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Abstract:

In synthetic biology the use of engineering metaphors to describe biological organisms and
their behavior has become a common practice. The concept of noise provides one of the
most compelling examples of such transfer. But this notion is also confusing: While in
engineering noise is a destructive force perturbing artificial systems, in synthetic biology it
has acquired an additional functional meaning. It has been found out that noise is an
important factor in driving biological processes such as gene regulation, development, and
evolution. How did noise acquire this dual meaning in the field of synthetic biology? In this
paper we study the emergence of the functional meaning of noise in relation to synthetic
modeling. We will pay particular attention to the interdisciplinary aspects of this process
highlighting the way borrowed concepts, analogical reasoning and the use of cross-

disciplinary computational templates were entwined in it.

1. Introduction

One of the most conspicuous features of contemporary modeling practice is the way
modeling methods and formalisms move across disciplinary borders. Yet this is not
a novel phenomenon. For example the pioneers of mathematical economics and

biology in the 19t and early 20t century made extensive use of methods, templates

and concepts borrowed from physics. This methodical and instrumental



transdisciplinarity has provided for some analysts the distinguishing mark of
modeling, or computational science. Historian of science Giorgio Israel (1993) has
claimed that the modeling paradigm maturing at the 20t century revolves around
formal structures that are applied to various phenomena on the basis of some
observed similarities. Somewhat similarly, Paul Humphreys (2002, 2004) has
suggested that what he calls computational templates provide a convenient unit of
analysis for computational science exactly because of their all-pervasiveness.!

Though the notion of a model got its present-day meaning first during the
20th century, modeling as we understand it today started already earlier.
Interestingly, what we call today mathematical models were called mathematical
analogies in the 19t century (Bailer-Jones 2009, Israel 1993). This usage is telling as
in modeling methods, formalisms and scientific concepts are often transferred from
one domain to another by way of analogical reasoning. In the following we will
study the intricacies of such analogical reasoning in synthetic biology, which is a
relatively novel and highly interdisciplinary field located at the interface between
engineering, physics, biology, chemistry and mathematics. The research practice of
synthetic biology is a combination of methods, concepts, tools, and theories from
these fields. Of these cross-disciplinary influences, however, those of engineering
are most visible. In synthetic biology the use of engineering metaphors to describe
biological organisms and their behavior has become a common practice. A host of
engineering notions such as robustness, modularity, and redundancy have both
served as basic theoretical concepts of the field as well as vehicles for public
understanding of synthetic biology.

The concept of noise provides a particularly compelling and challenging
example of such interdisciplinary transfer. This is due to the double meaning it has
gained in the field of synthetic biology. In engineering noise is usually regarded as a
nuisance: it is considered as a destructive force perturbing the functioning of

engineered systems. Yet the situation is different when it comes to biology, where

1 With computational templates Humphreys refers to genuinely cross-disciplinary computational
devices, such as functions, sets of equations, and computational methods, which can be applied to
different problems in various domains.



noise has also acquired an additional functional meaning. Biological systems appear
to make good use of noise in diverse processes, including development (Paldi, 2003),
differentiation (e.g. in genetic competence (Cagatay et al., 2009)), and evolution
(Eldar & Elowitz, 2010). A new kind of a model, a synthetic model, contributed
importantly to the development of the functional meaning of noise making it an
intensively discussed and studied subject in synthetic biology. But side by side the
functional meaning of noise also the more traditional understanding of noise as
parasitic and harmful force still continued to exist in synthetic biology.

What is, then, the epistemic rationale of using the notion of noise in both of
these opposite meanings - even within a same field? How did this situation come
about? We will study the evolution of the functional meaning of noise paying
attention to its material, disciplinary, historical, and conceptual conditions. As
regards analogical reasoning, we will show that the two branches of synthetic
biology, the engineering-oriented branch and the basic science-oriented branch
made different uses of some basic engineering notions, such as electric circuit.
Moreover, we will also examine the role played by the particular modeling praxis of
the basic science oriented branch of synthetic biology that employs mathematical
models, model organisms, and synthetic models in a combinatorial fashion. First,
however, we will discuss briefly how philosophers and cognitive scientists have

approached analogical reasoning.

2. Analogical reasoning and interdisciplinary exchange

In the philosophy of science analogical reasoning has often been discussed in the
context of knowledge generation: in scientific discovery and theory development,
and hypothesis formulation. The important role of analogies in the aforementioned
activities has generally been admitted but their epistemic status has been a matter
of disagreement. Whereas some philosophers have considered analogies as only
heuristic tools, others have proposed that scientific theories and models could be
conceived through the idea of analogy (e.g. Hesse 2001, Harre 1970). According to

this view, which Hesse (2001) has dubbed the analogical conception of theories,



scientific models (or theories) are considered as analogues to the aspects of their
real world targets. This conception has also been adopted by the discussion on
mental modeling and (mental) model-based reasoning. Nancy Nersessian describes
analogical modeling process as the evaluation of how well the “constraints of a
model fit the salient constraints of target problem” (Nersessian 2002, 138). As our
interest is in understanding interdisciplinary exchange we focus rather on the
analogies between different fields of inquiry. From this perspective analogical
comparisons between two (or more) domains provide one prominent cognitive
strategy used in modeling (cf. Bailer-Jones 2009). Mary Hesse’s work, especially
Hesse (1966) provides a locus classicus also for this debate.2 Her distinction
between positive, neutral and negative analogies provides a handy tool for studying
the analogical reasoning process. Positive analogy refers to those properties that the
two analogues have in common, whereas negative analogy refers to the known
differences between them. Neutral analogies refer to the properties whose
commonality or difference has yet to be established and thus they provide,
according to Hesse, the epistemic potential for further inferences and theoretical
development. They suggest specific questions to study and the ways to extend the
theory.

Hesse suggests also two other classifications. She distinguishes between
material and formal analogies and “horizontal” and “vertical” relations. There is a
formal analogy between two domains if the relations between certain elements
within one domain are identical with, or at least comparable, to corresponding
elements in another domain. Material analogies in turn require the two domains or
analogues to have at least certain properties in common. For Hesse they are
pretheoretic analogies between observables. As regard properties there can be
“horizontal” and “vertical” relations between them. “Horizontal relations” refer to

corresponding (similar) properties of the two domains, whereas “vertical relations”

22 [t deserves to be noted that for instance in the writings of Hesse and Nersessian the ideas of
models as analogues of the the real world targets and analogical comparisons between two domains
of inquiry often coalesce. This is justified by the idea that an analogue from one domain can serve as a
model of another domain, as Hesse’s well-known example of the billiard ball model of

the "dynamical” theory of gases shows.



are relations between the properties within a domain. The two domains are
formally analogous if there are similar with respect to their vertical relations.

Hesse’s aforementioned distinctions come close to cognitive scientist Dedre
Gentner’s theory of analogy (1983). She distinguishes between attributes and
relations and claims that an analogy does not become stronger only if the two
analogues share more attributes. Instead she thinks that in analogy the key
similarities are those that lie in the relations that hold within the domains viewing
analogy as structure mapping between the base and target domains (see also
Gentner and Markman 1997). In her stress on the connectedness of knowledge she
focuses on Hesse’s vertical relations. Both Gentner and Hesse stress the importance
of the analogical transfer of the relations within the domain, which is what Gentner
call systematicity. Such systematicity is a central feature of mathematical and
computational models, which typically study the dynamic behavior of a system of
interconnected variables (Knuuttila 2008).

Furthermore, Hesse seems to think that material analogy provides a basis for
finding about formal analogies (cf. Bailer-Jones 2009; p. 58). With respect our case
on genetic “circuits” (i.e. genetic regulatory systems) this is an important point: the
genetic circuits have been conceptualized in terms of electric circuits, which
analogical move has made genetic regulatory systems amenable to further
conceptualization and formalization. Drawing material analogies to other kinds of
systems, or employing theoretical concepts, such as noise, depicting certain kinds of
systems or behaviors, seem to be needed to animate formal analogies and to give
them theoretical content.

More generally, in the cognitive science and philosophical discussion on

analogies one can discern following common features:

* Analogy is approached in terms of similarity and familiarity: one makes sense
of a relatively novel domain in terms of an better known, familiar domain
that is thought to be similar to the domain in question

* Analogy is conceptualized as a mapping between target and source domains



* Asregards analogical reasoning the focus in on the shared structure or
dynamics of the two domains, and on neutral analogies as kind of possibilities
for further theoretical development

* Analogy enables the mathematization of the target domain in terms of the

mathematical representation of the source domain

Although we find these points important and revealing, on the basis of our case
study on synthetic biology we would like to make some amendments to this
received view on analogical reasoning. Firstly, it seems to us that negative analogies
carry much more epistemic weight that what the discussion on analogies lets us to
expect (see however Morgan 1997). Secondly, we find the target-source pair too
restrictive a unit of analysis: as we will show, the notion of noise subsumed a much
more heterogeneous fabric of tools, methods, templates and concepts that were
transferred from various disciplines to the study of gene regulatory mechanisms.
Thirdly, as already pointed out, analogies function as means of mathematization, as
a way to introduce a formalism from one domain to another, a point that was
already made by Maxwell when he wrote that the aim of analogy is “to enable the
mind to grasp some conception or law in one branch of science, by placing before it
a conception or a law in a different branch of science, and directing the mind to lay
hold of that mathematical form which is common to the corresponding ideas in the
two sciences (1890, 219, emphasis by the authors of this article). However, limiting
the focus on the respective representations of the source and target domains looses
the sight of the genuinely cross-disciplinary computational templates that often
provide the major tools of modeling (cf. Humphreys 2004). Synthetic biology like
many other fields of computational science draw their theoretical templates from
the repository of formal systems studied by the dynamical systems theory and

applied in a variety of disciplines to a wide range of entirely different phenomena.



3. Noise in synthetic biology

In synthetic biology two different main branches can be distinguished: an
engineering and application oriented branch and a basic science oriented branch.
Within the two different branches different meanings of noise and its role in
biological systems are predominant. Scientists in the engineering and application
oriented branch of synthetic biology aim for the design of novel biological parts or
even systems (e.g. Endy 2010, Purnick & Weiss 2009). On their agenda one finds the
development of new vaccines by manipulating/changing the metabolic systems of
bacteria (Baker, D., Church, G., Collins, ., Endy, D., Jacobson, ]., Keasling, J., Modrich,
M., Smolke, C., & Weiss, R.,2006) or the engineering of cancer killing bacteria (Lim
2010). What is interesting, is that the application and the basic science oriented
branches of synthetic biology draw at times nearly opposing analogies to
engineered artificial systems, as exemplified by the case of noise.

Following an engineering paradigm, the scientists in the application oriented
branch view noise mainly as a disturbance interfering with the correct functioning
of the designed biological system. In contrast, scientists in the basic science
approach have started to consider seriously the differences between the functioning
of artificial systems and biological systems. These scientists have often background
in physics and they aim to gain insight into the organizational principles of
biological systems. The design of synthetic models, that is, simplified novel biological
systems, offers a new tool for the study of the possible design principles of biological
systems. As an example we will discuss the Repressilator, an oscillatory genetic
circuit designed exploring the regulating mechanisms underlying biological
functions such as the day and night rhythm of organisms. The dynamics of such
networks is often analyzed in terms of non-linear feedback mechanisms leading to
complex behavior. Such complex systems can show surprising behavior exemplified
for instance by how noise in the form of stochastic fluctuations can be beneficial for
the behavior of the system. Even though many scientists presented this as a new
and surprising result in the beginning of the 2000’s, we will show that, on the one

hand, external noise and internal noise in the form of stochastic fluctuations had



already been studied in the field of complex systems and biology. Many scientists of
the basic science oriented branch of synthetic biology were already familiar with
these results and/or started collaborations with experts on the effect of noise on
complex systems.? Thus the negative analogy concerning the role of noise in
engineered artificial systems vis-a-vis biological systems was already anticipated by
previous research and gave scientists conceptual and empirical resources to

interpret the findings of synthetic modeling accordingly.

3.1. Electric vs. genetic circuits

In the field of synthetic biology noise became in intensively discussed topic as a
result of synthetic modeling. Synthetic models are located in-between mathematical
models and model organisms through their construction, which combines
properties and features of both types of models. Using a mathematical model as a
blueprint, synthetic biologists construct synthetic versions of mathematical models
from biological components like genes and proteins. Synthetic models share with
the mathematical models the structural features, such as architecture and dynamics,
and with model organisms the right kind of materiality. The modeling practice of
synthetic biology is combinatorial, synthetic modeling is triangulated with
mathematical modeling and simulation as well as with experiments on model
organisms. This is due to the different constraints of the three model types:
although, for instance, synthetic models capture the structures and dynamics
represented by certain mathematical models, they are realized in different media
with highly different affordances.* Synthetic biologists regard as the main advantage
of this novel type of models the combination of the same materiality as that of the
biological systems and the reduced complexity, which affords higher degree of

control than model organisms do. Although one might thus think that synthetic

3 E.g. Michael Elowitz began a collaboration with Jordi Gracia Ojalvo.

4 For a more detailed discussion on the constraints introduced by the materiality of the model see
Knuuttila, T., Loettgers, A. “Modeling and experimentation: The combinatorial strategy in synthetic
biology.” (http://philsci-archive.pitt.edu/8329/1/Modeling_and_experimenting_AL_TK.pdf)



models are superior to mathematical models, the flexibility of mathematical models,
which is due to their symbolic mode, enables researchers to study many different
possibilities with them far more easily than with synthetic models. In practice
mathematical models and simulations are used to study the results of synthetic
modeling. On the other hand, synthetic models being novel engineered biological
systems, are not results of evolutionary process as naturally occurring biological
organisms are that makes experiments on model organisms an ineliminable part of
the research practice of synthetic biology.

An example of such a synthetic model is the Repressilator, an engineered
oscillatory genetic network, which is one of the first and most famous of synthetic
models (Elowitz & Leibler 2000). In the field of synthetic biology genetic networks
such as the Repressilator are conceptualized in two different ways, with both rely on
analogies drawn to electrical circuits as regards their basic structure and properties.
What are these analogies? Genetic networks are typically modeled on electrical
circuits in that that they make use of feedback mechanisms. Interestingly, however,
the basic science oriented branch and engineering oriented branch make different
uses of this original analogy. In both cases the purpose of the feedback mechanism is
to perform control over specific functions. But there is an interesting twist to this.

Engineered systems use feedback mechanism to adjust the output to a given
reference value. An example of this kind of feedback mechanism is provided by the
thermostat, which measures the room temperature (input), compares it to a
reference temperature (output), and in the next step changes the heater so that the
room temperature is adjusted to the reference temperature. The Repressilator, in
turn, is an example of the basic science approach in synthetic biology, which relies
to a different kind of adjustment mechanism. In the feedback mechanism of the
Repressilator, oscillations in protein levels provide the essential element of control.
Consequently, the feedback mechanism works in a different way in engineered
systems and in biological systems.

This difference between the artificial and biological control mechanisms was
recognized already early on in the study of the circadian clock, which regulates the

day and night rhythms of organisms. Brian Goodwin, whose model provided an



important basic template for the subsequent models of the circadian clock
(including also the Repressilator) described this point in the following way: “The
appearance of such oscillations is very common in feedback control systems.
Engineers call them parasitic oscillations because they use up a lot of energy. They
are usually regarded as undesirable and the control system is nearly always
designed, if possible, to eliminate them.” (Goodwin 1963, 5). Consequently, at this
point the analogy between electric and genetic circuits breaks down and the
difference between them paves the way for new biology specific insights on the
organization and functioning of biological systems. With the oscillations as the
central element of control in biological systems the dynamics exhibited by these
systems becomes a different one. This dynamics was probed by the Repressilator,
which pointed also towards a further negative analogy between the control

mechanisms of engineered and biological systems.

3.1 The Repressilator as an example of engineered genetic circuit

The Repressilator is an engineered oscillatory genetic network that consists of three
repressor genes, each of which inhibits the expression of the following gene leading
to oscillations in the protein levels. Figure (1) shows a simplified outline of the
Repressilator commonly used in explaining the basic structure and dynamics of the

system.
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Figure 1. A diagrammatic depiction of the Repressilator. The three genes c, tetR, and lacl

repress each other.
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In reality this system is far more complex. Already genes themself are fairly complex
entities. The same counts for the biochemical processes taking place in the network.
Furthermore the synthetic model is not an isolated object but imbedded in an E. Coli
bacterium. Whereby the assumption is made that the Repressilator is a module and
not interacting with the rest of the cell environment and thereby not exposed to
external noise coming from the rest of the cell. In constructing the Repressilator
Leibler and Elowitz tried to find such design principles of biological systems that
would lead to stable oscillations like those observed in the circadian clocks. The
mathematical model on which they based the design of the synthetic model as well
as the computer simulations performed with the mathematical model predicted the
existence of stable oscillations: “the system may converge toward a stable steady
state, or the steady state may become unstable, leading to sustained limit-cycle
oscillations." (Elowitz and Leibler 2000, p. 335) The two scientists aimed for
sustained limit-cycle oscillations but unfortunately the synthetic model they built
did not exhibit the behavior predicted by the mathematic model used to guide its
construction. The oscillations in the protein level—made visible by connecting one
of the three repressor genes of the network to a green fluorescent protein (GFP)
leading to oscillations in the intensity of the light emitted by the GFP—showed
irregularities. Figure (2) is an example of such single cell observations. The arrow in
the upper part and lower part of images (a) and (b)5 indicates a single E. coli
bacterium over a period of time in which the population of bacteria did grow. The
analysis of the intensity of light emitted from the GFP in the cell led to the
oscillations depicted in Figure (3). Comparing the oscillations made visible by the
fluorescence of single cells taken from a population allows the exploration the
irregularities in the oscillatory behavior. Figure (4) shows the comparison of the
oscillations of three different cells. One sees a shift in the phase of the oscillations

and difference in the period of the oscillations.

5 The division into the two parts is not due to a difference in content but only to the way the pictures
were taken.
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Figure 2. Observations on the oscillations in protein level of a single cell (Elowitz & Leibler,

2000)
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Figure 3. Diagrammatic representation of the oscillations in fluorescence (Elowitz & Leibler

2000)
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Figure 4. Comparison between the oscillations observed in single cells of a microcolony.

(Elowitz & Leibler 2000)

The original mathematical model used was a deterministic model, which did not
take into account stochastic effects such stochastic fluctuations in gene expression
due to the low number of molecules in many biological systems such as cells.
Performing computer simulations on a stochastic version of the original
mathematical model Leibler and Elowitz were able to reproduce similar variations
in the oscillations as observed with the synthetic model. This led to the conclusion
that stochastic effects may play a role in gene regulation meaning that the original
analogy to electrical circuits, already adapted to biological systems by way of
relegating oscillations a functional role, proved even more lacking. Indeed, what the
Repressilator actually accomplished was to provide a test whether the analogy to
electric circuits and the idea of negative feedback mechanism really worked in the
case of actual biological systems. Are naturally evolved genetic regulatory networks
constructed in such a way? The answer was only partly positive, but on the other
hand the partial failure of the Repressilator provided also an important trigger for a
new line of research exploring the different sources of noise and their effects on
biological systems.

[t should be noted that in the case of the Repressilator the stochastic
fluctuations had still the character of a disturbance and the question became how to
change the design of the Repressilator in such a way that it would lead to a more
robust behavior. But what started to intrigue the researchers in the field was

whether the stochastic fluctuations observed could also have a functional role. In
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the subsequent research in the basic science oriented branch of synthetic biology,
noise based on stochastic fluctuations gained a functional status. An example of the
functional role of noise is provided by behavior of the bacterium Bacillus subtilis. In
B. subtilis competence is a state in which the cell is able to take up DNA from the
environment. The state is a transient state. After entering the state of competence B.
subtilis will after some while exit this state again. In a population of identical cells
not all will become competent but only 20 percent. This observation has raised the
question of what kind of dynamics controls this probabilistic-transient dynamics.
Experiments in which the dynamics of the underlying genetic circuits were studied
by time-lapse fluorescence movies showed that “excitable dynamics driven by noise
naturally generate stochastic and transient response” (Suel 2006, p.545). This
specific kind of excitability has also been observed, as noted by the authors, in other
systems such as neurons and it provides a mechanism in controlling transient
states. Consequently, stochastic noise caused by variations in the gene expression of
different cells, need not be a perturbation but rather an essential ingredient of the

dynamics responsible for the uptake of DNA from the environment.

4. External and internal noise

Although the current intense discussion on the role of stochastic fluctuations, or
noise, in controlling biological systems seems to give the impression that it is a
novel topic, this is not the case. The origin of this idea can be traced back to at least
to two different bodies of work, with both have had an impact on the development
synthetic biology. Firstly, many synthetic biologists are physicists and draw their
analogies to systems, which due to non-linear dynamics show complex behavior.
Methods, techniques and computational templates developed in these studies have
been transferred to synthetic biology. As we have seen, synthetic biologists often
use the term noise to refer to stochastic fluctuations in gene expression (or in other

processes).® Such inherently random processes have been extensively studied in

6 Such stochastic fluctuations are caused by the low number of molecules in the cell.
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statistical mechanics, both conceptually and experimentally. The functional role for
noise was already evident in the more general field of the study of complex systems,
where during the 1970’s the influence of external noise on the behavior complex
systems became an object of study. Secondly, also in 1970’s biologists were studying
the role of internal noise. In contrast to the studies on the external noise in complex
systems, in the study of stochastic fluctuations intrinsic to biological systems

theoretical modeling was interlinked with experimentation.

4.1 External noise enlarging the possible states of the system

The first time noise became recognized not only as a disturbance but something that
could be beneficial was in the context of the research on complex systems. In the
1970’s scientists such as the Russian physicist Alexander S. Mikhailov started to
investigate noise-induced phase transitions in open systems such as biological,
chemical, and physical systems. The main results of this research run against the
common understanding according to which: “all relevant bifurcations” are already
present in dynamical equations and introduction of external noise or taking into
account the internal statistical fluctuations leads only to some washing off of the
sharp transition.” (Mikhailov 1979, XX) Furthermore, and most interestingly,
external noise was shown to be able to induce phase transitions: new stable states
are crated in the system states by applying external noise. Mikhailov came to these
results by studying the classical Lotka-Volterra model to which he added a
fluctuating food source representing the external noise. In this model two species
are competing over the same type of food. One of the species denoted by N is
stronger one, whereas the other one denoted by n is the weaker species. N and n
represent the density of the respective species. The latter one is also able to move
around and by doing so introduces a diffusion term to the system given by DAn.

The model is represented by the following differential equations:

7 Bifurcations in this context mean changes in the qualitative or topological structure in the solutions
of differential equations.
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The first two equations represent the rates of the increase of the populations. They
are linearly dependent on the amount of food and negative when food is absent. The
second equation describing the dynamic of the second species has an additional
diffusion term DAn taking into account the mobility of this species. This makes the
system a system with diffusion. The third equation describes the dynamic in the
food density. Both species consume in a given unit of time an amount of food C and
¢, respectively. The food grows with a constant rate Q and even in the absence of
both species the maximal food density is limited by a decay mechanism represented
by the term —-GM . By introducing a Gaussian random force f(r,t) spatial and
temporal fluctuations in the rate of the food growth are taken into account. This last
term represents the external noise applied to the system. What is the effect of this
additional noise source?

As Mikhailov shows, in the classical case without noise the system has only
one steady state: competition leads to the extinction of the weaker species. In
contrast, fluctuations in the system caused by the Gaussian random force makes the
coexistence of the two competing species possible. New steady states are created
meaning that new breeding regions can be created by fluctuations. This is a very
important result. It shows that through external noise new states of the system can
be created which then can be taken by the system.

Mikhailov sees the importance of his results for the study of other systems in
other disciplines. He writes:” The cross-disciplinary significance of these results
should be mentioned. Similar noise-induced phase transitions can occur in systems
with chemical reactions and in physical systems with diffusion; they can be also of

interest in discussions of genetic versatility.” (ibid, p. 144) The results of the special
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model have thus a more general character applicable to other complex systems.
Mikhailov’s statement is based on the assumption that systems belonging to this
special class of complex systems share specific structural and dynamic elements,
such as non-linear dynamics caused by feedback loops. Those elements are
independent from the particularities of the respective system but are considered to
be the basis for observing the functional component of noise and thereby, as some
scientist argue, bring such models closer to the observed behavior in real systems.
As our example of the Repressilator shows, exploring this functional component of
noise turns out to be a rather intricate enterprise where among other things the

specific materiality of synthetic models plays an important role.

4.2 Internal noise and its possible effects on the dynamics of complex systems

Scientists have been observing variations in the behavior of populations of cells
since the 1940’s . Max Delbrueck, for example, observed such variations in
bacteriophage burst sizes (Delbrueck, 1945), E. O. Powell in cell division lengths
(Powell, 1958), and Novick and Weiner in the concentration of f-galactosidase in
the lac regulatory genetic network in E. coli (Novick & Weiner, 1957). These
variations in the behavior of single cells gave rise to the question of what was
causing these seemingly non-genetic variations. Spudich and Koshland (1976)
explored this question in series of elegant experiments on the chemotactic behavior
of a population of genetically identical E. coli bacteria in a homogenous environment.
Spudich and Koshland started their article by stating the importance of the
question of the existence or non-existence of non-genetic variations in the following
way: “ Biological systems are constantly confronted with chance occurrences in
their environmental conditions and internal processes. An elaborate biological
apparatus has evolved to utilize chance in genetics for the survival of the species.
Some feedback mechanisms, on the other hand, are designed to insulate the
individual against chance fluctuations of environmental conditions. How much
influence has chance in internal cellular processes in determining the metabolic

state and behavior of the single cell? More specifically, if cells containing identical
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chromosomes conditions, how similar would they be in their biochemical
characteristics?” (Spudich and Koshland 1976, p. 467)

What Spudich and Koshland describe as chance in internal cellular processes
is in the present literature on noise usually described as internal noise. However, it
seems that there was not much overlap between the community of scientists
studying the effect of external noise on complex systems such as Mikhailov and
scientists focusing on internal noise such as Spudich and Koshland. Why this was
the case needs to be studied in more detail, but it seems that the research on
stochastic fluctuations was concentrated on non-genetic variations and therefore
strongly linked to the research in biology, instead of physics.

In their experiments Spudich and Koshland studied the non-genetic
individuality of cells by observing the chemotactic migration of bacteria. Bacteria
such as E. coli make use of a unique system for sensing food sources in their
environment. They alternate between a tumbling and a swimming phase. In the
swimming phase, lasting only for a few seconds, the bacterium is moving straight,
then it tumbles and changes direction. During these different movements it is
sensing whether the conditions are getting better, meaning whether it is moving in
direction of a food source, or worse, meaning it is moving to a source that could
harm it. When the bacterium is sensing a food source it will start moving in
direction of the food source and tumble less. This behavior is called chemotaxis. The
movements are produced by flagella surrounding the bacteria and moving either
counter-clockwise (swimming in straight line) or clock wise (tumbling). Spudich
and Koshland investigated the non-genetic variability by using a population of
genetically identical bacteria whose environmental conditions were changed by
adding a chemical that would provide a food source for the bacteria. Sensing the
chemical, the bacteria changed their swimming and tumbling behavior following the
food gradient and moved in the direction of the food source. The exact mechanism
by which the bacteria was changing its tumbling behavior as they sensed a food
source was unknown but as the two authors proposed: “[...] can be rationalized as
caused by changes in the levels of a tumble regulator [...].” (Spudich and Koshland

1976, p.467)
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Spudich and Koshland observed the movement of individual bacteria by
following the bacteria under the microscope and videotaped their behavior. They

studied the following two situations:

1. The sensitivity to stimuli as measured by the recovery from temporal
gradients.

2. The tumbling frequency when there is no gradient.

They found that individual cells reacted differently. Fig. (4) shows the reaction of 22
bacteria to a chemotactic stimulus over a time interval of 3.5 min. The lines mark
brief tumbles of the bacteria and the x when the bacteria started to tumble again
continuously. The figure shows clearly the heterogeneity of the behavior of different
individuals. Spudich and Koshland explained this behavior by fluctuations in the

tumble regulator changing the motion of the bacteria according to the changes in the

environment.
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Fig.(4) The diagram showing the variation in the reaction of bacteria
to chemotactic stimuli measured by Spudich and Koshland (1976)
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But what was causing the fluctuations in the tumble regulator? Or as Spudich and
Koshland formulated the question:” How could such individuality be produced?”
(ibid, p. 470) They speculated that such individuality might due to Poissonian
variations in molecules present at low numbers in the cell. The variance of a
Poisson distribution is equal to its mean. The standard deviation given by the square
root of the variance becomes relatively smaller for larger numbers of molecules and
larger for a small number of molecules. For example if there are 10*molecules of a
special type, the standard deviation would be 100 molecules, giving a 1% deviation.
If there are only 100 molecules, a 10% standard deviation would arise. At the end of
their article the two authors asked the question: What could be the advantage of
non-genetic variations for biological systems? They reason that non-genetic
variations as observed in their experiment would provide a mechanism to react to
random fluctuations in the environment: “Thus non-genetic variability would be a
preferred mechanism for accommodation to random fluctuations in the
environment and genetic variability the preferred mechanism for accommodation to
long lasting environmental changes.” (Spudich and Koshland 1976, p. 470). Here we
already observe a functional explanation for the non-genetic variation but at this
point it still remained a speculation.

The importance of the work of Spudich and Koshland lies, as M. D. Levin
pointed out, in making possible the modeling of the possible origins of the observed
variations (Levin, 2003, p. 135). Spudich and Koshland’s work was indeed followed
by a number of articles presenting theoretical models, which take into account the
experimental results on the variations in the swimming behavior of E.coli. These
articles discussed questions such as whether the variations in gene expression
follow a Poisson distribution or not, or whether stochastic processes at the level of
gene expression are linked to, for example, cell differentiation processes. Minoru S.H.
Ko (Ko, 1991) introduced a model on stochastic gene induction with which he aimed
to explain the experimental results showing that expression levels of individual
inducible genes are very heterogeneous and not, as presumed before, identical to

the averaged level of many copies. But he was very careful in relating these
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stochastic processes on the level of gene expression to the observed stochastic
manner in which cells in cell differentiation make commitment decision.
Accordingly, Ko indicates an essential point in the development of the functional
meaning of noise: Stochastic fluctuations in gene expression due to the low number
of molecules in the cell do not link in any straightforward way to such processes as
cell differentiation or the observed individuality in the behavior of cells in
chemotaxis. Behind chemotaxis lies a complex signaling, perception and response
mechanism. It is essential to identify the underlying mechanisms—their
architecture and dynamics—which determine functions like chemotaxis or the
effect of stochastic fluctuations in gene expression, or of other sources of noise on
such mechanisms. As we have seen, novel imaging methods as well as synthetic

models are helpful in this enterprise.

5. Discussion: Analogies, templates, and concepts

We have seen that the research on genetic regulatory networks made various uses
of analogies. A basic positive analogy was drawn to electric circuits, making use of
the negative feedback control mechanism in “genetic circuits”. However, the
mathematical templates used to model the dynamics of genetic circuits were taken
from other sources, notably from the study of complex systems. As we have shown,
the progress and the direction of the research program was largely due to the
negative analogies drawn between artificial and biological control systems. Firstly,
already Goodwin (1963) suggested that oscillations (conceptualized as noise in
artificial systems) in fact provide the means by which biological systems regulate
themselves. A further negative analogy as regards to the role of noise in artificial vis-
a-vis biological systems was drawn as a result of synthetic modeling. Although the
mathematical model that was used as the basis of the construction of the
Repressilator exhibited regular oscillations there remained the possibility that
nature did it in a different way, which prompted the construction of the
Repressilator. The observed irregular oscillations of the Repressilator made noise a

pressing problem and an object of investigation. In principle there were two ways of
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dealing with the observed noise, indicative of the differences between the
application oriented and basic oriented branches of synthetic biology: Firstly, one
could pursue the positive analogy between artificial and biological systems by
treating the fluctuations as a disturbance and trying to find ways of making the
system more robust by changing its architecture. This line is chosen by the
application oriented branch of synthetic biology, which uses different strategies to
isolate and get rid of different sources of noise. Such approach is justified by the aim
of the application oriented branch of synthetic biology to engineer biological
components for specific purposes: for vaccines, biofuels and cancer treatments.8

The basic science oriented branch of synthetic biology has chosen the
opposite direction in drawing a further negative analogy to artificial control
systems: Recognizing noise as an intrinsic part of biological systems researchers in
the field have started to study the sources and impact of noise on biological systems.
As a result of these studies noise has also been allotted a functional role in
supporting biological systems.

The process in which noise gained a functional meaning in synthetic biology
is closely linked to the transfer of knowledge, methods, and tools from the research
on complex systems. In the Elowitz lab for example, via the cooperation with the
physicist Jordi Garcia Ojalvo such knowledge, methods, and tools were imported
into synthetic biology. Ojalvo came to the lab when research on the mechanism of
the competence in B. subtilis started. He recognized parallels in the behavior of B.
subtilis to excitable systems—Ilasers and neurons—which he had studied intensively
in the context of complex systems (Lindner, Garcia-Ojalvo, Neiman, Schimansky-
Geier, 2004).

[t appears to us that paying attention to the cognitive importance of negative
analogies makes visible the heterogeneous nature of analogical reasoning, which the
traditional approach to analogical transfer largely neglects. Any negative analogies,
by themselves, do not carry research much further, which might be the reason why

so little attention has been given to them in the literature on analogical reasoning

8 This approach of the application oriented branch of synthetic biology can often be justified by the
fact that on the population level the effect of stochastic fluctuations averages out.

22



(see however Morgan 1997). The situation becomes different if one enlarges the
unit of analysis to cover other domains and bodies of work that could give negative
analogies a tentative interpretation and point towards further study. In the case of
the notion of noise, the noisy oscillations of the Repressilator made relevant the
earlier studies on external and internal noise, which explains also in part why
researchers in the field of synthetic biology were so quick to pick the idea of the
functional meaning of noise. As we have shown, despite the reigning engineering
connotations of the concept of noise, the new functional understanding of it had
already emerged in physics from where synthetic biologists have adopted the
majority of their modeling methods. Especially the work in statistical physics
provided a well-understood concept of stochastic fluctuations and associated
computational templates, such as Poisson variations, for the study of the non-
deterministic fluctuations observed in biological systems (cf. Ozbudak, Thattai,
Kurtser, Grossman, & van Oudenaarden, 2002). On the other hand, the functional
meaning of noise had also already emerged in biology for instance in the studies of
non-genetic variations although biologists did not label these phenomena noise.

Consequently, the notion of noise in the field of synthetic biology subsumes
heterogeneous interdisciplinary influences between different fields of inquiry. In
making use of analogies scientists do not merely focus on the similarities (or
differences) between two domains as the mapping-accounts suggest but through
drawing analogies they mobilize whole research fields including their theoretical
results, tools, methods, templates and concepts. The modeling practice - which in
the case of synthetic biology is particularly subtle, combining mathematical models,
model organisms, and synthetic models - weaves all these heterogeneous
interdisciplinary influences together.

Finally, our case shows that the mapping-account does neither provide an
adequate treatment of mathematical representation. Namely, more often than not it
is assumed that the formal structure used to describe one domain is transferred to
another domain. For instance, Nersessian (2001) claims of Maxwell that he
abstracted from specific mechanical models the dynamical properties and relations

that continuum-mechanical systems, certain machine mechanisms and
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electromagnetic systems had in common. However, in contrast to such abstraction
account it seems that modelers typically make use of familiar computational
templates in the sense of Humphreys (2002, 2004) that are then locally adapted to
various subject matters.

The models that feature in our account involve several instances of such
template use. In designing mathematical model underlying the Repressilator Elowitz
and Leibler were seeking network architectures leading to stable limit-cycle
oscillations. Such oscillations are self-sustained meaning that after small
perturbations the system will move back to the limit-cycle trajectory. Systems
showing such limited cycle behavior have been studied and analyzed in fields such
as electrical engineering, biology, economics, and chemistry. One of the earliest
examples is the van der Pol relaxation oscillator, which was found and analyzed by
the Dutch engineer Balthazar van der Pol during the 1920’s. Also Brian Goodwin
explored different architectures. The Jacob-Monod operon model of gene regulation
provided Goodwin the basic template for constructing his simple feedback network
through which he studied the conditions under which sustained oscillations become
possible. At the time when Elowitz and Leibler set out to design the Repressilator a
large body of research on possible network architectures and oscillatory dynamics
was already available. The design of the Repressilator is linked to the Goodwin
model in that both models make use of feedback mechanism and only differ in the
number of genes. Goodwin made use of one gene repressing its own function and
Elowitz and Leibler used 3. They wrote:” The simplest such networks supporting
limit-cycle oscillations are those containing a single repressor and a single activator,
or an odd number of repressor exceeding 3.” (2000, p. XX). Clearly, what is
happening here is not adequately described in terms of abstracting a template from
one domain and then applying it to another domain. The templates used here are
largely subject-independent formal systems applicable across disciplines to wide
range of problems.

Of course such templates can have an origin in a certain model describing a
particular system. For instance, the Lotka-Volterra model, which Mikhailov used to

study the effect of external noise was presented by Volterra as a model of a
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particular predator-prey-system (although Lotka actually made use of template-
oriented approach in his formulation of the model, see Knuuttila & Loettgers, in
press). Since then the model has also been detached from its origin in fisheries and
it has started to serve scientists and mathematicians in the field of dynamical
systems theory as a popular model for studying non-linear dynamics. This template-
oriented interest in the Lotka-Volterra model and its dynamic behavior was sparked
by the advancements of computer technologies in the 1970’s. Another kind of
template is provided by Poisson variations, which Spudich and Koshland used to
explore whether non-genetic individuality, the presence of a diversity of phenotypes
in a genetically identical population, could be explained by Poissonian variations in
the molecules present in a low number in a cell. Poisson variations differ from such
a template as the Lotka-Volterra model which provides a model system for the
exploration of certain kinds of dynamic behaviors and model specific behaviors.
Poissonian fluctuations offer a mathematical tool for the analysis of intrinsic
fluctuations in biological systems. It allows for example for an isolated analysis of
the contribution of different sources of fluctuations such as fluctuations in the
transcription and translation in protein production. (Ozbudak, Thattai, Kurtser,
Grossman, & van Oudenaarden, 2002)

Yet despite the frequent use of computational templates in modeling the
analogies between different domains are not entirely formal. Their use is motivated
by theoretical considerations. In practice, as also the case of modeling genetic
regulatory mechanisms shows, the templates are often introduced hand in hand
with analogies and theoretical concepts. Hence it seems to us that Hesse is right in
hinting that material analogies to systems like electric circuits and scientific
concepts like noise are often needed to make templates tangible and to give them
provisional theoretical content. And these analogies and notions are more bound to
subject specific knowledge in certain scientific fields than the mere formalisms used.
Therefore we suggest that a viable account of interdisciplinary exchange should
combine insights concerning analogical reasoning with the study on how formal

templates are used in scientific modeling.
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6. Why “noise”?

The notion of noise has changed a lot since Shannon and Weaver’s (1963) notion of
noise as an undesirable uncertainty introducing spurious information mixing with
useful information.® This useful information was to be cleaned up from the
undesired wrong information or the source of noise was to be eliminated. We have
shown how an entirely different approach to noise emerged in synthetic biology
during the last decade discussing also its origins in different fields of study. In the
research on complex systems in the 1970’s the notion of noise was mostly used in
the studies on the effect of external sources of noise on complex systems. But only
with the introduction of synthetic modeling and novel imaging methods did noise
begin to cover all the unknown and known forms of fluctuations. These new
methods made visible the non-genetic fluctuations on the level of single cells
(Elowitz 2002). Such fluctuations had remained “invisible” in the previously studied
population level where they typically average out. As the noisy behavior became
observable on the molecular level, the earlier discussions on the function of non-
genetic fluctuations in biological systems revived. New methods made visible a large
number of before unrecognized/non-visible non-deterministic fluctuations and as a
result researchers started to realize the complexity of the question of noise.

But why should the researchers continue talking about noise when referring
to these non-deterministic fluctuations and their possible functional roles. Why was
the notion of noise extended in such a way? This certainly reflects partly the
influence of engineering sciences on biology and the background of many synthetic
biologists in the research on complex systems. However, there seems to be also
another more profound reason, which is related to the use of borrowed concepts
and modeling methods. Namely, the application of engineering notions and
modeling methods of physics to biology by way of analogical reasoning is not

unproblematic. The sources of the fluctuations in biological organisms are largely

9 There is a long tradition in molecular biology of making use of metaphors and concepts from
information theory (cf. Kay, 2000), but synthetic biology is taking it a step further by basing an
engineering approach on these metaphors and concepts.
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unknown in all but a few cases, as is their exact impact on the dynamics of biological
systems. One reason for the use of the notion of noise then, we suggest, is exactly
this uncertainty: noise functions both as an umbrella term and as a place holder for
the emerging research on different forms of fluctuations, their sources and
consequences for the dynamics of biological systems.

We have argued above that scientific concepts are often associated with
specific modeling methods and computational templates. Yet, as the case of noise
shows, they can also undergo semantic transformations and subsume new kinds of

research agendas employing novel modeling tools.
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