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1. Introduction 

 

The title of the Bakerian 2001 lecture by David Sherrington, a renowned physicist, and 

the other author of the Sherrington–Kirkpatrick model, was “On magnets, microchips, 

memories and markets: the statistical physics of complex systems.”1 That the 

Sherrington–Kirkpatrick model of spin glasses (i.e. disordered magnets) should find 

applications in as distant fields as statistical physics, computer science, neural network 

theory, and financial markets is both outstanding and commonplace. Indeed, it serves as 

an epitome of the contemporary modeling practice, where the same function forms and 

equations, and mathematical and computational methods are being transferred and 

recycled across the disciplinary boundaries. While philosophers of science have only 

recently started to address the interdisciplinary dynamics of such a modeling practice, it 

is far from a new phenomenon. The transfer of theoretical and formal tools from one area 

of physics to another, and from physics to other disciplines such as economics and 

biology have marked many scientific breakthroughs in the 19th and early 20th century. 

More lately, engineering has had an increasing interdisciplinary influence on many fields, 

attested by, for example, the emergence of synthetic biology. 

Two bodies of philosophical discussion, in particular, have addressed this 

distinctively interdisciplinary character of modeling; one has studied analogical reasoning 
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and the other one has focused on the role of various kinds of templates in model-building 

and theoretical transfer. While the interest in analogical reasoning dates back at least to 

the 20th century discussion of physical and mathematical analogies (e.g. Hertz 1893/1962, 

Hesse 1966), the focus on templates is of a much more recent origin (e.g. Humphreys, 

2004, 2019; Knuuttila and Loettgers 2011, 2016; Houkes and Zwart, 2018). The two 

discussions have proceeded in parallel, largely separately from each other2. Philosophers 

and cognitive scientist studying analogical reasoning have addressed the material and 

formal analogies between different objects/systems, in different domains, licensing 

inferences from the source objects/systems to the target objects/systems. By contrast, the 

emphasis of the discussion of templates has targeted cross-disciplinary formal and 

computational devices that are detached from any particular objects, systems or domains.  

At the outset, then, the analogy-based and template-based approaches seem to be 

addressing different kinds of things that is also manifest in their different takes on 

representation. In introducing the notion of a computational template Humphreys 

explicitly turns away from representation to computation, while analogical inference 

seems wedded to similarities and thus to “representation as”. But appearances can be 

deceptive. Our claim is that any more fully-blown account of model transfer, or that of 

modeling more generally, needs both perspectives, although, of course, actual cases of 

model transfer may proceed without making use of both template-based and analogical 

reasoning.  Moreover, the analogy-based and template-based approaches also lend more 

credence to each other. Without the perspective of analogical reasoning it seems difficult 

to explain what drives the transfer of formal and computational templates from one 

domain into another, especially in interdisciplinary contexts – given that various kinds of 
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structures may exhibit the appearances of the target domain of interest. On the other 

hand, the template-based approach focuses on the application of tractable tools, a 

phenomenon driving the model-based science, providing thus a more encompassing 

vision of modeling than the analogy-based approach alone.  

In examining how the analogy-based and template-based approaches contribute to 

each other, we focus on the conceptual dimension of model transfer. It has so far been 

inadequately addressed by the template-based view in its emphasis on tractability. Such 

inattention to the conceptual side of model transfer is also characteristic of those accounts 

of analogical reasoning that concentrate on structure mapping between two domains. 

Moreover, analogy-based approaches have typically addressed the local level of 

particular source and target domains. The focus on the conceptual dimension of model 

transfer bridges the local and the global in focusing on how general conceptual ideas 

embedded in formal templates facilitate the application of those templates across different 

domains. This is the representing-as dimension of template transfer that draws it close to 

analogical reasoning, anticipating and directing actual model construction.  

We will examine analogical reasoning and template transfer through a study of 

the application of a spin glass model to neural networks in neurosciences. The Ising 

model of ferromagnetism (Ising 1925) provided the basic template for the Sherrington–

Kirkpatrick model of spin glasses that in turn contributed to the Hopfield model of the 

associative memory (1982).  The formal similarities between these three models are 

striking, underlining the insights of the template-based approach – yet the conceptual side 

of these model transfers is equally important. The reason for the transferability of the 

formal template underlying the Ising model, and those of its variants such as the 
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Sherrington-Kirkpatrick model is due to these models providing modelers hypothetical 

systems with interesting theoretical properties. These properties have been conceptually 

rendered as phase transitions, critical points, and most importantly, cooperative 

phenomena, and they can be ascribed to various kinds of systems that appear to display 

similar kind of behavior. Such model transfers presume flexibility of the formal template, 

involve novel theoretical interpretations, and even development of new methods. 

In the following sections, we will first present a brief overview of the 

philosophical discussion of analogies and templates (Section 2), and then study the 

transfers between the Ising model, the Sherrington- Kirkpatrick model, and the Hopfield 

model (Section 3). The concluding section discusses the lessons to be learned concerning 

the use of analogies and templates in model-based theoretical practice. 

 

2. Analogies and templates 

 

2.1. Analogies 

 

In philosophy of science, analogical reasoning has often been discussed in the context of 

knowledge generation, being related to topics such as scientific discovery, theory 

development and hypothesis formulation. While the heuristic role of analogies in the 

aforementioned activities has generally been recognized, philosophers have disagreed 

whether or not any general account of analogical reasoning could be formulated that 

would warrant analogical reasoning in general (see Bartha 2016, 12-18, Norton 2011).  In 

this regard, the use of analogical reasoning in modeling seems instructive. Analogical 



5 
 

reasoning provides scientific modelers a frequently utilized powerful cognitive strategy 

for transferring concepts, formal structures, and methods from one field to another. That 

analogical transfer is such a common practice in scientific modeling seems to request an 

analysis going beyond the conventional philosophical divide between discovery and 

justification. We will suggest that combining the insights concerning the modelers’ use of 

cross-disciplinary templates with those of analogical reasoning will importantly 

contribute to such an analysis.  

A classic treatment of analogical inference in the context of scientific modeling 

was provided by Mary Hesse (e.g. 1966). Hesse’s account is two-dimensional: she 

distinguishes between horizontal and vertical relations. “Horizontal relations” refer to 

similar or dissimilar properties of two domains. Hesse approaches them in terms of 

positive, negative and neutral analogies. Positive analogies refer to those properties that 

the two analogs have in common, whereas negative analogies refer to known differences 

between them. Neutral analogies refer to the properties whose commonality or difference 

has yet to be established providing thus epistemic potential for further inferences and 

theoretical development. “Vertical relations” are relations between objects and properties 

within a domain. Two domains are formally analogous if the relations between certain 

elements within one domain are identical or at least comparable to the relations of the 

corresponding elements in another domain. Hesse contrasts such formal analogies to 

material ones that are shared, frequently observable and/or pretheoretic resemblances 

between two domains. In her view, acceptable analogies need to be grounded in both 

horizontal and vertical relations; in her examples, material analogies seem to provide a 

basis for constructing formal analogies. 
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Cognitive scientist Dedre Gentner has made formal analogies the centerpiece of 

her influential theory of analogy (e.g. 1983). She distinguishes between attributes and 

relations claiming that an analogy does not necessarily become stronger if the two 

analogs only share more attributes. According to Gentner the key similarities are those 

that lie in the relations that hold within a domain, and it is preferably those relations 

within a domain that are being transferred to another domains. These kinds of formal 

analogies display systematicity being governed by ‘higher order relations’ such as causal, 

mathematical, or functional relationships. The fact that relations like these are being 

sought after in scientific reasoning underlines, in Gentner’s view, the importance of 

formal analogies. She seems thus not to agree with Hesse, who stresses the importance of 

causal relations, but does not contrast them to horizontal relations between observable 

properties. Given the overriding focus on formal analogies of Gentner’s account, 

analogical transfer becomes that of structure-mapping between the source and target 

domains (Gentner 1983; see also Gentner & Markman 1997). With structure-mapping 

Gentner refers to mapping knowledge about the base domain into the target domain such 

that the mapping rules “depend only on the syntactic properties of the knowledge 

representation, and not on the specific content of the domains” (Gentner 1983, 155).  

Yet, analogical inference cannot boil down to a mere projection of a syntactic 

structure. As any system can be conceptualized in different ways resulting in different 

kinds of structures, and so the structure a system is supposed to exhibit is intimately 

related to how the system is described (see Frigg 2006). Consequently, in his discussion 

of analogical reasoning, Bartha (2016, 32-33) argues that there is “no short-cut via 
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syntax”.  He underlines the importance of focusing on the relevant features of both 

domains, and how they relate to the analogical inference in question.  

Bartha’s “articulation model” addresses relevance by paying particular attention 

to “prior association” and “potential for generalization” (Bartha 2010). Prior association 

holds in the source domain between the known similarities and a further property that is 

then projected on the target domain. It picks up the features of the source that are deemed 

relevant for the analogical inference. Bartha also underlines the need to make the prior 

association explicit. The potential for generalization, in turn, stipulates that there must be 

good grounds to believe that the same kind of connection would hold in the target 

domain. In particular, there should be no critical disanalogies between the domains. For 

instance, in analogical transfer between the Sherrington–Kirkpatrick model and the 

Hopfield model, the prior association between the interactions between the magnetic 

moments and cooperative phenomena, i.e. ferromagnetism, is generalized to hold also in 

the case of pattern matching performed by the nervous system. 

What we want to focus our attention on, then, is that even in the case of formal 

analogies, the projection of a structure is never purely syntactic. The point is that the 

templates used in model construction come with associated concepts that aim to capture 

some theoretically interesting properties of the structures in question. These concepts 

suggest how to theorize about the phenomenon of interest, and function as springboards 

for further theoretical development in the target domains. Accordingly, it is possible to 

extend Bartha’s requirement of the potential for generalization from the non-existence of 

critical disanalogies to the utilization of some general theoretical principles. These 

principles are embedded in well-understood formal and computational templates that are 
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used to study multiple phenomena. We will examine this insight more in detail in the next 

section by discussing templates of various kinds. 

   

2.2. Templates 

 

The interest in templates as distinctively cross-disciplinary vehicles of modeling has its 

origin in the work of Paul Humphreys (e.g. 2004, 2019).  He called attention to one of the 

most conspicuous characteristics of the contemporary modeling practice: its reliance on 

“the relatively small number of computational templates in the quantitatively oriented 

sciences” (2004, 68).  “Science,” he suggested, “would be vastly more difficult if each 

distinct phenomenon had a different mathematical representation” (Ibid.) – and this 

observation, we suggest, is even more true of model-based science.3 

Humphreys zooms in on something so “simple and well-known” (2004, 60) that it 

has escaped the explicit attention of philosophers of science: computational templates. 

Humphreys’ computational templates are genuinely cross-disciplinary mathematical or 

computational forms and methods that can be applied to different problems in various 

disciplines.  In using the word ‘template’ Humphreys invokes a pattern for developing a 

product that can simultaneously be configured in view of the aims of the modeler (2019, 

116). 

Computational templates may have their origin in formal disciplines such as the 

Poisson distribution in probability theory. While computational templates are genuinely 

subject-independent in their application, many of them have originally been introduced as 

theoretical models of a certain system being only subsequently applied to different 
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domains. A theoretical model functions as a template first when it is separated from the 

original theoretical context and used to model other, usually very different types of 

phenomena. The Lotka-Volterra model4 and the Ising model provide illustrative examples 

of such templates that are so general that they have been used virtually in all areas in 

science, where scientists are engaged in mathematical model-building. But apart from 

generality, computational templates need to be tractable, to allow for computation. 

Humphreys (2004) considers tractability to be the distinguishing feature of computational 

templates. Interestingly, many models such as the Lotka-Volterra model and the Ising 

model have gained such tractability due to the subsequent development of mathematical 

and computational methods. Generic technologies such as digital computing made the 

Lotka-Volterra model a suitable case for studying the dynamics of nonlinear systems 

(Knuuttila and Loettgers 2011). On the other hand, mathematical methods, developed 

within physics, such as the renormalization group theory, played a crucial role in making 

the Ising model tractable. 

Humphreys (2019) seeks to distinguish the template-based approach from 

analogical reasoning. His main argument is that while analogical reasoning relies on 

similarities typically left at least partially implicit, the template-based approach does not 

need to rely on any “vague” resemblances.  Instead, theoretical templates that are 

candidates for developing into transdomain templates are typically results of construction 

processes5, whose assumptions can be made explicit. As a consequence, Humphreys 

claims, there are cases where “there is no need to use analogical reasoning in applying a 

template – we can check directly whether the assumptions are satisfied for the system at 

hand.” (Humphreys 2019, 115). Moreover, Humphreys (2019) notes, in line with his 
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earlier writings on templates, that any transfer of a template usually involves refinement 

and adaptation of the template to a new domain, except for the off-the-shelf 

representations “that can be opportunistically justified at the system level by analogical 

reasoning from their previous successful applications that are recognized as similar” 

(ibid.). According to Humphreys’ examples, statistical distributions as well many general 

equation forms belong to his group. However, when it comes to the latter group, their off-

the-shelf nature is questionable, as our case shows.  

Another related question concerns the application of formal templates with only 

mathematical interpretation, and whose “construction assumptions have only 

mathematical content” (Humphreys 2019, 114).6 Humphreys seeks to explain how it is 

possible to apply formal templates given their purely mathematical interpretation. He 

approaches such an application as a mapping from a formal template to a target system. 

In such a mapping, all empirical content is contained within the mapping, and not within 

the template that explains why formal templates can be applied across a multitude of 

domains. Humphreys views the construction and use of formal templates as superior to 

analogical inference since in using them scientists do not need to invoke the language of 

the domain from where the template originally comes from: “There is therefore no need 

for vocabulary translations or for interdisciplinary knowledge” (2019, 118). He uses as an 

example Barabási-Albert model (Barabási and Réka 1999) that is a random scale-free 

network making use of a preferential attachment mechanism. It has been applied to 

various kinds of natural and social networks that contain nodes (“hubs”), whose number 

of links within a network greatly exceeds the average. 
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The Barabási-Albert model fits Humphreys’ views on formal template transfer as 

its origin is in mathematical theory, and so it is devoid of previous subject-specific 

empirical and theoretical content. But does such a case of formal template transfer also 

suit other kinds of template transfers characteristic of contemporary modeling practice? 

And what explains the seemingly unreasonable success of a relatively small number of 

templates? We do not believe that their success can be explained by tractability and 

generality alone, unless these two features are linked in a particular way. Namely, 

successful templates embody something more: a vision of the phenomenon exhibiting a 

particular kind of general pattern for the study of which the template offers tractable, or 

at least already well-studied tools. And seeing various kinds of systems as instances of 

some already familiar general patterns amounts – to use Kuhnian language – to a “gestalt 

switch” that enables scientists to approach various kinds of systems as being like each 

other at least in one important dimension.7 In order to study this analogous moment in 

template transfer, we turn to our case study on the model transfer between the 

Sherrington-Kirkpatrick model and the Hopfield model. The idea of cooperative 

phenomena forms the conceptual core of this template transfer, already introduced by the 

Ising model that provided some basic formal templates and associated theoretical ideas 

for the Sherrington-Kirkpatrick and Hopfield models. 

 

3. Modeling cooperative phenomena 

 

The Ising model, originally presented as a mathematical model of ferromagnetism by 

Ernst Ising (1925) is nowadays used to study an amazing variety of phenomena in 
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different disciplines ranging from physics to biology and social sciences. Although what 

appear to be transmitted between different fields in the case of the Ising model are 

mathematical structures, the conceptual side of these model transfers has been equally 

important. Physicist Daniel Amit has described the conceptual fruitfulness of the Ising 

model in physics the following way:  

[The Ising model] has been a birthplace and the testing ground for a treasure of 

new concepts in essentially all fields of physics. Such fundamental ideas as 

symmetry breaking, cooperative phenomena, order parameters, disorder 

parameters, critical exponents, symmetry restoration etc., have had their first 

explicit, precise articulation in the framework of this apparently simple, naïve 

model. (Amit 1989, 105.) 

While most of these theoretical ideas have been developed and applied in the domain of 

physics, especially the concept of cooperative phenomena has proved globally applicable, 

being applied beyond physics in biology, economics, and sociology. How did cooperative 

phenomena gain this global, cross-disciplinary nature? In the following, we will trace the 

journey of this concept from the context of modeling properties of magnetic systems in 

physics into neuroscience.  

 

3.1. The Ising model 

 

Cooperative phenomena are general in character, resulting from interactions 

between the constituents of a system. These interactions can be of various kinds. 

Ferromagnetism provides a standard example that is also of a historical importance. On 
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the microscopic level, a piece of magnetic iron consists of magnetic moments, which 

below a certain temperature 𝑇𝐶 align and result in a macroscopic net magnetization. 

Above the temperature 𝑇𝐶 the thermal motion of the magnetic moments counterfeits this 

tendency and as a result the net magnetization vanishes. The piece of iron becomes 

paramagnetic. The transition from the ferromagnetic phase into the paramagnetic phase 

(and the other way around) is called phase transition, and 𝑇𝐶 the critical temperature. 

This kind of transition can be observed in experiments on the macro level, but the 

interactions between magnetic moments on the micro level that give rise to the transition, 

are not experimentally accessible. The Ising model provides a conceptual and 

methodological framework by which these processes on the micro level can be 

approached.  

At first glance, the structure of the Ising model seems astonishingly simple for 

such a consequential model. It consists of  magnetic moments, so-called spins , 

which can take only two values, or -1, corresponding to their two possible discrete 

orientations up and down. In the two-dimensional case, the spins are located on the sides 

of a lattice. The interaction, which is central for the occurrence of cooperative phenomena 

such as ferromagnetism, is given by the interaction energy  describing the interaction 

strength between the nearest neighbor spins  and . In the original Ising model  is 

constant and in the case of ferromagnetism, where all the spins are aligned, the 

interaction energy is positive ( ). To sum up, the interaction energy depends on the 

configurations of neighboring spins and, furthermore, tends to align them.  

N Si

Si = +1

Jij

Si Sj Jij

J > 0
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With each magnetic moment  comes an internal magnetic field  that is 

created by the interaction between the magnetic moments :   

 ℎ𝑖 = ∑ 𝐽𝑖𝑗𝑆𝑗
𝑁
𝑖,𝑗≠𝑖        (1) 

with .  

For each of the 2𝑁configurations of spins {𝑆}, where 2 stands for the two possible 

orientations of the spins and 𝑁 for the total number of spins, an energy function is given 

for each of these microstates by:  

  𝐸{𝑆} = −
1

2
∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

𝑁
𝑖,𝑗≠𝑖 .    (2) 

The overall energy of the system decreases if  and point in the same direction. In 

this case the interaction energy  is making a positive contribution, which, together with 

the “–” sign in front of the sum, leads to the decrease of the overall energy . If  and 

 point in different directions, the overall energy of the system increases because the 

interaction energy  is making a negative contribution.  

The formal structure of the magnetic moments , the internal magnetic field 

and the energy 𝐸{𝑆} provide conceptual and methodological resources by which 

phenomena of cooperative can be explored. In Humphreys’ terms, they can be 

approached as templates. One of the main challenges consists in calculating from the 

microscopic behavior the macroscopic properties such as the magnetization 𝑀. In 

general, calculating some macroscopic property from the microstates of the system is one 

of the main subjects of statistical mechanics. The Ising model provided one successful 

framework for such a task, developed in the confined context of ferromagnetic systems.8  
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In statistical mechanics the magnetization 𝑀 is calculated from the microstates 

{𝑆} in the following way:  

 

 〈𝑀〉 =
∑ 𝑀{𝑆}∙𝑒−𝐸/𝑘𝑇

{𝑆}

∑ 𝑒−𝐸/𝑘𝑡
{𝑆}

 .  (3) 

 

In the equation, the sum  ∑ 𝑒−𝐸/𝑘𝑇
{𝑆}   is the so-called partition function. The functional 

form of the energy 𝐸 given by equation (2) is specific to the Ising model due to its form 

of interaction. The exponential function describes the probability of the realization of a 

microstate at a given energy and temperature. Because of the minus sign in the 

exponential, microstates at a high energy are less probable than states at a lower energy. 

The probability that a microstate is realized can be calculated by:  

 

                                                 𝑃{𝑆} =
𝑒−𝐸/𝑘𝑇

∑ 𝑒−𝐸/𝑘𝑇
{𝑆}

  

 

Accordingly, the magnetization is the sum over all 2𝑁 possible states weighted by the 

probability that a microstate is taken. The partition function and energy function can be 

considered as general theoretical templates in the context of physics. The partition 

function has its origin in statistical mechanics, whereas the energy function is 

fundamental in all parts of physics. The probability distribution provides a computational 

template. Those templates are flexible enough for modeling different forms of interaction 

and therefore cooperative behavior. The package consisting of the concept of cooperative 

phenomena and the associated theoretical and computational templates served as a 
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framework within which further concepts such as phase transitions, critical exponents, 

and symmetry breaking got developed, together with further methods for their 

calculation. Within physics, these concepts and methods have not subsequently been 

confined to the case of ferromagnetism.  They have been applied also to other physical 

systems exhibiting cooperative phenomena. The so-called spin glasses provide one 

particularly fruitful application. Spin glasses differ from ordinary glasses by containing a 

small number of magnetic moments interacting with each other. These interactions lead 

to interesting cooperative behavior due to the fact that both ferromagnetic and 

antiferromagnetic couplings are present in the system. The simultaneous presence of 

ferromagnetic and antiferromagnetic couplings, in general, does not allow for the 

establishment of a conventional long-range order (of ferromagnetic or antiferromagnetic9 

type).  

 

3.2. The Sherrington–Kirkpatrick model 

 

In 1978 David Sherrington and Scott Kirkpatrick, introduced a model of a spin glass by 

drawing an analogy to the case of ferromagnetism (Sherrington and Kirkpatrick 1978). 

They hypothesized that the observed behavior of spin glasses is caused by the interaction 

between their magnetic moments as is the case in the Ising model. The subsequent 

development of the Sherrington-Kirkpatrick model (hereafter the SK model) made 

available further concepts, templates and methods.10 The flexibility of the theoretical and 

formal templates underlying the Ising model allowed for the construction of the SK 

model, which tries to capture spin glass specific observations, such as a transition into a 
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disordered state at low temperatures. However, at first glance the SK model cannot be 

distinguished from the Ising model.  

As in the Ising model the magnetic moments are represented by binary variables

 in the SK model. Again, the magnetic moments can take either the value +1 or  -1. 

The coupling between two spins, and , is, as before in the case of the Ising model, 

represented by the coefficient  and the overall energy of the system is also of the form:  

 

        𝐸 = − ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗𝑖,𝑗≠𝑖 . 

. 

The main difference between the two models lies in the form of interaction. In the SK 

model the couplings are modeled as a function of the distance between the magnetic 

moments , with  and  as the positions of the magnetic moments on, 

for example, a lattice. This kind of interaction leads to cooperative behavior, which is 

different than in the case of the Ising model. Positive values of  correspond to 

ferromagnetic and negative values to antiferromagnetic couplings. The spins in this 

model cannot at the same time satisfy both ferromagnetic and antiferromagnetic 

couplings that means that the couplings are of a competitive nature. The consequences of 

these competing interactions between the ferromagnetic and antiferromagnetic couplings 

become apparent at low temperatures when the system undergoes something like a phase 

transition.  The system exhibits a “freezing transition” to a state with a new kind of order 

in which the magnetic moments are aligned in random directions (Binder and Young 

1986). The topology of the energy landscape of spin glasses after undergoing this 

Si Si

Si Sj

Jij

Jij = J(Ri - Rj ) Ri Rj

Jij
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freezing transition is varied, consisting of a large number of valleys, representing 

metastable or stable spin configurations. 

The flexibility of the partition and energy functions allowed scientists to explore 

what kinds of macroscopic properties such as the freezing transition caused by the 

microscopic behavior. These calculations turned out to be very difficult and required the 

development of further mathematical tools such as the replica method, which is used in 

statistical mechanics in the calculation of the partition function (see above, footnote 12).  

The Ising and SK models display how the concept of cooperative phenomena 

coupled with theoretical and formal templates and computational methods accounts for 

macrolevel phenomena, such as phase transitions, in terms of microlevel interactions.  

Such cooperative phenomena is not limited to physical sciences.  The question is how 

template transfer from physics to other sciences, licensed by the notion of cooperative 

phenomena, is bound to succeed.  An example of such a transfer is provided by the 

Hopfield model, which transferred the SK model of spin glasses to neuroscience. While 

the SK model successfully applied the Ising model to spin glasses, explaining some 

characteristics of spin glasses via their ferromagnetic and antiferromagnetic moments, 

any such straightforward interpretation of microlevel phenomena was not possible in 

neuroscience. As a result, analogical reasoning played a much more substantive role in 

the case of the Hopfield model.  
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3.3. The Hopfield Model 

 

Theoretical physicist John Hopfield introduced in 1982 a model that was to become one 

of the milestones in the study of artificial neural networks. (Hopfield 1982) He was 

interested in how the brain could fulfill the task of completing information, such as 

recognizing a friend’s face, from an incomplete input (i.e. partial picture provided by our 

visual perception). Hopfield made use of both positive and negative analogies in his 

reasoning. First, he drew a negative analogy to small circuits such as electric circuits and 

computers, arguing that evolution does not proceed in the same way as an engineer. 

Second, he drew a positive analogy to many body systems suggesting that auto-

associative memory could be understood as collective11 phenomena.   

Given the dynamical electrochemical properties of neurons and their 

interconnections (synapses), we readily understand schemes that use a few 

neurons to obtain elementary useful biological behavior. Our understanding of 

such simple circuits in electronics allows us to plan larger and more complex 

circuits, which are essential to large computers. Because evolution has no such 

plan, it becomes relevant to ask whether the ability of large collections of neurons 

to perform “computational” tasks may in part be a spontaneous collective 

consequence of having a large number of interacting simple neurons. (Hopfield 

1982, 2554)  

The turn towards collective phenomena does not, by itself, give too much understanding 

of how the brain possibly recognizes a pattern from an incomplete input. In the 
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construction of the actual model, Hopfield began from visualizing the process of pattern 

recognition by water flowing from different directions into a valley. Take again the 

example of the friend’s face; in addition to her we memorize a lot of other different 

people or objects. Translated into the visual analogy of Hopfield, such phenomena 

amount to a landscape consisting of many valleys, in which each valley stands for one 

memorized person and object.  This valley analogy renders the problem of pattern 

recognition as that of finding how patterns (valleys) are stored and the dynamic by which 

an incomplete pattern is recognized and by doing so completed.  

The complex structure of the landscape of the SK model, consisting of many 

energy minima, provided a suitable template for Hopfield’s idea of how pattern 

recognition should be approached.12 The notion of energy minima, which was one of the 

central theoretical elements transferred from the SK model, was interpreted by Hopfield 

in terms of stored patterns. In his analogical reasoning Hopfield modified and integrated 

different templates such as the energy function, rendered the neural components as binary 

variables, and introduced dynamic and storage rules from statistical mechanics and 

neuroscience. The construction of the Hopfield model was far from any straightforward 

application of the SK model.  

One challenge was due to the randomness of the energy minima in the SK-model. 

This cannot be the case if energy minima stand for a stored pattern to be recovered by the 

recognition system. In order to accommodate this feature, Hopfield made use of the Hebb 

learning rule (Hebb 1949). According to this rule the synaptic efficiencies between 

neurons are described by the set of parameters  in which the information is stored. The 

simultaneous activation of two connected neurons results in a strengthening of the 

Jij
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synaptic coupling between the two neurons. This rule is formalized in the Hopfield model 

as follows: 

𝐽𝑖𝑗 = ∑ 𝜉𝑖
𝜇

𝑁

𝜇=1
𝜉𝑗

𝜇
. 

The  are variables that describe a pattern, i.e., a given configuration of active and 

inactive neurons. The number of patterns stored into the network is given by p, and in 

each pattern the number of neurons is equal to the total number of neurons in the network 

N. Each of the patterns is associated with an energy minimum. The topology of the 

energy landscape shows a similar complexity as in the case of the SK model. By 

implementing the Hebb rule, which even has some neurophysiological grounding13, the 

patterns are not random anymore. On the formal level, the structure of the Hopfield 

model is akin to the Ising and SK models. The main difference between them – as was 

also the case between the Ising and SK models – lies in the choice of the coupling 

between the components of the network.  

As in the case of the Ising and SK models, the neurons 𝜎𝑖 in the Hopfield model 

are binary variables. The neuron takes the value 1 in case it is active, and the value 0 if 

it is inactive. The state of each of the neurons is determined by its post-synaptic potential 

(PSP) , produced by the activating signals arriving from all the other neurons to which 

it is connected. It is given by: 

                                ℎ𝑖 = ∑ 𝐽𝑖𝑗𝜎𝑗
𝑁
𝑖,𝑗≠𝑖 . 

    

The post-synaptic potential is of the same form as the internal magnetic field 

caused by the magnetic moments, although it has different interpretation in the case of the 

xi

m
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Hopfield model. The internal magnetic field in the Ising model is the magnetic field that 

the magnetic moment 𝑆𝑖 experiences. It either aligns the two magnetic moments or let 

them point into different directions. In the case of the Hopfield model the magnetic field 

is replaced by a biochemical interaction, which either changes the state of the neuron e.g. 

from active to inactive or leaves it in its actual state. Moreover, the energy function is 

also of the same form as in the case of the Ising and SK models: 

 

 𝐸 = −
1

2
∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗𝑖≠𝑗  

 

It assigns an energy value  to each system configuration 𝜎 = {𝜎1, … , 𝜎𝑁}. The energy 

function can be considered as a computational template that is adjustable to the respective 

system to be modeled. A further important difference between the Ising, SK model and 

the Hopfield models is given by their dynamics. The Ising and SK models are not 

dynamic; they calculate the properties of the system such as the magnetization of the 

microstates through the probability of their occurrence. In contrast, dynamics is essential 

for the Hopfield model; starting from an incomplete input the neural network develops 

into an energy minimum, associated with one of the stored patterns.  

To conclude, the Hopfield model provides an example of how the notion of 

collective phenomena enabled Hopfield to draw an analogy between auto-associative 

memory and the phenomena modeled by the Ising model and the SK model. This analogy 

enabled Hopfield to transfer theoretical and computational templates from the study of 

magnetic phenomena into the field of artificial neural networks. These templates 

E



23 
 

functioned as conceptual and methodological resources, which were used to construct an 

artificial neural network that was able to recognize patterns.  

 

4. Analogies and Model Templates in Model Transfer 

 

Above we have shown that what made the Ising model, and its off-springs, like the 

Sherrington-Kirkpatrick model, attractive candidates for model transfer is the conceptual 

and methodological framework they embody. It renders certain kinds of patterns as 

instances of cooperative phenomena coupled with associated mathematical forms and 

tools that enable the study of such phenomena. The Sherrington-Kirkpatrick model 

examines a situation where the behavior of magnetic spins is disordered due to competing 

ferromagnetic and antiferromagnetic couplings between the magnetic moments. This 

situation leads to behavior that cannot be anticipated from any single elements of the 

system but only from the competing interactions between a large number of individual 

elements, leading to a large number of local minima. In the course of cooling down, the 

spin glass gets trapped into one of the many local minima of the complex energy 

landscape. Hopfield was able to use this property in modeling auto-associative memory. 

The notions of either a computational template or a formal template do not adequately 

recognize this intertwinement of the conceptual, mathematical and computational sides of 

model transfer.  

To better capture the holistic aspect of modeling Knuuttila and Loettgers (2016) 

introduced the notion of a model template that is a mathematical structure or a 

computational method that is “coupled with a general conceptual idea that is capable of 
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taking on various kinds of interpretations in view of empirically observed patterns in 

materially different systems” (396). As such, a model template provides “a formal 

platform for minimal model construction coupled with very general conceptualization 

without yet any subject-specific interpretation or adjustment” (382). The Ising model 

provided such a model template for the SK model, and the SK model, in turn, provided a 

model template for the Hopfield model. This model template can be understood as a 

formally defined framework for modeling particular kinds of cooperative systems that 

instantiates the concept of cooperativity through the interaction energy 𝐽𝑖𝑗 ,
14 i.e. the 

coupling strength between the magnetic moments of the system. The interaction energy is 

central for the cooperative behavior of the system. It defines the form of the energy 

landscape by being embedded into the interlocking theoretical templates of energy 

function 𝐸{𝑆}, magnetization < 𝑀 >, and the partition function 𝑃{𝑆}. Transferred to the 

Hopfield model these templates forgo their original interpretation becoming thus 

computational templates.15 

Thinking about the SK model as a model template for the Hopfield model 

emphasizes the importance of the analogical dimension of template transfer. The notion 

of a cooperative mechanism provided the central conceptual idea shared by the Ising, SK 

and Hopfield models. That Hopfield was able to conceive of pattern recognition in terms 

of the energy landscape resulting from competing ferromagnetic and antiferromagnetic 

couplings between the magnetic moments was a result of analogical reasoning, and not of 

any unequivocal structure mapping. Rather, the analogy enabled him to make use of the 

theoretical and computational templates provided by the Ising model and the SK model, 
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leading to intricate model construction process in which Hopfield also drew resources 

from statistical mechanics. 

According to Humphreys one can often dispose of analogical reasoning, because 

the model construction assumptions can be stated explicitly and checked empirically. 

This may hold in some cases in physics, but not even in the case of the SK model that 

does not lend itself to any straightforward empirical interpretation. And checking 

empirically the assumptions of the model in the case of transdomain transfer may even be 

more difficult.16 In the case of the Hopfield model, it is difficult to see how the 

construction assumptions could be checked, as the concepts adopted from physics such as 

temperature or phase transitions do not map onto any empirical properties of neural 

networks.  

In our view, analogy-based and template-based approaches can fruitfully be used 

to augment each other. In analogy-based approaches the formal and mathematical 

representations are often considered to be derived by abstraction from target and source 

domains. Analogy then enables the mathematization of the target domain in terms of 

relational generalizations that may yield abstract schemas. For instance, Nersessian 

(2002) details how Maxwell formulated the mathematical representation of the 

electromagnetic field concept by making use of imaginary models of fluid medium, 

drawing, moreover, from continuum mechanics and machine mechanics. As he 

progressed in this theorizing, his conception of the aetherial medium became more 

abstract. Nersessian’s discussion captures the conceptual and intertheoretical dimension 

of analogical exchange, but displays also the tendency of the analogy-based approaches 

to disregard the genuinely cross-disciplinary nature of many formal tools. 
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In contrast, the template-based approach focuses on the generalized methods for 

modeling various kinds of systems. It also addresses the question of why some tractable 

templates have proven so nearly universally applicable. Apart from mentioning their 

generality and tractability, Humphreys underlines the importance of the local construction 

and adjustment of templates. We have suggested yet another reason for this universality, 

highlighting the importance of the analogy-based approach: crucial for template transfer 

is the general conceptual core of the model template. This conceptual core is global in 

character, motivating local and domain-specific template construction and adjustment 

processes. While the templates themselves may appear to be merely syntactic structures 

in transdomain exchange – given that their underlying ontologies change with the 

different material systems they are applied to – they do also have an important conceptual 

dimension.17 It is animated by analogies between various kinds of systems that are used 

to mobilize template transfers across a wide spectrum of domains and disciplines, a 

practice that is particularly visible in contemporary complex systems theory and network 

science. 

Last, and related to the global character of model templates, we wish to briefly 

consider how Hopfield himself understood model transfer from physics to neuroscience. 

In a talk on the work of Sir David McKay, Hopfield referred to Niels Bohr and Max 

Delbrück, who both thought that in order to describe and explain biological phenomena, a 

new kind of physics would be necessary. Their question was: “How the diverse 

seemingly purposeful complex phenomena described by the word ‘life’ could emerge 

from lifeless physics?”18.  
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Hopfield argued that from the present-day vantage point the idea of a new kind of 

physics may have become obsolete with the realization that the laws of neural-based 

behavior in higher animals are macroscopic. Biological and large physical systems are 

alike in that both have robust emergent properties arising from the interaction between 

the components of the system. Herein lies the justification for Hopfield for drawing an 

analogy between magnetic systems and neural networks. The analogy is based on the 

shared structural and dynamical properties of systems giving rise to specific properties 

such as ferromagnetism, or pattern recognition. It is not justified on the basis of any 

observed fact of analogy between some particular systems (cf. Norton 2011). The 

justification is more general and theoretical in nature, related to a new grouping of 

systems and phenomena under the headings of many body systems and emergent 

behavior that enables the analogical transfer of theoretical and model templates within 

physics, but also beyond physics to biology.  
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1 The Bakerian Medal and Lecture is awarded annually by The Royal Society, and it is one of the 

most prestigious lectures in physical sciences. 
2 See however Humphreys (2019). 
3 Paul Humphreys originally introduced the notion of a computational template in his study of 

computer simulations and their relation to traditional modeling techniques (see also Humphreys 

2019).  
4 See Houkes and Zwart (2019) for a study of the application of the Lotka-Volterra model to 

technology transfer. The model was originally used by Volterra to study population dynamics and 

Lotka to study biological and chemical systems more generally (Knuuttila and Loettgers 2011)  
5 Humphreys contrasts constructed transdomain templates to those theoretical templates that are 

part of the fundamental principles of a theory, such as Newton’s Second Law, or Schrödinger 

equation. 
6 Humphreys (2004) does not specifically address formal templates.  
7 There is an analogous moment even in the transfer of what seem as a purely formal template. 

Such an analogous dimension of model transfer depends, we suggest, on the conceptualization of 

the phenomenon as being of a particular kind, and giving thus rise to some distinctive patterns. 
8 Another example is provided by the kinetic gas model. 
9 In the antiferromagnet neighboring spins point in different directions. In the paramagnetic phase 

the spins point due to the temperature into random directions. 
10 Probably the most important method developed in this context is the replica method, which 

allows for the calculation of the sum over the 2𝑁 microstates that easily becomes a very large 

number. Also the different possible realizations of disorder pose a serious problem: The form of 

phase transitions varies depending on the distribution of the interactions between the magnetic 

moments. This means that there exists a correlation between disorder and the form of the phase 

transition. In order to get more representative results, an average of a large number of different 

realizations of interactions —replicas— are made use of (see Mezard, Parisi, and Virasoro 1987). 
11 Hopfield used the word ‘collective’ synonymously to what we call ‘cooperative’. 
12 Hopfield was not the first one to draw an analogy between the Ising model and the organization 

of neurons (see Cragg and Temperley 1954, Caianiello 1960) 
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13 Direct experiments on neurons have shown that changes in the signaling transfer is part of 

learning in the brain (e.g. Yang et al. 2014). 
14 Interaction energy is a general concept that can be found in physics, chemistry, as well as in 

biology.   
15 In the Hopfield model, the equations for modeling the dynamics of pattern recognition, i.e. 

Glauber dynamics, is more generally used to model the stochastic dynamics in the Ising model. 

Glauber dynamics can be compared to computational templates such as the Poisson distribution. 

A question, which remains unanswered by Humphreys is the relationship between computational 

and formal templates. The notion of a computational template has receded in the background in 

Humphreys (2019). Poisson distributions are in Humphreys (2004) examples of computational 

templates, but they are discussed as formal templates in Humphreys (2019, 4). Does this mean 

that the notion of a formal template covers computational templates? And how are then 

computational templates related to formal templates such as Barabási-Albert preferential 

attachment templates? How these lines are drawn does not seem to be of a consequence for our 

argument, since in addition to the formal and/or computational side of template transfer, the 

notion of a model template also encompasses a conceptual dimension. 
16 Humphreys does not deny that analogical reasoning may play some role, as shown by his 

discussion of the application of the Volterra’s predator-prey model to the dynamical 

contradictions of capitalism (Goodwin 1967). By referring to the idea of a symbiosis of two 

populations that are partly complementary and partly hostile, he grants that “Kuhnian analogies 

can assist in the transfer of a representation from one domain to another” (2008, 5). Yet, he insists 

that “this analogical transfer can be made explicit by means of a formal set of assumptions” 

(ibid); in the case of the Goodwin model, the Lotka-Volterra equations can be arrived at via 

explicit economic assumptions. Moreover, in Humphreys’ view, formal templates, such as 

Barabási networks, are instantiated by the mapping of a formal template on a target system, and 

the success of this mapping process is evaluated in terms of whether the formal construction 

assumptions are empirically justified. Thus, Humphreys appears to argue that analogies can either 

be dispensed with, or they are not needed in the first place. 
17 Although Humphreys (2004) argues that templates are endowed with intended interpretation, 

he also mentions that changing the ontology of the system comes “very close to starting a new 

[template] construction process” (Humphreys 2004, 80). If the template is used to model a new 

system, the original justification goes with the intended interpretation (ibid.). What we are 

arguing is that the general conceptual content of a model template bestows it with still some 

justification, along with tractability, and the interesting philosophical question is what kind of 

justification this is. 
18 Inference, Information, and Energy: A Symposium to celebrate the work of Professor Sir David 

McKay. University of Cambridge 15.3.2016. https://www.youtube.com/watch?v=vTurUGqD_Lo 


