 leads to the cut and grind mode. 

Reproduced with permission from Springer Nature from (Combes, Meyrand, and 

Simmers 2002) p.582. 

 

Just as in our normal modes example above, the two modes of tooth operation are 

characterised by two individual patterns being in or out of phase with one another. And just as 

in the physics example, there are higher level phenomena that are better explained by 

appealing to the mode of operation than to a component level description: if we want to 

explain how lobsters are capable of digesting a particularly tough meal, for example, we might 

want to explain how the meal stimulates the anterior gastric receptor that causes type II CPG 

output.13 There is an obvious similarity, at least superficially, to explaining the flashing light in 

terms of just one normal mode of oscillation in section II. 

 

Ought this similarity of our two examples to lead us to conclude that the gastric mill CPG 

demonstrates the same kind of explanatory novelty exhibited by our normal modes example? 

Ultimately, yes, but one might have doubts; there are important differences too. The most 

important is the obvious one: the kinds of formal change of variables involved in the physics 

example would never be made explicit here. Indeed, despite the relatively quantitative 

description of CPG output patterns via diagrams like those in Figure 2, one wouldn’t tend to 

characterise the two output patterns via variables at all. A typical discussion would appeal to 

general features of the patterns rather than a new class of variable and its governing 

equations. 

 

Why might this difference, the lack of a complete quantitative analysis at the CPG level, be 

important here? In the normal modes example, the availability of a reduction was not in 

question: we can think of equations 3 and 4 as expressing bridge laws in the full Nagelian 

sense. What follows thereafter is simple deduction.14 The particular kind of explanatory 

novelty in that example was one that was not only compatible with reduction but required a 

                                                           
13 In the interests of full disclosure, I should note that I haven’t been able to find information about 
exactly what kind of meal triggers type II chewing; it’s an oddity of this particular field (one which tells 
us something about the particular reductive aims of the field) that studies of lobster chewing are much 
more tightly focussed on modelling neuronal systems than they are on lobster behaviour itself. 
14 The only objection to seeing the normal modes case as a case of reduction would be that the two 
descriptions are too closely connected to count as distinct theoretical levels at all. But the point here is 
that novel explanations can be provided even by such closely related descriptions.  
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mathematical relationship between higher and lower level variables. Without a mathematical 

characterisation of the CPG, perhaps we should doubt that the gastric CPG is really reducible 

to a description in terms of individual neurons. 

 

Needless to say, whether we classify the gastric CPG description above as reducible will 

depend on our definition of reduction. If we mean full Nagelian reduction – the kind of 

deduction with the aid of bridge laws that we had in the normal modes case – then we may 

question whether a reduction exists here, at least in practice. One might think that patterns B1 

and B2 in Fig. 2 are not always characterised in sufficiently explicit mathematical terms to make 

a deduction available (even before we worry about whether the bridging principles used in the 

deduction meet whatever requirements we have of bridge laws).  

 

But actual practice in this field belies this view of the CPG’s reducibility. Why do 

neurophysiologists who would otherwise not be interested in lobsters (except on a restaurant 

menu) study the stomatogastric ganglion? They do this precisely because the relationship 

between theoretical levels here is close: we have a very good understanding of how the action 

of individual neurons contributes to the production of the overall pattern; the study of the 

stomatogastric ganglion often involves measuring the activity of individual neurons and 

modelling the whole system as a circuit, and this modelling is very successful indeed. We then 

characterise the relevant CPG patterns in terms of neuronal activity. 

 

Now, of course, we don’t usually write down a set of CPG variables that can be described as a 

function of underlying neuronal variables. Instead, studies describe CPG outputs in largely 

qualitative terms; the patterns of Fig. 2 are most easily described by relative burst orders, 

rather than more formally. But it would be strange to think that finding appropriate variables is 

impossible in principle;15 synchronicity and order of a pattern are easily mathematized if we 

allow ourselves some approximation. One can classify the outputs of each neuronal burst via 

variables that take simple binary on-off values, and then describe the relevant patterns via 

relative sequences of these values. It’s certainly a simple matter to deduce the CPG pattern 

from basic information about the neuronal bursts. It’s also a simple matter to characterise the 

neuronal bursts in terms of aggregate actions of the group of neurons; there is no mystery 

here as to how the CPG output relates to activity at the level of neurons. Likewise, the 

relationship between neural and output is understood. When studies such as Prinz et al. (2004) 

use computer modelling to predict CPG output patterns based on precise input values, it’s 

exactly this feature that they’re exploiting. The study in question ran 20,250,000 simulations of 

neural network behaviour and classified these as corresponding to different CPG modes. 

Although the method of classification isn’t listed, it certainly wasn’t manual! Programming a 

                                                           
15 In a 1985 paper that has received less attention than it deserves, Mark Wilson criticises anti-

reductive arguments, in part, because they underestimate our ability to find appropriately 

defined physical variables for any property of interest. Physics, Wilson points out, has been far 

more inventive in coming up with appropriate variables than bad philosophical examples (like 

temperature as mean kinetic energy) would have us believe. With access to a full 

mathematical toolbox, it’s possible to find a variable that helps to carve the space of states in 

any way that we desire. 
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computer to simulate the network and recognise the relevant patterns in the data requires 

characterising the neural output in the kind of quantitative way outlined above. 

 

Should we then say that a reduction is possible? If one means Nagelian reduction, this will 

depend on the restrictions that we put on our bridge laws. However we cash out the exact 

characterization of the CPG pattern, these patterns will be realised by many values of the 

neuronal inputs. Some conceptions of reduction will exclude deductions using these bridging 

principles because the principles involve problematic multiple realisability.  

 

I don’t plan to rehash the literature on multiple realisation here. For what it’s worth, the above 

view strikes me as close to a reductio of a certain view of reduction; we can easily model all 

aspects of the CPG pattern, and we have a clear understanding of every step in the move from 

neuronal description to output pattern. If this doesn’t count as a reduction, then reduction in 

the philosopher’s sense has shifted too far from its usage in the scientific community. Much 

better instead to accept that multiple realisability, at least of this kind, is compatible with 

reduction. 

 

But, as it happens, my arguments do not turn on the details of Nagelian reduction; although I’ll 

refer to reduction in what follows, advocates of a strong Nagelian account may substitute a 

weaker term of their choice. Reduction was of interest to us here because obvious failures of 

reduction would lead to obvious cases of novelty; where one descriptive level is unrelated to 

another, it can be counted as novel without the need for the kind of account of explanatory 

novelty given here. But the relation between neuron firings and CPG outputs here leave no 

room for this strong kind of novelty; whether or not we call the relationship between levels a 

reductive one, it’s sufficiently well understood that only a weaker notion of novelty can apply 

here.  

 

So let us suppose then that, in principle, the CPG patterns can be characterised in terms of 

variables that are some complex, approximated function of the lower level variables. In this 

case, what’s going on here in terms of explanation looks much like the normal modes case. 

When we appeal to just the type 2 pattern, we are abstracting away from the variable 

associated with the type 1 pattern, and by doing so we produce a better explanation. Thus, if 

the normal modes example involves novel explanation, this one does as well. 

 

All of this is not to say that the significant difference between a biological example and a very 

simple physical one are not important here – far from it. For one thing, even with a very simple 

network of 11 neurons, this example is hugely more complex than the masses on springs. For 

another, any relation between variables will involve approximation and idealization to a 

greater extent than the masses on springs. But both of these features make the novelty in 

question stronger, because they make the value of the choice of explanatory information at 

the CPG level even less obvious from the neuronal level.16 

 

Thus far, I have said little about robustness – it will be the topic of the next section. But, before 

we move on to the topic, I’d like to clarify a difference between two ways in which descriptions 

                                                           
16 The idea here is that the choice of explanatory information can be non-obvious from the fundamental 
level even when the relationship between levels is well understood. This is the lesson of the normal 
modes example: when we focus on the description at the level of the two displacement variables, the 
interest and importance of the normal modes variables is not apparent. 
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at different levels might be related (two different characteristics that inter-level bridge laws 

can have, if you will). These will turn out not just to be relevant to the discussion here, but also 

to the issue of robustness.  

First, we might change our description simply by changing the level of detail that we’re 

interested in. This kind of relationship between quantities involves abstracting away from 

detail during the quantity change itself (not just afterwards via cross-cutting abstractions). We 

would not ordinarily call the description that results from this process alone novel – the kind of 

‘zooming out’ that happens here seems to be a paradigm of classic, simple reduction. 

Second, quantities can be related via a change of variables as expressed in equations 3 and 4. 

In this kind of case, the system could be characterised by the same number of variables at one 

level that it is at the other, and there might be no loss of detail, or abstraction, when we move 

from one class of variables to the other. But this kind of variable change does allow for novel 

explanatory value of one level relative to another if we then perform explanatory abstractions 

based on the new variables – it is just this kind of variable change that leads to ‘cross-cutting’ 

abstractions. 

Unlike our normal modes example, most changes in descriptive quantity involve both kinds of 

relationship. For example, when we move from a description in terms of the individual 

molecules of an ideal gas to one in terms of temperature, we must both zoom out 

(temperature is only theoretically useful on relatively long length scales), and take a function 

of the underlying variables (in this case, the mean).   Our gastric mill CPG example is no 

exception; a large number of neuronal variables feed into just two modes of operation at our 

(simplified) CPG level, so the number of variables needed to characterise the system will drop 

dramatically. At the same time, mere coarse-graining won’t work if we’re interested in 

characterising the CPG output patterns.  

 

IV. Robustness 

 

The last two sections aimed to establish that, even if the CPG pattern is reducible to the 

neuronal description, there is still a sense in which it is novel: it allows for novel explanatory 

abstractions and thus leads to novel explanatory value. But might this vastly understate the 

novelty involved in a case like this? Here, robustness enters the scene. One variable is robust 

relative to some class of lower level variables when that variable remains invariant, or 

unchanged, over a range of changes to lower level variables. There has been much recent 

discussion of ‘biological robustness’. If this means something much stronger than robustness in 

the physics literature, we might suppose our biological example to involve considerably more 

novelty than our simple physics example. 

 

I’ll argue here that, for the purposes at hand, biological robustness is much like robustness in 

physics. Let’s start with the philosophy of physics literature. As noted earlier, Jeremy 

Butterfield proposes a definition of emergence as novel and robust behaviour, and holds that 

such behaviour can exist even where reduction is possible. Leaving aside the issue of whether 

emergence is the right term for this (it’s certainly weaker than other definitions), let’s agree 

that the existence of novel and robust behaviour would be of independent interest. What is 

meant by robustness here? I’ll take a higher level phenomenon to be robust just in case it 

survives perturbations of lower level variables. But we should be careful here: there are two 

kinds of perturbation we might consider. 
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First, we might consider perturbations of (small changes to) lower level variables while holding 

other lower level variables fixed. That is, all other things being equal, the value of some higher 

level variable and the phenomenon it underpins only cares about the approximate value of a 

lower level variable, and not its exact value. Robustness under this kind of perturbation will be 

seen when our descriptions at different levels are connected by a change in the level of detail 

captured. If we get to a higher level description precisely by washing out details at the lower 

level, the higher level variables will generically be invariant under perturbations of this lower 

level detail. 

 

But we might also consider perturbations of lower level variables while permitting changes in 

other lower level variables. In this case, the change to one variable is compensated for by the 

change in other variables. If we look at the normal modes variable η2 in equation 4, it’s 

obviously possible to compensate for any change to x1 with a change to x2. This possibility is a 

generic feature of functions of more than one variable, although whether the higher level 

variable’s invariance under this kind of perturbation is relevant and useful will depend on the 

details of the case. 

This is not all there is to be said about invariance in physics; it may well be, for example, that 

taking the limit of some function as a parameter tends to infinity (as we do when we take the 

thermodynamic limit), yields a particularly strong form of robustness. But this is enough to be 

getting on with for the biological discussion at hand. 

So let us turn to biology. Biological robustness is of considerable interest to both biologists and 

philosophers. In a  2004 paper in Nature, Hiroaki Kitano defines robustness as “a property that 

allows a system to maintain its functions despite internal and external perturbations”. Aside 

from the characteristically biological mention of ‘function’ (which I take it tells us something 

about the kinds of variable that biology is interested in), this sounds much like the physics 

definition. But, quite plausibly, biological systems are said to evolve to exhibit particularly 

strong forms of robustness – their function can often be maintained over a remarkable range 

of perturbations. 

In the philosophy of biology literature, this talk of robustness has fed into debates on causal 

mechanisms in interesting ways. An interesting paper by Trey Boone (2016) claims that 

biological robustness is multiple realisation by another name, and that the stomatogastric 

ganglion of the lobster exhibits this multiple realisation.  

I find little to argue with in Boone’s paper itself. Its aim is to build on work by Larry Shapiro 

(2000) and reframe multiple realisation as a phenomenon relevant to causal explanation, 

rather than as one directly relevant to Nagelian reduction. For Boone, the fact that some 

phenomenon is multiply realised tells us something about causal structure at different levels; 

multiple realisation describes those cases in which a particular function can be realised by 

more than one causal mechanism. Much of this is very congenial to what I have to say here; 

my account depends on the idea that explanatory dependencies at different levels need not 

align, and the causal mechanisms literature is entirely compatible with this idea. But Boone 

also builds on literature in biology that sees biological robustness as uniquely strong, and 

presents a link between biological robustness and multiple realisability. This might suggest that 

our gastric mill CPG example differs in important respects from the normal modes example 

above. 
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To get a handle on exactly what is meant by biological robustness, let’s look again at the 

stomatogastric ganglion. In a 2004 paper discussed by Boone, Prinz, Marder and Bucher 

examine the robustness of the stomatogastric ganglion’s pyloric CPG output under 

perturbations of underlying neuronal variables like synaptic strength. Via computer modelling, 

they conclude that the output of the CPG is maintained under a vast array of very diverse 

variable values. Moreover, they note that for more or less any given value of an underlying 

variable, there is a way to tune the other variables such that the pattern is maintained. 

Assuming that their modelling reflects the behaviour of real neuronal systems, this suggests 

that systems like the stomatogastric ganglion exhibit a strong breed of robustness. 

Some caution is needed here, because the 2004 paper concerns only the pyloric CPG (and, 

indeed, a simplified model of the pyloric CPG), and I am not aware of similar work for the 

gastric mill CPG. But let us assume that the result carries over to the gastric mill CPG in real (as 

opposed to computer-modelled) lobsters. Do we have here a relevant disanalogy with the 

physics case? Does this system demonstrate a form of biological robustness that prevents us 

thinking about the relationship between higher and lower level variables in much the same 

way that we do in physics? 

No. The fact that output can be maintained over a large range of lower-level perturbations is 

exactly what we’d expect if higher level variables exist that are expressible as a function of 

multiple lower level variables. The perturbations involved are our second kind of perturbation 

above – ones where we allow other variables to change in dynamically permitted ways. There 

is nothing about this particular feature of biological robustness that cannot be captured by our 

account for physical variables. Of course, in the absence of a more precise account of the 

relationship between biological variables, this argument is suggestive rather than conclusive, 

but the point here is that the feature of biological systems displayed here – invariance of 

higher level qualities under perturbations of the second kind – does not force a new kind of 

novelty on us. 

That is not to say there is nothing special about biological systems with respect to robustness. 

All of this is entirely compatible with the idea that biological systems evolve to display strong 

robustness; it is quite likely that they evolve so that important higher level variables are given 

by functions of lower level variables that are invariant under relevant changes. It’s just that 

this robustness isn’t different in kind to that displayed by physical systems. 

 

V. Conclusions 

The upshot of all of this is that the kind of analysis of novel and robust behaviour that I have 

offered elsewhere for physics goes over rather well to this particular biological example. 

Plausibly, the relationship between CPG and neuronal variables, if formalised, would show us 

that CPG level explanations involve the kind of cross-cutting abstraction that we see in physics 

examples. Aside from the lack of an explicit formulation of this relationship, the distinctively 

biological features of the system don’t impact the analogy. 

If the analogy does go through, there is at least one biological system whose higher level 

description is novel and robust relative to a cell-by-cell description despite being reducible to 

it. And in this case the novelty is explanatory novelty; explanations given at the higher level will 

rely on abstractions that look unnatural from the lower level. Another way of saying this is that 

within the lower level description, relevance relations will not track natural distinctions 

between variables. 
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What this offers us is an understanding of novelty even where varia bles are related in such a 

way that stronger novelty or autonomy might seem impossible. It does not tell us why some 

variables definable in the lower level are particularly interesting, nor why some explanatory 

questions are particularly important. A full understanding of scientific levels requires more 

work on both these questions.17 Nonetheless, it is helpful to see that novelty and reduction (or 

something like it) need not be in tension in this biological context. 

What should this lead us to say about the special sciences more generally? My example is 

obviously cherry-picked; it’s no coincidence that I chose a system that exhibits two 

characteristic patterns of output much like the normal modes case. But that similarity was 

merely to make the connection easier to see. What’s really important about this example is 

the obvious connection between the CPG pattern to underlying variables; it means that the 

idea of a formalisable relation between higher and lower level variables is plausible. 

How far might we wish to extend the conclusions? CPGs govern rhythmic movements in 

general, including quite complex ones like a horse’s gaits. For these more complex systems, 

the only currently available explanations take place at the CPG level, rather than the neuronal 

level. But it’s hard to see why mere complexity should affect the in principle, rather than in 

practice, availability of a reductive relation between variables. And perhaps what goes for 

CPGs in simple neural systems like the spine also goes for brains – who knows? 

I am optimistic about the prospects for reduction, at least if we acknowledge that it’s a messy, 

approximative and piecemeal affair. But my aim here is not to argue for reductionism. It is, 

rather, to argue that higher level descriptions may possess explanatory novelty even where 

reduction is possible and available. And that lesson, at least, does seem to transfer from 

physics to the special sciences. 
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