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In which respects do modeling and experimenting resemble or differ from each
other? We explore this question through studying in detail the combinatorial
strategy in synthetic biology whereby scientists triangulate experimentation on
model organisms, mathematical modeling, and synthetic modeling. We argue that
this combinatorial strategy is due to the characteristic constraints of the three
epistemic activities. Moreover, our case study shows that in some cases materiality
clearly matters, in fact it provides the very rationale of synthetic modeling. We will
show how the materialities of the different kinds of models - biological components
versus mathematical symbols - in combination with their different structures - the
complexity of biological organisms versus the isolated network structure and its
mathematical dynamics - define the spectrum of epistemic possibilities in synthetic
biology. Furthermore, our case shows that from the perspective of scientific practice
the question of whether or not simulations are like or unlike experiments is often
beside the point, since they are used to accomplish different kinds of things.

1. Introduction

In philosophical discussion models have been located between theories and
experiments, often as some sort of go-betweens facilitating the points of contact
between the two. Although the relationship between models and theories may seem
closer than the one between models and experimentation - and has also
traditionally been conceived so - there is a growing body of literature that focuses
on the similarities and differences between modeling and experimentation. The
central questions of this discussion have concerned the features shared by modeling

and experimenting as well as the ways in which the inferences licensed by them are



justified. While this discussion has certainly proven enlightening in many respects,
we think that the focus on the epistemological, methodological or other similarities
and dissimilarities between models and experiments has partly served to conceal
the different roles they play in scientific inquiry. Although it is not always so easy to
tell modeling and experimentation apart, they can still be conceived as different
kinds of epistemic activities that occupy different places in actual scientific practice.
Moreover, they are typically used to inform each other in cases where the results of
both activities are available.

In this paper we will study the different stands taken in the discussion on the
modeling and experimentation through examining the modeling practice in the
circadian clock research in synthetic biology. The circadian clock research studies
the day and night rhythms of organisms. In this area experiments on model
organisms, mathematical models (and their simulations), and synthetic models are
being closely triangulated. Apart from that the circadian clock research provides
also an interesting sight to study the interplay and characteristics of the three
epistemic practices since there is no division of labor in synthetic biology: The same
scientists typically engage in experimentation as well as in mathematical and
synthetic modeling. Consequently, one might expect that there are good reasons for
why synthetic biologists proceed in such a combinatorial manner. We will argue that
this is due both to the characteristic constraints of each of the aforementioned
activities, and to the uncertainty concerning the underlying theoretical framework.

Targeting the constraints of the three different epistemic activities,
experimentation on model organisms and mathematical and synthetic modeling,
provides also a novel perspective to the materiality issue. We will show how the
respective constraints of the modeling approach and the experimentation gave rise
to a new type of model, a synthetic model that was built from genetic material using

a mathematical model as a blueprint. As an example of such a synthetic model we



will examine closer the Repressilator, which was one of the first models of its kind. !
In the case of the Repressilator the “same stuff” was clearly relevant for the
epistemic results sought for, but only in combination with a carefully engineered

mechanism.

2. Modeling vs. experimentation

The discussion on the relationship of modeling and experimentation has
concentrated on which grounds, if any, can the two activities be clearly
distinguished from each other, and whether the inferences back to real target
systems are more direct in the case of experimentation than in modeling. As regards
the similarity between modeling and experimentation, there are many ways to cash
it out. One way is to consider them as largely analogous operations. The idea is that
both in modeling and in experimentation one aims to seal off the influence of other
causal factors in order to study how a causal factor operates on its own. Whereas in
experimentation this sealing off happens through experimental controls, modelers
use various techniques, such as abstraction, idealization and omission as vehicles of
isolation (see e.g. Cartwright 1999, Maki 2005). Consequently, a theoretical model
can be considered as an outcome of the method of isolation, in which a set of
elements is theoretically removed from the influence of other elements through the
use of a variety of unrealistic assumptions (Maki 1992).

Although the idea of seeing both experimentation and modeling as instances of
the method of isolation seems intuitively plausible, one specific property of
mathematical modeling does not easily fit this view. Idealizing assumptions are
often driven by the requirements of tractability rather than by those of isolation.
The model assumptions do not merely neutralize the effect of the other causal

factors but rather construct the modeled situation in such a way that that it can be

1 Our study of the Repressilator is based on an extensive lab study which one of us conducted
following and analyzing the modeling practice in a synthetic biology laboratory at the California

Institute of Technology (Loettgers 2009).



conveniently mathematically modeled making it often unclear which assumptions
are crucial for the results, or whether the results are dependent on the model as a
whole (i.e. on the specific mathematical construction of the model and the
abstractions used, see e.g. Cartwright 1999, Morrison 2008, Knuuttila 2009). This
feature of mathematical models is further enhanced by their use of cross-
disciplinary computational templates that are in the modeling process adjusted to fit
the field of application (for computational templates, see Humphreys 2002, 2004,
Knuuttila and Loettgers forthcoming). Such templates are often transferred from
other disciplines, as is also the case in the circadian clock research, where many
models, formal methods and related concepts originate from physics and
engineering (e.g. the concepts of oscillator, non-conservative system, feedback
mechanism, noise - see below). There are also reasons to doubt whether the
method of isolation really describes the actual modeling heuristic since often
models seem to depict hypothetical systems rather than being abstracted from real
world systems (Weisberg 2007).

Even if one does not want to ascribe to the idea that models are results of
isolation, this insight implies another important respect in which modeling and
experimentation might resemble another. In experimentation some real world
system is intervened on. Likewise in modeling one intervenes on the model system,
although in this context one usually talks about the manipulation of a model
(Morgan 2003). If one characterizes experiments on the basis of an intervention on
some specific system without requiring that the system in question would be the
real world target system scientists are primarily interested in, it is easy to see how
also models can qualify as experiments. Writing about simulations Parker (2009)
makes this move, although she specifies that it is the computer simulation studies
that meet the criteria of experiments.2 In computer simulation studies the concrete
system intervened on is the programmed digital computer. In her analysis,

moreover, targets multiply: the target can as well be the real world

2 Parker defines simulations as a “type of representation” - “a time-ordered sequence of states”
(2009). Consequently, also experiments may serve as simulations. This definition leaves out one
important class of simulations, Monte Carlo simulations, as Winsberg (2009) points out.



material /physical system (for which also the computer qualifies) or the
mathematical system specified by the theoretical model equations or their off-
spring, the programmed equations.

As regards the programmed equations, the recent discussants have stressed
that their relationship to the basic theoretical model underlying the simulation
model is anything but straightforward (e.g. Winsberg 2003, Lenhard 2007,
Barberousse et al. 2009, Parker 2009). The differential equations of the theoretical
model are discretized which involves various processes of manipulation,
simplification and alteration involving also “tricks of trade”. Lenhard (2007)
discusses one such trick, “Arakawa’s computational trick” in atmospheric modeling.
Arakawa (1966) dispensed the search for any “true” solution to the primitive
theoretical equations using instead the so-called Arakawa operator, which involved
some problematic assumptions that could not be justified theoretically. Importantly,
he artificially limited the growth of the instability of the modeled atmosphere by
assuming that the kinetic energy is preserved, which is not the case since kinetic
energy is transformed into heat by friction. Although this trick was initially
criticized on these grounds it nevertheless became later accepted as it successfully
imitated the flow patterns in atmosphere. This shows, according to Lenhard, that the
“explorative cooperation” between experimenting and modeling is a basic
characteristic of simulation: the model adjustment and tuning is driven by the
comparison of its consequences and properties directly to the data or phenomena in
a repeated recursive process.

Of course, not all simulation models involve the discretization of an original
intractable differential model, although this is the case that has acquired most
attention by the philosophers of science so far. Fox Keller (2003) argues that such
simulation methods as cellular automata, that involve the construction of models of
phenomena for which no general theory yet exists, are simulations par excellence.
They create “artificial universes” giving rise to a new scientific spirit aimed at
producing recognizable patterns and interesting behavior in these alternative
“realities”. Note that that this kind of scientific activity draws modeling nearer to

experimentation in that the system of interest (or target system) becomes more



clearly the artificial universe itself. Thus the simulation model functions less like a
representation of the behavior of some external target. This sort of simulation
modeling makes even more apparent the peculiar kind of scientific understanding
that is gained by simulation modeling. Lenhard (2006) suggests that simulation
methods produce “understanding by control” which is geared towards design rules
and predictions. Whereas in traditional modeling one manipulates highly idealized
model systems, in simulation one gains understanding through experimenting with
more epistemically opaque model. This provides an interesting analogy between
simulations and experiments on model organisms: In both of them one tries through
control to overcome the complexity barrier. However, living organisms is radically
more complex than simulation models. Synthetic modeling, as we will argue below,
provides another strategy deal with the complex systems.

Already on the grounds mentioned above it is not difficult to see why especially
simulation modeling has been likened to experimentation. Further features of
simulation models that seem crucial from this perspective are related to the issues
of data and materiality. One motivation for claiming that the practices of modeling
and experimentation are similar to each other invokes the fact that both
simulationists and experimentalists produce data and are dealing with data analysis
and error management. Winsberg (2003) suggests that the techniques
simulationists use to augment their belief in their results resemble those presented
by Franklin (1986) in the context of experimentation. The kinds of data produced by
simulationists and experimentalists are obviously different (see Barberousse et al.
2009), and further study is needed to see to whether the similarities between the
practices of the simulationists and the experimentalists are more than superficial in
this respect.

Some appeals to the similarity of simulations to experiments are related to their
physicality or materiality. Obviously, analog simulations involving for example the
use of scale models or other specially designed physical artifacts qualify as material
things. What about computer simulations - are they non-material things as Morgan
(2003) suggests? Most philosophers of science seem to agree that the fact that

computer simulations are implemented on a material concrete device and involve



thus physical processes when run on it, gives them a material status (see e.g.
Humphreys 1994, Hughes 1999, Barberousse et al. 2009, Parker 2009). However,
the opinion is divided as to what epistemic role does this materiality play. More
specifically, what role does the materiality play in simulations in justifying the
inferences concerning the target systems?

The answer given by Norton and Suppe (2001) seems most straightforward.
They take it for granted that the materiality of simulations likens them to
experimentation. The challenge is then to show, how this can be the case given that
computer simulations and their real world target systems are very different kinds of
things. According Norton and Suppe simulations “embed” data models in
programmed computers through “lumped models”: A simulation model is a lumped
model embedded into a programmed computer. Since programmed computers are
real systems, observations of them can give “new knowledge of the world” precisely
as experiments do. However, for these observations to give knowledge of the real
world target systems the simulation is supposedly mimicking, some rather stringent
mapping relations have to hold between the model of the data/ the modeled
physical system itself, the lumped model, and the programmed computer. The
question is whether these mappings really hold in practice. Barberousse et al.
(2009) argue that in most simulations the computer’s physical states cannot be said
to realize the lumped model, that is, the lumped model and the programmed
computer qua physical system need not share common structure. This seems to pull
the rug from under the idea that “the computation’s being a physical process itself
should explain the ‘mimicry’ relation "between simulation and its real world target”
(ibid., 566).

Indeed, the right kind of materiality has been claimed to be the distinguishing
mark of experiments and even the reason for their epistemic superiority to
simulations. Either it has been claimed that computer simulations are non-material
(Morgan 2003), or that the relationship between a simulation and its target is
abstract, whereas the relationship between an experimental system and its target is
grounded in the same material being governed by same kinds of causes (Guala

2002). The crucial difference between modeling and experimentation, according to



this view, is that whereas in simulation one experiments with a representation of
the target system, in experimentation the experimental and target systems are made
of the “same stuff”. This difference also explains, according to Morgan and Guala,
why experiments have more epistemic leverage than simulations. Morgan points
out, for instance, that the anomalous experimental findings are more likely to incur
change in our theoretical commitments than unexpected model results.

Despite the intuitive appeal of the importance of the “same” materiality, it has
been contested on different grounds. Morrison (2009) points out that even in the
experimental contexts the causal connection with the physical systems of interest is
often established via models. Consequently, according to her, materiality provides
no unequivocal epistemic standard that distinguishes simulation outputs from
experimental results. Parker (2009) attacks directly the alleged significance of the
“same stuff”. She interprets the “same stuff” meaning for instance the same fluid and
points out that in traditional laboratory experiments on fluid phenomena many
other things such as the depth of the fluid and the size, shape, roughness and the
movement of any container holding it may matter. This leads her to claim that
it is the “relevant similarities” that matter for the justified inferences about the
external phenomena.

We think that Parker takes Guala and Morgan too literally, since their
conception of the “same stuff” includes, apart from the same material literally
understood, also same forms and causal make-up (e.g. Morgan 2005, 32; Guala
2002). Parker grants, though, that in cases in which “scientists as yet know very
little about a target system their best strategy may well be to experiment on a

2

system made of same stuff” because it can be expected to be similar to the target
system in relevant respects (2009, 494). Somehow, then, her argument seems to
rest on the distinction between discovery and justification. It is as if the ways in
which we came to know something had no bearing on how this knowledge is
justified. More problematically, still, Parker’s account seem to fall prey to the
perspective of finished science. How often do we know the relevant similarities, and

how do we know them? In what follows we will study this question through the

practice of synthetic modeling, which is precisely based on the idea that the right



kind of materiality (covering also the causal interactions) matter. The case also
shows that although modeling and experimentation share some common features,
from the perspective of scientific practice they nevertheless are considered as
separate practices with different constraints. This in turn explains why they are

often, in cases in which this is possible, triangulated with each other.

3. Combinatorial strategy in synthetic biology

Synthetic biology is a relatively novel and highly interdisciplinary field. It is located
at the interface of engineering, physics, biology, chemistry and mathematics. The
research practice in this field is a combination of methods, concepts, tools, and
theories from those fields. In synthetic biology itself one can distinguish between
two different main research branches: an engineering oriented branch focusing on
the engineering of novel biological components/ systems and a basic science
oriented branch using synthetic models to gain understanding on the basic design
principles underlying specific biological functions, such as the circadian clock
regulating day and night rhythms in organisms.

In our study we are focusing on the later branch of synthetic biology. One of the
defining strategies of this approach is the combinatorial use of mathematical
models, model organisms, and synthetic models. The upper part of a diagram (Fig.
1), taken from a review by Sprinzak and Elowitz (2005) on synthetic biology, shows
the basic idea of this combinatorial modeling strategy. The two authors call this
approach “the synthetic biology paradigm”. As the diagram suggests, the results
gained from each of the three different epistemic activities inform the other ones.
From the point of view of a researcher this is a very demanding task. She has to have
the skills and experience to use mathematical models, to perform experiments in
molecular biology lab and to know the techniques of genetic engineering.
Consequently, the researcher herself has to possess a high degree of

interdisciplinary knowledge and skills.
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Figure 1. The diagram is taken from a review article by Elowitz and Sprinzak (Elowitz &
Sprinzak 2005). The upper part of the diagram depicts the combinatorial modeling strategy,
which the two authors call the “synthetic biology paradigm”. The lower part compares a
natural gene regulatory network and a synthetic one.

Why do researches make use of a combinatorial modeling strategy in studying
the organizational principles in biology? A first clue can be found from the lower
part (b) of the diagram. The left hand side of the diagram shows the “natural gene
regulatory circuit” of the circadian clock in Drosophila consisting out of interacting
genes and proteins and the right hand side a synthetic model of the circadian clock,
the Repressilator, introduced by Elowitz and Leibler (2000). The diagram shows that

the two main differences between the natural and the synthetic system are:

1. The natural system exhibits a much higher degree of complexity than the
synthetic system.
2. The synthetic circuit has been designed by using different genes and

proteins.
Consequently, synthetic models have the advantage of being less complex than

model organisms. On the hand, in comparison with mathematical models they are of

the same materiality as biological systems (although the Repressilator was
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constructed from different genetic material than the naturally occurring circadian
clocks, we will return to this below). This fact of being of the same materiality as
natural systems is crucial for the epistemic value of synthetic modeling. It means
that synthetic models are expected to work in the same way as biological systems.
The synthetic strategy rose as a response to the constraints of the mathematical
modeling and the experimentation with model organisms. There seemed to remain
a gap between what could be found experimentally and studied mathematically: the
experiments could not give any conclusive answer for whether the hypothetical
mechanisms that were suggested by mathematical models were in fact realized by
biological systems. In what follows we will discuss in more detail the specific

constraints of each of the three epistemic activities.

3.1 Mathematical modeling

One of the most influential mathematical models of circadian rhythms was
introduced by Brain Goodwin in his book Temporal Organization in Cells (1966).
This book is an example of an attempt to apply concepts from engineering and
physics to biology. Inspired by Jacob and Monod’s (1961) operon model of gene
regulation Goodwin explored the mechanism underlying the temporal organization
in biological systems such as circadian rhythms, in terms of a negative feedback
mechanism. Another source of inspiration for him was the work of the physicist
Edward Kerner (1957). Kerner had tried to formulate a statistical mechanics for the
Lotka-Volterra model, which prompted Goodwin also to attempt to introduce
statistical mechanics for biological systems. These aims presented partly competing
constraints on the design of Goodwin’s model, which both shaped its actual
formulation and the way it was supposed to be interpreted. A third constraint was
due to the limitations of the mathematical tools for dealing with non-linear
dynamics. These three constraints are of different character. The first constraint
was largely conceptual but it had mathematical implications: the idea of a negative
feedback mechanism borrowed from engineering provided the conceptual

framework for Goodwin’s work. It guided his conception of the possible mechanism
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and its mathematical form. The second constraint of trying to formulate a general
theory in analogy to physics was based on the assumption that biological systems
should follow the basic laws of statistical mechanics. An extended theory of
statistical mechanics including biological systems and their particularities as open
systems was supposed to provide a general theoretical framework against which the
model could be tested. This particular constraint could be called fundamental theory
constraint. The third set of constraints was mathematical in character being due to
the limitations of the mathematical methods, equations, and computational
templates used in the formulation of the model.

The three types of constraints, conceptual, fundamental and mathematical, are
of different character but what they have in common is that they belong to the
toolbox available to the researcher for describing and modeling a specific system.
But as a hammer comes to its limits when it is used as a screwdriver, the
engineering concepts and the ideal of statistical mechanical explanation proved
problematical when applied to biological systems. In the context of systems and
synthetic biology the aim for a statistical mechanics for biological systems was later
on replaced by the search for possible design principles of biological systems. The
concept of the negative feedback mechanism was preserved, functioning as a
cornerstone of subsequent research, but there was still some uneasiness about it
that eventually lead to the construction of synthetic models (see below).

The tool related constraints are to be distinguished from the constraints directly
related to the complexity of biological systems, which plays different roles in the
three epistemic activities. Moreover, it should be noted that the tool related
constraints are not static. Concepts can change their meaning especially in
interdisciplinary research contexts such as synthetic biology, and new mathematical
tools and computational templates can be developed or introduced, etc. The
adjustments and changes in the available modeling tools form an important part of
the development of the computational sciences. Furthermore, the constraints are
interdependent and the task of the modeler consists in finding the right balance
between them. We will exemplify these points by taking a closer look into the

Goodwin model.
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The basic structure of the network underlying the molecular mechanism of

Goodwin’s model of temporal organization is represented in the following diagram:

FIGURE 1.

Figure 2. The circuit diagram of the mechanism underlying the Goodwin model

(1966, 6).

The main structure of the model is a negative feedback loop. It consists of a genetic
locus L,, synthesizing mRNA in quantities represented by the variable X..The
mRNA leaves the nucleus and enters the ribosome, which reads out the information
from the mRNA and synthesizes proteins in quantities denoted by Y.. The proteins
are connected to metabolic processes. At the cellular locus C the proteins influence
a metabolic state by for example enzyme action, which results in the production of
metabolic species in quantity M.. A fraction of the metabolic species is traveling
back to the genetic locus L,where it functions as a repressor.

This mechanism leads to oscillations in the protein level Y, regulating temporal
processes in the cell, such as circadian rhythm. Goodwin described the mechanism
by a set of differential equations, which were due to the feedback mechanism of a
non-linear character. Such systems display complicated behavior and in general no
analytical solutions exist for them. Goodwin explored the dynamics described by the
set of coupled non-linear differential equations by making simplifying assumptions

through which he attempted to deal with two important constraints: the complexity
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of the system consisting of a variety of biochemical components and processes, and
the complexity given by the non-linear dynamics of the assumed mechanism. Firstly,
he had to leave aside many known biochemical features of the circadian clock
mechanism and, secondly, he had to make assumptions that would allow him to
simplify the mathematical representation in such a way that he could use numerical
methods in exploring its complicated dynamic behavior without having to solve the
non-linear coupled differential equations.

Goodwin was able to show by performing very basic computer simulations that
the change in the concentration of proteins Y, and the concentration of mRNA X,
form a closed trajectory. This means that the model system is able to perform
regular oscillations, such as circadian rhythms. But the oscillations were not robust.
Goodwin wrote: “The oscillations which have been demonstrated to occur in the
dynamic system [...] persist only because of the absence of damping terms. This is
characteristic of the behavior of conservative (integrable) systems, and it is
associated with what has been called weak stability.” (Goodwin 1966, 53) He went
on explaining that a limit-cycle dynamics would have been the desirable dynamic
behavior. In this case after small disturbances the system moves back to its original
trajectory. This is a characteristic of non-conservative systems. Biological systems
are non-conservative systems: They are not closed systems because they exchange
energy with the environment. But in order to formulate a statistical mechanics
Goodwin had to concentrate on conservative systems. He wrote about this point:
“What our present treatment does, in effect, is to substitute for real structure a
model whose dynamic behaviour approximates to that which we suspect occurs in
the cell. The approximation will be best in the neighbourhood of trajectories which
are close to the limit cycles which we expect to occur in cell variables.” (Goodwin
1966, 53). In order to simultaneously fulfill the aim of modeling a mechanism
producing oscillatory behavior regulating the temporal organization such as
circadian rhythm and the aim of formulating a statistical mechanics for biological
systems, Goodwin had to balance different constraints ending up with a model

which he believed could at best approximate the behavior he suspected to happen.
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Even though Goodwin’s model was not a complete success, it nevertheless
provided a basic template of circadian rhythm on which following researchers based
their modeling endeavors. In those modeling efforts the aim of formulating a
statistical mechanics for biological systems was left behind. The feedback
mechanism of circadian rhythm took center place leaving as the main constraints of
the modeling approach the complexity related to the number of components and
biochemical processes in natural systems, and the mathematical difficulties related
to the non-linear coupled differential equations. It should be underlined that these
problems were intertwined. As we saw already in the case of Goodwin, the available
mathematical methods constrained the knowledge that was taken into account in
modeling. However, the models constructed became more detailed as the first
experiments exploring the molecular basis of the circadian rhythms became
possible in the mid 1970’s. These experiments, as we will show below, came with
their very own constraints. While modelers were able to partly bracket the
complexity of biological systems by simply assuming most of it away - though they
had to deal with it nevertheless in mathematical terms - this was not possible in the

experimental work.

3.2. Experimentation

The first circadian clock gene was discovered in experiments performed by Ron
Konopka and Seymour Benzer (Konopka and Benzer 1971) in the beginning of the
1970’s. They named the gene period (per). The experimental research on circadian
rhythms in molecular biology and genetics progressed only slowly after Konopka
and Benzer published their results. The reason was that the experiments were
rather elaborate. A great challenge consisted in finding the protein related to the
isolated gene, its function in the biochemical processes, and deciding whether the
protein was part of the mechanism or an output of it regulating other functions in
biological system. Only in the mid 1980’s and 1990’s with further advances in
molecular biology and genetics did the circadian clock research start booming and

more genes, proteins and possible mechanisms were discovered in experiments on
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model organisms such as Drosophila, Neurospora and Arabidopsis. The complexity
the scientists were facing already in these “simple” model organisms was one of the
main constraints in performing experiments on model organisms. They had to deal
with the dynamic complexity due to what in modeling terms is called the non-linear
dynamics of the feedback loops and the constitutive complexity of the cell
environment in which the assumed mechanisms were embedded (for the
distinction, see Mitchell 2003). In contrast to modeling, in the experiments the
scientists had to directly face the messiness due to these different forms of
complexity and they also had different tools to handle them - which in turn brought
with them their own constraints.

In the following we discuss the example of the discovery of the second
interlocked feedback loop in the circadian clock of Drosophila by Paul Hardin and
his colleagues (Glossop et al. 1999). At that time 5 genes of the circadian clock had
been identified: Period (per), timeless (tim), Drosophila Clock (dClk), Cycle (Cyc) and
double time (dbt). Three of these genes are rhythmically expressed: per mRNA and
tim mRNA levels peak early in the evening ZT 13-16 although the associated
proteins PER and TIM do not peak until late evening because of phosphorylation
processes in the cytoplasm. dclk mRNA peak late at night to early in the morning,
from ZT 23 to ZT4. ZT. i.e. the zeitgeber time, provides the environmental cues that
each day (partially) reset the rhythms. In the present case light was used to entrain
the rhythm of the circadian clock of Drosophila. At ZT 0 lights are turned on and at
ZT 12 is turned off.

It was known that dClk played an important role in the activation of the
transcription of per and tim. Little was known about the regulation of the dClk cycle.
To find out about the regulation of dCik Hardin et al. performed mutation
experiments. It was known that the levels of dCIk mRNA are low in mutants per”'
and tim"'lacking functioning PER and TIM proteins. This observation led to the
assumption that PER and TIM activate dClk transcription in addition to their roles as

transcriptional repressors. Three models had been introduced by Isaac Edery et al.

(1994), which aimed to explain the PER-TIM dependent activation of dCik. In the
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first two models (Figures 3a-3b) PER and TIM promote the dClk transcription by
bringing in transcriptional activators into the nucleus or by co-activating a
transcriptional complex. In the third model (Figure 3c) PER or TIM or both inhibit
the activation of a transcriptional repressor.

Hardin et al. systematically explored the three models in order to distinguish
between them. Based on the idea that dCLK together with CYC is necessary for the
activation of per and tim, they created a clock gene mutant dCIk™*, which led to a
non-functional dCLK protein, and measured the level of dClk mRNA. They expected
low levels of dClk mRNA because the concentration of PER and TIM proteins would

be low.
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Figure 3. The three different models of dClk activation.

Instead they got the surprising result that the level of dClk mRNA of the model
organisms is indistinguishable from the wild type. The only difference to the wild
type was that the level of dClk mRNA at both times ZT1 and ZT13 was almost the

same, which means a non-functional circadian clock. These results ruled out that
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dClk activation is PER-TIM dependent. In further experiments, Hardin et al. tested
the following double mutations per”'dCik”* and per”'Cyc’ . In both cases the level
of dClk mRNA was comparable with the level of dClk mRNA wild type. Only in the
case of the single mutant permthe level of dCIk mRNA was low. This observation,
which in the first place led to the assumption of a PER-TIM dependent activation of
dClk and which had been ruled out by the series of experiments, had now to be
explained by a different model. In this model (Fig.4), the binding of PER-TIM dimers
to the dCLK-CYC dimer releases dCLK-CYC dependent repression of dCLK, thus
enabling dCik transcription. How does this mechanism explain the observed results
in the experiments? Only in the case where dCLK and CYC are present, as in the case
of period gene mutant per” dClk is repressed, and because no PER-TIM dimers are
available to release the dCLK-CYC dimers, dClk remains repressed. In the case of the
double mutants per’'dCik™™ and per’'Cyc® the absent of an active dCLK/CYC
prevents the repression of dClk so dClk mRNA is produced even if it leads to a non-

functional protein, as in the case of the double mutant per”'dCIk”* and per’'Cyc®.
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Figure 4. The interlocked feedback loop discovered by Hardin et al.
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As aresult Hardin et al. suggested that the mechanism underlying the circadian
rhythm consisted of two interlocked feedbacks of the following form: The first loop,
the so-called per/tim loop, is activated by dCLK-CYC and repressed by PER-TIM. The
second loop, the dclk loop, is repressed by dCLK-CYC and de-repressed by PER-TIM.

This short discussion of how the second feedback mechanism in the circadian
clock in Drosophila was found gives some insights into the strategies and methods
used by molecular biologists in the isolation of biochemical mechanisms. The
mutation experiments as they were used here can be best characterized as a
variation of parameters by which different possible mechanisms are tried out. The
constraints related to this particular strategy are of technical nature related to the
available methods from molecular biology and genetics such as creating the
mutations and measuring the effects of the mutations. But even though in the case of
Hardin et al. it was possible to find a mechanism or parts of a mechanism, it always
remains the haunting question whether all the components of the supposed
mechanism have been found i.e. whether the network is complete, or are some
components and/or interactions missing. Or, whether the hypothetical mechanism
is the only one by which the observations could be explained - the traditional
problem of underdetermination. Or, going a step further, whether the mechanism
works in isolation, and if not, how is it interacting with the rest of the cell
environment, and what role stochastic fluctuations (“noise”) play in the dynamics of

the network.

3.3. Synthetic modeling

Although mathematical modeling and their simulations, and experimentation
informed each other in circadian clock research, the mathematical modeling
suggesting possible mechanism templates and experimentation probing them and
providing more biochemical detail, there remained a gap between them. The

modeling effort was based on rather schematic templates and related concepts
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originating often from other fields of inquiry. It was unclear whether biological
organisms really functioned in the way suggested by them i.e. whether they could be
realized by biological organisms. Synthetic strategy suggests a way to deal with this
problem due to the specific construction of synthetic models. They are mixed,
double-faced entities: On the one hand, they are of the same materiality as model
organisms since they are made of biological material, such as genes and proteins. On
the other hand, they differ from model organisms in that they are not results of any
evolutionary process, being instead designed on the basis of mathematical models.
In the construction of a synthetic model the mathematical model is used as a
blueprint: it specifies the structure and the dynamics giving rise to particular
behaviors or functions. Thus the synthetic model has its origin in the mathematical
model, but it is not bound by the same constraints: The model is constructed from
the “same stuff” (Morgan 2003) as the biological genetic regulatory networks and it
even works in the cell environment. Consequently, even if it is not understood in all
its details, it provides a kind of simulation device of the same natural kind as its real

world counterparts.

3.3.1 The Repressilator

The Repressilator provides a compelling example of a synthetic model. It is an
oscillatory genetic network, which was introduced in 2000 by Michael Elowitz and
Stanislas Leibler (2000). The first step in constructing the Repressilator consisted in
the design of a mathematical model, which was used to explore the known basic
biochemical parameters and their interactions. Having constructed a mathematical
model of a genetic regulatory network Elowitz and Leibler performed computer
simulations on the basis of the model. They showed that there were two possible
types of solutions: “The system may converge toward a stable steady state, or the
steady state may become unstable, leading to sustained limit-cycle oscillations”
(Elowitz and Leibler 2000, 336). Furthermore, the numerical analysis of the model
gave insights into the experimental parameters relevant for constructing the

synthetic model in showing that “[...] oscillations are favoured by strong promoters
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coupled to efficient ribosome binding sites, tight transcriptional repression (low
'leakiness'), cooperative repression characteristics, and comparable protein and
mRNA decay rates” (ibid, 336). The later point helped in choosing the three genes
used in the design of the network. Elowitz and Leibler also explored the continuous
as well as the stochastic dynamics of the model in order to analyze the role of
internal noise in the mechanism. Internal noise in biological systems is caused by
the low number of molecules in the cell.

The mathematical model functioned as a blueprint for the engineering of the
biological system. The structure of the Repressilator is depicted in the following

diagram:

Repressilator Reporter

P lac01

P tet01

pSC101

AP
origin R

lacl-lite

ColE1

A cl-lite

P tet01

Figure 5. The main components of the Repressilator (left hand side) and the
Reporter (right hand side) (Elowitz and Leibler 2000, p. 336).

In the diagram the synthetic genetic regulatory network, the Repressilator, is shown
on the left hand side and it consists of two parts. The outer part is an illustration of
the plasmid constructed by Elowitz and Leibler. The plasmid is an extra-
chromosomal DNA molecule integrating the three genes of the Repressilator.
Plasmids occur naturally in bacteria. In the state of competence, bacteria are able to

take up extra chromosomal DNA from the environment. In the case of the
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Repressilator, this property allowed the integration of the specific designed plasmid
into E.coli bacteria. The inner part of the illustration represents the dynamics
between the three genes, TetR, Lacl,and Acl. The three genes are connected by
negative feedback loops. The left hand side of the diagram shows the Reporter
consisting of a gene expressing a green florescent protein (GFP), which is fused to
one of the three genes of the Repressilator. The GFP oscillations in the protein level
made visible the behavior of transformed cells allowing researchers to study them
over time by using fluorescence microscopy.

The construction of the Repressilator was enabled by the development of new
methods and technologies, such as the construction of plasmids and Polymerase
Chain Reactions (PCR). As the discussion on the Repressilator shows, with the
formation of synthetic biology a novel tool was introduced into the research on the
organizational principles of biological systems: the possibility of constructing novel
engineered genetic networks specially designed for answering certain kinds of
theoretical questions. Their construction has so far been limited to simple networks
such as the Repressilator and the construction components are chosen in view of
what would be optimal for the behavior under study. This means that such
networks need not be part of any naturally occurring system. For example the genes
used in the Repressilator do not occur in such a combination in any known biological
system but are chosen and tuned on the basis of the simulations of the underlying
mathematical model and other background knowledge in such a way that the
resulting mechanism would allow for (stable) oscillations. These technical
constraints imply a constraint on what can be explored by such synthetic models:
possible design principles of biological systems. The search for the possible design
principles has replaced in systems and synthetic biology the aim of formulating a
fundamental theory for biological systems such as statistical mechanics.

In conclusion, we have suggested that the way mathematical models, model
organisms, and synthetic models are used in the study of the temporal organization
in cells shows that the three epistemic activities are constrained both by the
complexity of biological systems, and their characteristics tools, which constraints

are intertwined in the actual scientific practice in different ways.
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4. How and why materiality matters in synthetic biology

Coming back to the philosophical discussion on modeling, let us first note that the
mathematical models of the circadian clock are difficult to consider as experiments
in the sense of being abstractions of real world systems that permit the study of the
effects of isolated causal factors. In the circadian clock research the modeling
endeavor started before the experimentation, and the circadian clock phenomena
was probed with model templates and concepts that were borrowed from other
disciplines and subjects. As already discussed, it is often not possible to decompose
a model into its assumptions as the isolation account of modeling suggests. The
idealizations, omissions and approximations follow frequently from the model
template used. The assumptions involving them are typically linked to certain
mathematical abstractions, and there are limited ways in which they can be relaxed
or corrected, constrained by the available mathematical methods. In the case of
circadian clock oscillations, the oscillatory phenomena had already been studied by
physicists for a long time and there are many well-established ways of
mathematically creating them. There exists a whole body of literature on this topic
such as Steven Strogatz’s book Nonlinear Dynamics and Chaos (Strogatz 1994).
Consequently, the modelers had already a toolbox for modeling oscillations. But the
problem was that the alternative models were too general and underdetermined by
available data.

Consequently, although modelers were able to produce the kind of phenomena
sought for, that is, robust oscillations, the problem was whether the possible
network designs proposed by mathematical models were really the ones that work
in biological organisms. This problem was aggravated by the fact that the model
templates, methods and concepts were not originally devised biological organisms
in mind. In fact, a big part of the modelers in the field of systems and synthetic
biology have a physics background. Moreover, this problem could not be
conclusively settled by experimentation since the work with model organisms had

to deal with the immense complexity of even such simple organisms as E.coli. Thus
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even though the empirical research was able to find genes and proteins involved in
the circadian clock phenomena, the results were still inconclusive as regards the
basic mechanism underlying it.

Synthetic models fill (partly) the gap between mathematical modeling and
experimentation on model organisms by offering a tool for identifying possible
network design principles, and showing whether they might be realizable in
biological organisms.3 Their epistemic functioning is due to their mixed nature: On
the one hand they share with mathematical models their tightly constrained nature,
which makes it possible study certain theoretical questions in a regimented manner
(see Knuuttila and Voutilainen 2003). This shows that constraints do not just limit
reasoning, but instead also afford it. On the other hand, they are constructed of the
same kinds of components as the natural systems, being implemented, moreover, in
the natural cell environment. In the case of the Repressilator the natural genetic
regulatory network was replaced by the engineered one, which gave more control
for the researchers on the system under study than in the case of domesticated
natural organisms (such as model organisms). Being of a lower degree of complexity
compared to natural systems and at the same time being exposed to the same kind
of biological constraints as natural biological systems is regarded as an important
advantage of synthetic modeling. By reducing the degree of complexity the system
becomes more tractable and easier to manipulate. In the case of the Repressilator
the goal was not to imitate the natural circuit but to find the sufficient components
and interactions of the supposed mechanism producing a specific behavior, such as
oscillations in protein levels. The components of the network were chosen to get the
most optimal behavior and not to get as close as possible to a naturally evolved

genetic network. This explains why the genetic network of the Repressilator is

3 Circadian clock research has been used recently by Bechtel and Abrahamsen
(forthcoming a, b) as an exemplary case of mechanistic research that has
successfully combined the decompositional approach of finding the basic
components of mechanisms to the study of their interactions by modeling. On our
account this “recomposition” between experimental results and modeling was far
from seamless and synthetic models were partly designed to fill the gap between
these two activities (cf. Loettgers 2007).
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comprised of a different constellation of components than any naturally occurring
network. Moreover, by implementing the synthetic genetic network into a cell it was
exposed to the constraints of natural biological systems. Those are in general not
known in all their details but knowing those details seem not always necessary as
long as they are there. The cell provides a simulation environment, which is of the
same “natural kind” as the system under investigation. This is a feature commonly
associated with experiments. They are considered to be particularly useful in the
contexts in which one has an imperfect understanding of the causal mechanisms at
work. The control over the “same”, often domesticated or technologically altered,
natural kind, is expected to give some handle on the causal mechanism(s) (cf. Guala
2002).

Another feature of experiments displayed by the Repressilator is due to the
way the researchers received the undesired results. In the case of experimentation
anomalous or unexpected results are commonly taken more seriously, whereas if
the model does not produce what is expected from it, the modelers usually try to
devise a better model. The Repressilator in turn sparked a new line of research
precisely due to its limited success. In contrast to the mathematical model
underlying it, the Repressilator did not show the expected behavior: regular
oscillations. Instead the oscillations turned out to be noisy. Computer simulations
taking into account stochastic fluctuations did show that such fluctuations could be
the cause of its noisy behavior. But the noisy behavior could have also been caused
by external noise coming from the cell environment. A new line of research emerged
exploring the different sources of noise and their effects on biological systems. In
the context of this research, and in line with the results gained by studying complex
systems in physics and in neuroscience, noise based on stochastic fluctuations
gained a functional status: Molecular mechanisms in biological systems make use of
internal noise, for example in decision processes such as cell division (see Loettgers
2009).

Consequently, synthetic models such as the Repressilator muddle the border
between modeling and experimentation even more than simulations do. It can be

considered both as a model and an experiment, and it serves to show that in
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experimentation the objects of experiments can be located at different distances
from the targets they are supposed to give knowledge about. A common
misunderstanding concerning experimentation is that in experiments one is
intervening the target directly (see e.g. Barberousse et al. 2009). This is certainly not
the case even when it comes to the experimentation with model organisms, which
can be considered as domesticated natural kinds. However, even if they allow rather
direct back inferences to the corresponding wild natural kinds, most often they are
used give knowledge of other different natural kinds. They might even be used to
give knowledge of the general design principles of biological organisms, as our case
shows. Consequently, the object and the target of experiment are not the same and
the security of the inferences concerning the targets are partly based on the nature
and the relative “length” of the distance between the object of experiment and its
target. This distance between the object and the target that also experimentation
involves makes apparent the structure of surrogate reasoning that it shares with
modeling (e.g. Swoyer 1991, Suarez 2004). Both in modeling and in experimentation
one studies surrogates that stand in/for other systems, and scientists use diverse
inferential strategies to close the gap between the two. Sometimes the phenomenon
is so well known and the theoretical framework so established that we even do not
need experiments, simulations will do the job. Other times some highly intricate
strategies such as synthetic modeling, are developed which involve the same

materiality and the like natural kinds.
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