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Abstract: 

The picture of synthetic biology as a kind of engineering science has largely created the 

public understanding of this novel field, covering both its promises and risks. In this 

paper, we will argue that the actual situation is more nuanced and complex. Synthetic 

biology is a highly interdisciplinary field of research located at the interface of physics, 

chemistry, biology, and computational science. All of these fields provide concepts, 

metaphors, mathematical tools, and models, which are typically utilized by synthetic 

biologists by drawing analogies between the different fields of inquiry. We will study 

analogical reasoning in synthetic biology through the emergence of the functional 

meaning of noise, which marks an important shift in how engineering concepts are 

employed in this field. The notion of noise serves also to highlight the differences 

between the two branches of synthetic biology: the basic science-oriented branch and the 

engineering-oriented branch, which differ from each other in the way they draw analogies 

to various other fields of study. Moreover, we show that fixing the mapping between a 

source domain and the target domain seems not to be the goal of analogical reasoning in 

actual scientific practice. 
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1. Introduction 

 

One of the most visible and active protagonists of synthetic biology, Drew Endy, opened 

his Testimony to the Committee on Energy and Commerce with the following description 

of the research undertaken in his lab: “One current ‘holy grail’ is to implement a 

genetically encoded 8-bit information storage system. Our deliverable is similar to a 

computer’s memory chip or a USB flash drive that you might use with a digital camera, 

[…].1 Another prominent synthetic biologist Jim Collins, who introduced in 2000 one of 

the first synthetic networks, a toggle-switch, argues along the same lines writing that 

“[…] synthetic biology was born with the broad goal of engineering or ‘wiring’ 

biological circuitry—be it genetic, protein, viral, pathway or genomic—for manifesting 

logical forms of cellular control.” (Khalil & Collins, 2010).  

A recurrent theme in Endy’s, Collins’, and many other synthetic biologists’ 

reflections and statements on synthetic biology consists of making biology an 

engineering science. For them engineering sciences, such as mechanical or electrical 

engineering, function as model sciences for synthetic biology. This picture of synthetic 

biology has also created a public understanding of this novel field, covering both its 

promises and risks—such as the development of bacteria to produce biofuels or to kill 

cancer cells—or the recreation of dangerous viruses by terrorists.  

In this paper, we argue that the actual situation is more nuanced and complex. 

Many of the analogies drawn to engineering by synthetic biologists are merely 

hypothetical and under debate and investigation. A prominent example of this is provided 

by the assumption of the modular organization of biological systems, which is one of the 

cornerstones of synthetic biology. It seems to be needed for engineering purposes, as it 

allows the integration of functional biological units into organisms such as bacteria. 

Another critical point regarding the engineering aims of synthetic biology is related to the 

goal of designing controllable systems. In the light of recent research, non-genetic 

variability in the form of stochastic fluctuations, which are summarized under the term of 

                                                
1 http://med.stanford.edu/scopeblog/Endy.Testimony.05.27.2010.pdf (Accessed 22 January 2013). 
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noise in synthetic biology, appears to be essential for biological systems. Yet at the same 

time it limits how well the engineered synthetic systems can be controlled. Stochastic 

fluctuations that can be caused for example by the small number of molecules in the cell, 

are an inherent property of biological as well as synthetic systems.  This highlights, as we 

will show, a major tension between the engineering of biological systems and the 

functioning of naturally evolved biological systems.  

Moreover, even though engineering concepts, such as robustness, standardization, 

redundancy, and noise, form the key concepts of synthetic biology, it is often forgotten 

that in synthetic biology analogies are not only drawn to engineering. In fact, synthetic 

biology is a highly interdisciplinary field of research located at the interface of such fields 

as physics, chemistry, biology, and computational science. All of these fields provide 

concepts, metaphors, mathematical tools, and models that are utilized by the scientists by 

drawing analogies between these different fields of inquiry.  The analogies drawn are not 

only positive; negative analogies are also made.  

In the following, we will highlight some aspects of the heterogeneous 

interdisciplinary research practice of synthetic biologists by considering the analogies 

they make to other disciplines. We will pay particular attention to the emergence of the 

functional meaning of noise, which marks an important shift in how engineering concepts 

are employed in this field.  The notion of noise serves to highlight the differences 

between the two branches of synthetic biology: the basic science-oriented branch and the 

application/engineering-oriented branch. These branches differ from each other in the 

way they draw analogies to various other fields of study and the extent to which they rely 

on positive analogies to engineered systems.  

As regards the discussion on analogical reasoning in the philosophy of science 

and cognitive science, our study shows that negative analogies play a much more 

important epistemic role than these discussions would lead us to expect. Moreover, fixing 

the mapping between a source domain and the target domain seems not to be the goal of 

analogical reasoning in actual scientific practice. What is striking is the transient, broad, 

and tentative nature of analogical reasoning; one can discern a continuous dialectic 

between often very general positive and negative analogies, prompting scientists to 
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retrieve resources from different fields and disciplines in an effort to better understand 

the problems they face and the objects under investigation.  

 

2. Analogical reasoning and interdisciplinary exchange 
 

In the philosophy of science, analogical reasoning has often been discussed in the context 

of knowledge generation: in scientific discovery and theory development and hypothesis 

formulation. The important role of analogies in the aforementioned activities has 

generally been recognized, but the epistemic status of analogies has been a matter of 

disagreement. Whereas some philosophers have considered analogies as only heuristic 

tools, others have proposed that scientific theories and models could be approached 

through the idea of analogy (e.g. Harre, 1970; Hesse, 2001; Nersessian, 2002a; Bailer-

Jones, 2009). According to this view, which Hesse (2001) has dubbed the analogical 

conception of theories, scientific models (or theories) are considered as analogs to their 

real-world targets. Nancy Nersessian describes the analogical modeling process as the 

evaluation of how well the “constraints of a model fit the salient constraints of a target 

problem” (Nersessian 2002a, p. 138).2 As our interest is in understanding 

interdisciplinary exchange, we focus on analogical comparisons between different fields 

of inquiry. From this perspective, analogical reasoning provides modelers with a 

powerful cognitive strategy to transfer concepts, formal structures, and methods from one 

discipline to another. Mary Hesse’s work, especially Hesse (1966), provides a locus 

classicus for this debate.3 Her distinction between positive, neutral, and negative 

analogies offers a handy tool for studying the analogical process. For Hesse, positive 

analogies refer to those properties that the two analogs have in common, whereas 

negative analogies refer to known differences between them. Neutral analogies, in turn, 

refer to the properties whose commonality or difference has yet to be established; they 

                                                
2 Nersessian’s account of analogical reasoning is closely linked to the cognitive science discussions on 
mental modeling and (mental) model-based reasoning (see Nersessian, 2002b). 
3 In the writings of Hesse and Nersessian, the ideas of models as analogs of real-world targets and 
analogies between two domains of inquiry often coalesce. This is justified by the idea that an analog from 
one field can serve as a model of another field, as Hesse’s well-known example of the billiard ball model of 
the “dynamic” theory of gases shows. 
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thus provide epistemic potential for further inferences and theoretical development. They 

suggest specific questions to study and possibilities to extend the theory. 

Hesse also puts forth two other classifications. She distinguishes between 

material and formal analogies, and horizontal and vertical relations. A formal analogy 

exists between two domains if the relations between certain elements within one domain 

are identical or at least comparable to the relations of the corresponding elements in 

another domain. This would mean, for example, that the relations could be described by 

the same equations. Material analogies, in turn, require the two domains or analogs to 

have at least certain properties in common. For Hesse, they are pre-theoretic analogies 

between observables. As regard properties, there can be horizontal and vertical relations 

between them. Horizontal relations refer to corresponding (similar) properties of the two 

domains, whereas vertical relations are relations between the properties within a domain. 

The two domains are formally analogous if they are similar with respect to their vertical 

relations. 

Hesse’s aforementioned distinctions come close to cognitive scientist Derdre 

Gentner’s influential theory of analogy (1983).4 She distinguishes between attributes and 

relations and claims that an analogy does not necessarily become stronger only if the two 

analogs share more attributes. Instead, she thinks that in analogy the key similarities are 

those that lie in the relations that hold within the domains, thus viewing analogy as 

structure mapping between the source and target domains (see also Gentner & Markman, 

1997). In targeting the connectedness of knowledge, she focuses on what Hesse calls 

vertical relations. Both Gentner and Hesse emphasize the importance of the analogical 

transfer of the relations within the domain, which is what Gentner calls systematicity. 

Such systematicity shows “an implicit preference for systems governed by “higher order 

relations” such as causal, mathematical, or functional relationships (Gentner & Holyoak, 

1997). From the perspective of modeling, it is important to note that systematicity is a 

central feature of mathematical and computational models, which typically study the 

dynamic behavior of a system of interconnected variables (Knuuttila, 2011). 

                                                
4 Apart from philosophy of science and cognitive science, there is an important body of research on 
analogical reasoning in artificial intelligence entitled “case-based reasoning” (see Schank, 1982; Aamodt & 
Plaza, 1994). 
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However, in light of Hesse’s examples it seems that material analogy provides a 

basis for constructing formal analogies (cf. Bailer-Jones, 2009, p. 58). Nersessian (e.g. 

2002a) argues on the basis of her detailed historical reconstruction of Maxwell’s work 

that he formulated the mathematical representation of the electromagnetic field concept 

by making use of imaginary models of fluid medium, drawing inspiration from 

continuum mechanics and machine mechanics. As he progressed in this theorizing, his 

conception of the aetherial medium became more abstract, yet traces of his earlier 

analogical reasoning remained in his thinking, creating a formal inconsistency in his 

equations that was only later eliminated.  

With respect to our case on genetic regulatory networks, this is an important 

point; they are conceptualized in terms of electric circuits—and often referred to as 

“genetic circuits”—which has made genetic regulatory networks amenable to further 

conceptualization and formalization. Thus it seems that drawing material analogies to 

other kinds of systems, or employing theoretical concepts, such as noise, depicting 

certain other kinds of systems or behaviors, is needed to mobilize and animate formal 

analogies and give them theoretical content. There is also interesting empirical evidence 

from cognitive science that supports the importance of material analogies, although, as 

we have already seen, cognitive scientists prefer relational analogies.  To give an 

example, the more complex the task of establishing an analogical relationship between 

two domains becomes, the more people rely on similarity-based comparisons on the level 

of manifest features (see Holyoak, 2005).  Jee et al. (2010) note that in teaching students 

a highly unfamiliar topic, analogies made with both structural and concrete similarity are 

more likely to be most instructive (p. 5–6). 

To summarize, in the discussion on analogies one can discern the following 

common features5:  

 

                                                
5 Cognitive scientists’ approach on modeling can be summed up as a process of four stages: retrieval of one 
or more analogs (from memory), structural alignment or mapping, analogical inference, and (possibly) 
generalization, resulting in new relational categories or schemas (see e.g. Gentner & Holyoak, 1997; 
Holyoak, 2005). 
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• Analogy is approached in terms of similarity and familiarity: one makes 

sense of a domain in terms of a better known, more familiar domain that is thought to be 

similar to the domain in question 

• Analogical relationship is conceptualized as a mapping between target and 

source domains; the focus is on the shared structure (and, possibly, dynamics) of the two 

domains 

• An important goal of analogical reasoning is to provide plausible, 

although fallible inferences about the target. Neutral analogies provide resources for 

further theoretical development. 

• Analogy enables the mathematization of the target domain in terms of 

relational generalizations that may yield abstract schemas common to both source and 

target. 

 

We find all of these points important and relevant to scientific practice; however, on the 

basis of our case study on synthetic biology we would like to extend this conception of 

analogical reasoning in the following ways: Firstly, it seems to us that negative analogies 

carry more epistemic weight than earlier discussion on analogies leads us to expect (see, 

however, Morgan, 1997; Shelley, 2002a & 2002b). As we will show, in modeling gene 

regulatory networks both positive and negative analogies, especially to engineering, were 

drawn often in parallel, showing that analogical reasoning does not primarily trade with 

possible similarities, but instead juxtaposes similarities with differences in subtle ways. 

Secondly, this dialectical process of drawing both positive and negative analogies implies 

that more often than not the goal of analogical reasoning is not to fix a mapping between 

source and target domains. Rather, analogical reasoning is more transient and preparatory 

in nature, a tool used by scientists to conceptualize and grasp novel and less known 

phenomena. Both of these features of analogical reasoning, the importance of negative 

analogies and the transient nature of analogical reasoning point towards the inadequacy 

of the source-target pair as the basic unit of analysis of analogical reasoning. In light of 

our case, analogical reasoning taking place in science weaves together a heterogeneous 

fabric of knowledge, tools, methods, and concepts from different disciplines. This is 

attested to also by the way synthetic biologists mathematize their objects of investigation. 
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Rather than abstracting a common structure shared by the source and the target, synthetic 

biologists, like researchers in many other fields of computational science, draw their 

theoretical templates from the repository of formal systems studied in the context of 

complex systems theory and applied in a variety of disciplines to a wide range of entirely 

different phenomena.6  

Let us also note, in anticipation of our case, that this heterogeneous process can be 

strongly driven by specific goals, as corroborated by the engineering-oriented branch of 

synthetic biology. The multi-constraint approach to analogical reasoning (Holyoak & 

Thagard, 1989) takes this goal-drivenness of analogical reasoning into account. However, 

according to their account, the pragmatic considerations function as an additional 

constraint to be satisfied simultaneously with constraints arising from similarity of 

corresponding elements and structural parallelism. In contrast, in the engineering-

oriented branch of synthetic biology the molding of the target according to an analogy to 

engineered systems has become a goal in itself, although scientists agree that biological 

and engineering systems function in fundamentally different ways. Here, as we will see, 

it is perhaps most appropriate to talk about forcing an analogy.  

 

 

3. Two different approaches to noise: the basic science-oriented approach and 

the engineering/application-oriented approach 
 

In synthetic biology, one can distinguish two main approaches: an engineering approach 

and a basic science approach. The engineering approach, which aims to design novel 

biological parts or organisms for the production of, for instance, vaccines (Ro et al., 

2006), biofuels (Bond-Watts, 2011), and cancer-killing bacteria (Anderson et al., 2005), 

is often construed as comprising the whole field of synthetic biology. Less visible than 

this engineering approach is the basic science approach, which uses synthetic biology, 

                                                
6 This implies an interesting link between analogical reasoning and the widespread use of cross-disciplinary 
formal templates in science. Examples of such formal and computational templates that can be applied to 
different problems in various domains are, for instance, the Poisson distribution, the Lotka-Volterra 
equations and different agent-based models (see Humphreys, 2004; Knuuttila & Loettgers, 2012). 
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especially synthetically designed biological parts, as a tool for the investigation of gene-

regulatory networks (e.g. Elowitz & Leibler, 2000; Gardner et al., 2000). 

Scientists following the engineering approach often have a background in 

engineering and/or computational science, whereas scientists following the basic science 

approach usually come from physics. In the following, we will show how the different 

scientific backgrounds give rise to specific commitments regarding, for example, the 

goals of the research, the way analogies are drawn, the types of concepts introduced from 

other fields, the interpretation of results, and the assumptions made about, for example, 

organizational structures of biological systems. 

These different commitments of the engineering and basic science-oriented 

branches of synthetic biology do not necessarily lead these two branches to proceed 

independently from each other. Instead, the two research areas overlap in various ways.  

For example, both branches make use of engineering concepts and aspire to 

understanding the organizational structures of biological systems in order to develop 

novel biological parts and systems. But, as we are going to show, the motivation for why 

and how the engineering concepts are introduced is different, and moreover, analogies to 

them are often drawn in different ways. The aims of gaining insights into the basic 

structural organization of biological systems and the development of novel biological 

systems are weighted differently in the two branches. In the basic science approach, the 

exploration of the design principles of biological organisms7 precedes the exploration of 

the possible applications of this knowledge. To be sure, the scientists in this branch of 

synthetic biology engineer synthetic biological systems, but they have characterised their 

approach as “basic science through engineering” (Cookson et al., 2009). The engineering 

branch proceeds the other way around: by first engineering novel biological systems and 

parts, and in a process of doing so, or at a later phase, exploring the structural 

organization of biological systems.  

The recent research on the notion of noise provides an illustrative and from a 

scientific viewpoint a highly important example of the similarities and differences 

                                                
7 The term “design principle” itself is a term adapted from engineering. In synthetic biology the search for 
design principles has largely occupied the place of theory. See especially the discussion in sections 3.2 and 
3.3. 
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between the two approaches. Synthetic biologists in the engineering-oriented branch 

usually proceed as engineers do and treat noise as a nuisance that one should get rid of. 

By contrast, since the 2000’s, there has been an ongoing lively discussion in the basic 

science-oriented branch of synthetic biology concerning the functional aspects of noise. 

In the work of these researchers, noise has retained the older meaning as a nuisance, but 

they also address its functional role, believing it to be a crucial and distinctive 

characteristic of biological processes.  

In what follows we will elaborate the various interdisciplinary influences and 

instances of analogical reasoning that have shaped synthetic biology by first portraying 

the motivations of the scientists in the basic science-oriented branch for introducing 

engineering concepts into biology. This original program, as we will see, led also to the 

questioning of its suitability for modeling biological systems. In Section 4, we will focus 

on the engineering and application-oriented branch and investigate the reasoning of its 

scientists regarding biological systems and how they try to come to terms with the 

problem of noise.  

 

 

3.1 Replacing physics concepts with engineering concepts  

 

A remarkable feature of synthetic biology is the high number of engineers working in the 

field, especially in the engineering and application-oriented segment. One could even get 

the impression that engineers have replaced physicists in this field, emulating the earlier 

influence that physicists like Max Delbrück and Erwin Schrödinger had on molecular 

biology (e.g. Luria & Delbrück, 1943; Schroedinger, 1944). Furthermore, superficially at 

least, it seems that as part of this development the concepts and methods of physics were 

replaced by those of engineering. Engineering concepts such as circuits, robustness, 

redundancy, and noise are crucial markers in the emerging field of synthetic biology.  

Yet, the situation is not straightforward and may be better captured in terms of a 

multilevel reconfiguration of the various disciplines (molecular biology, physics, 

engineering, and computational science) that have contributed to synthethic biology 
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specific concepts, methods, and techniques. From this perspective much of the 

interdisciplinary exchange is inconspicuous and opportunistic, proceeding on the level of 

scientists adapting whatever concepts and tools from other disciplines that help them to 

better understand their objects of investigation.  

One important observation in this context is that physicists, like Alexander van 

Oudenaarden and Michael Elowitz, still make up an important and influential group in 

synthetic biology. A look at the research agendas of their groups shows that for them 

synthetic systems mostly serve as a tool for analyzing structural-functional relationships 

in gene regulatory systems. But why does one not immediately recognize “the physicist” 

behind this line of research. The reason, we suggest, is the seemingly engineering 

orientation of their research. The question then becomes, why is there such a strong 

engineering flavor to their research?  

It may come as a surprise that physicists themselves have been arguing  

against the use of concepts taken from physics, often finding them inappropriate for 

describing and analyzing biological systems.8 An example of this is provided in a paper 

published in 1999 by Leland Hartwell, John Hopfield, Stanislas Leibler, and Andrew 

Murray entitled From molecular to modular cell biology. All four authors, two of whom 

are physicists (John Hopfield and Stanislas Leibler) and the other two biologists (Leland 

Hartwell and Andrew Murray), are well-known scientists who have made important 

contributions in their respective fields of research. In this article, the four authors argue 

for turning away from the prevailing reductionist approaches, which “reduce biological 

phenomena to the behavior of molecules” (Hartwell et al., 1999, C47). According to the 

authors, this reductionist approach fails to take into consideration that biology-specific 

functions cannot be attributed to one molecule, but that “[…] most biological functions 

arise from the interaction among many components” (Hartwell et al., 1999, C47). To 

describe biological functions, they go on to claim, “we need a vocabulary that contains 

concepts such as amplification, adaptation, robustness, insulation, error correction, and 

coincidence detection.” (Hartwell et al., 1999, C47). The key point here is to note that 

this argument seeks to spell out why a functional understanding of biological systems 
                                                
8 There is a long debate among physicists concerning the question on the appropriateness of concepts from 
physics in the context of biology. See for example Alfred Lotka (1925) and Brian Goodwin (1963; see also 
below). 
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should induce us to suplement the concepts taken from physics with concepts that are 

more attuned towards the functioning of biological systems. Engineered artefacts are 

thought to fit the bill because they are also designed to fulfill specific functions. 

 It is also noteworthy that the authors’ depiction of molecular biology does not 

take into consideration the earlier contributions that applied engineering concepts to 

biology, which were often applied side by side with concepts from physics. For instance, 

the famous Operon model (Jacob & Monod, 1961) shows that approaching biological 

functions in terms of networks had already been done decades earlier in biology. Thus, 

the authors sacrificed historical accuracy in favor of formulating a stringent research 

program. Indeed, statements and articles like theirs helped to create a collective identity 

for physicists entering synthetic biology and to shape the research practice of this new 

research field, emphasizing also, somewhat misleadingly, the novelty of the field.9 

 Taking a look at the analogies drawn in the article, the authors’ stress on negative 

analogies (on a very general level, though) is striking. By making the argument that 

concepts from physics fail to describe the functional aspects of biology, the authors draw 

a negative analogy to physics. A further negative analogy is drawn to molecular biology 

by disapproving the reductionist approach of molecular biology. On the other hand, these 

negative analogies entail a positive analogy to engineering, enabling the introduction of 

engineering concepts and metaphors into synthetic biology. Moreover, it implies another 

positive analogy, that is, one to the mechanistic tradition in biology through the authors’ 

focus on mechanisms based on interacting genes and proteins.10 This latter positive 

analogy was not made explicit in the article, but the earlier work on the circadian clock11 

rhythms had already modeled gene regulatory systems on the basis of feedback loops 

(Goodwin, 1963), which are familiar from mechanical and electrical engineering, where 

feedback mechanisms play an important role in the design of control mechanisms.  In the 

following paragraph, we study Goodwin’s model, which brings engineering concepts and 

                                                
9 It has become a part of the rhetorical repertoire of synthetic and systems biologists to portray molecular 
biology as a reductionist science and systems biology as a way of overcoming this “old-fashioned tradition” 
(see Calvert & Fujimura, 2011). 
10 For the mechanistic discussion on gene regulatory networks, see Bechtel (2011) and Knuuttila & 
Loettgers (in press). 
11 The circadian clock refers to the day and night rhythms of organisms. 
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a non-reductionist mechanistic approach together—serving as an example of the 

motivations underlying the introduction of engineering concepts into biology. 

 

 

3.2 The Goodwin model as an example of a gene regulatory network  

 

Researchers in the basic science-oriented branch of synthetic biology focus on how 

genetic networks regulate themselves. Control is essential to all biological processes. One 

of the most common ways of providing control is by a feedback mechanism. Mahlon 

Hoagland and Bert Dodson describe its importance as follows: “Feedback is a central 

feature of life. The process of feedback governs how we grow, respond to stress and 

challenge, and regulate factors such as body temperature, blood pressure and cholesterol 

level. The mechanisms operate at every level, from the interaction of proteins in cells to 

the interaction of organisms in complex ecologies.” (Dodson & Hoagland, 1995).  

The already-mentioned Jacob’s and Monod’s Operon model (1961) of prokaryotic 

gene regulation gave impetus to other scientists like Brian Goodwin, who studied gene 

regulatory networks such as the network in Figure 1, where a gene suppresses itself.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of a negative auto-regulation feedback loop (Goodwin, 1963, p. 23).  

 

The main structure of the model forms a negative feedback loop, consisting of a  
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genetic locus 

€ 

Li , synthesizing messanger RNA (mRNA) in quantities represented by the 

variable

€ 

Xi . The mRNA  leaves the nucleus and enters the ribosome, which reads the 

information from the mRNA and synthesizes proteins in quantities denoted by 

€ 

Yi. The 

proteins are connected to metabolic processes. At the cellular locus C, the proteins 

influence a metabolic state by, for example, enzyme action, which results in the 

production of metabolic species in quantity 

€ 

Mi. A fraction of the metabolic species 

travels back to the genetic locus 

€ 

Li  where it functions as a repressor.  

This mechanism leads to oscillations in the protein level 

€ 

Yi regulating biological 

processes such as the circadian rhythm. Goodwin described the mechanism by a set of 

differential equations, which were due to the feedback mechanism of non-linear 

character. Such systems display complicated behavior, and no analytical solutions exist 

for them. Goodwin was, however, able to show by performing very basic computer 

simulations that the change in the concentrations of protein 

€ 

Yi and mRNA forms a closed 

trajectory. This means that the model system is able to perform regular oscillations. 

These kinds of oscillations produced by the negative feedback loop are essential for 

modeling periodic processes, such as the circadian rhythm, but, as Goodwin explained, 

were unwanted from the perspective of an engineer. “The appearance of such oscillations 

is very common in feedback control systems. Engineers call them parasitic oscillations 

because they use up a lot of energy. They are usually regarded as undesirable and the 

control system is nearly always designed, if possible, to eliminate them.” (Goodwin, 

1963, p. 5).  

Consequently, starting from an engineering paradigm and drawing a positive 

analogy to engineered systems, Goodwin ended up drawing also a negative analogy to 

engineering and to how, for example, negative feedback works in thermostats. They 

measure the room temperature (input), compare it with a reference temperature (output), 

and then change the heater so that the room temperature is adjusted to the reference 

temperature.  By contrast, control in biological systems is established in a different way, 

by oscillating feedback mechanisms.  

Even though the network structures and elements—positive and negative 

feedback loops—had been introduced and used already early on in the study of biological 

organization, of which the pioneering work of Goodwin gives an illustrative example, the 
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truly distinctive feature of synthetic biology lies in the materiality of the synthetic models 

and the engineered biological systems. Manipulating and working with biological 

components have forced researchers to question the analogies drawn to engineered 

systems. In the following section, we will consider the effects of being able to engineer a 

synthetic model out of biological components. We will introduce one of the first and 

most famous of the synthetic models, the Repressilator. Using this example, we will 

discuss how deviations in the dynamics of the synthetic model from those predicted by 

the mathematical model led to the emergence of a functional meaning of noise. 

 

 

3.3. The Repressilator as an example of synthetic model 

  

The Repressilator was introduced in 2000 by two physicists, Stanislas Leibler and 

Michael Elowitz. The Repressilator is an engineered oscillatory genetic network, which 

consists of three repressor genes, where each repressor inhibits the expression of the 

following gene, leading to oscillations in the protein levels.  Figure 2 presents a sketch of 

the Repressilator, depicting the basic structure of the synthetic system.  

 

cl tetR

lacI
 

Figure 2. Diagrammatic depiction of the Repressilator. In this system, the three repressor genes cl, tetR, 
and lacI repress each others’ expression. 

 

In reality, this system is far more complex. Genes are complex entities. The biochemical 

parameters and processes are usually not fully known and are estimated on the basis of 

empirical results and/or mathematical models.  Furthermore, the synthetic model is not an 

isolated object, but is imbedded in a larger biological system. In the case of the 
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Repressilator, Escherichia coli bacteria functioned as the host system. Consequently, one 

had to assume that the dynamic of the Repressilator was undisturbed from the rest of the 

processes taking place in E. coli. Whether this is really the case or not is difficult to 

prove, but synthetic biologists in general operate on the assumption of the modular 

organization of a biological system. In the case of the Repressilator, this particular 

synthetic system is assumed to make up a module in the bacteria that can be studied in 

isolation from the rest of the cell. This means that construction and implementation of 

synthetic systems, such as the Repressilator, not only allow researchers to study 

structural-functional relationships in biological systems, but also to explore the 

appropriateness of engineering concepts, such as modularity, in modeling the design 

principles of biological systems.12 This proved to be important in the case of the 

Repressilator, as we will describe below. 

In constructing the Repressilator, Elowitz and Leibler attempted to find a design 

principle in biological systems that would lead to stable oscillations, like those observed 

in circadian clocks. The mathematical model, which functioned as a blueprint for the 

design of the synthetic model, predicted stable oscillations: “the system may converge 

toward a stable steady state, or the steady state may become unstable, leading to sustained 

limit-cycle oscillations" (Elowitz & Leibler, 2000, p. 335). However, the synthetic model 

did not exhibit the behavior predicted by the mathematic model. The oscillations in the 

protein level, which were made visible by connecting one of the three repressor genes of 

the network to a green fluorescent protein (GFP), leading to oscillations in the intensity 

of the light emitted by the GFP, showed irregularities. Figure 3 provides an example of 

such single-cell observations. The arrow in  (a) and (b) indicates a single E. coli 

bacterium over a period of time within a growing population of bacteria. The analysis of 

the intensity of light emitted from the single bacterium via the GFP led to the oscillations 

depicted in Figure 4. Temporal oscillations occurred within a period of about 150 min, 

which is three times longer than typical cell division time. This means that the state of the 

network is transmitted to the progeny cells. The irregularities in the oscillatory behavior 

occur in the output “both from cell to cell, and over time in a single cell and its 

                                                
12 On the centrality of modularity for the “first wave” of synthetic biology, see Purnick & Weiss (2009). 
Khalil & Collins (2010) add “modularity” to their glossary of the basic concepts of synthetic biology.  
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descendants” (Elowitz & Leibler, 2000, p. 336). Figure 5 shows a comparison of the time 

courses in the fluorescence of three sibling cells. One observes a shift in the phase of the 

oscillations and a difference in the period of the oscillations.  

 

 
 

Figure 3.  The row of pictures in a) and b) shows a growing population of Escherichia coli 
bacteria over a time period of 600 min. In a) and b), different microscopy techniques have been 
used, but the populations are the same. The arrow points to a single cell followed over the time 
period (Elowitz & Leibler, 2000). 
 

 

 
 

Figure 4. Oscillations of the single cell indicated in Figure 3.  
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Figure 5. Comparison of the oscillations observed in sibling cells. The red graph shows the 

fluorescence of the cell from the figure 3. The blue and green graphs illustrate the fluorescence of 

two sibling cells. The comparison of the three graphs shows a clear shift in the period and phase 

of the oscillations (Elowitz & Leibler, 2000). 

 

What could be an explanation for these variations in the oscillations among the cells of 

the population of E. coli bacteria?  In designing the Repressilator, Elowitz and Leibler 

used a deterministic model. A deterministic model does not take into account stochastic 

effects such as stochastic fluctuations in gene expressions. As already argued by, for 

example, Spudich and Koshland (1976), stochastic fluctuation could be due to the low 

number of molecules in cells.13 However, at that time no means existed for the direct 

observation of such fluctuations on a molecular level. This only became possible when 

GFP was introduced in the 1990’s. Performing computer simulations on a stochastic 

version of the original mathematical model, Elowitz and Leibler were able to reproduce 

similar variations in the oscillations as observed in the synthetic model. This led 

researchers to the conclusion that stochastic effects may play a role in gene regulation—

which gave a rise to a new research program attempting to identify sources of noise in 

biological systems and the effect of noise on the dynamics of the system.  

In allowing noise a functional meaning, this new research program actually drew 

a further negative analogy to engineered control systems (the first is attributable to the 

idea that oscillations produce control in biological systems, as Goodwin suggested). Yet 

                                                
13 More generally, the step from a deterministic model to a model that includes stochastic elements has 
been quite a common move in computer modeling in the 1980s and 1990s. For instance, algorithms like 
simulated annealing have been very successful—despite their initial counterintuitiveness—as stochastic 
elements seem to deviate from optimality. We are grateful for the anonymous reviewer for pointing this out 
to us. 
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at the same time, researchers at the Elowitz lab found other kinds of systems, also 

engineered ones, to which positive analogies could be drawn: they turned their attention 

to concrete excitable systems such as neural networks and lasers, where noise had already 

been found to play a functional role. In regards to this line of research the collaboration 

of a postdoc at the Elowitz lab, Gürol Süel, together with a physicist Jordi Garcia-Ojalvo 

from the Universitat Politècnica de Catalunya turned out to be of great importance. In 

their work on the response to stress of the bacteria Bacillus subtilis they drew an analogy 

between the excitable dynamics of lasers and neurons and the behavior of gene regulatory 

networks. Süel and Garcia-Ojalvo interpreted the competence state of bacteria as an 

excitable state, which could be entered by means of noise in the form of stochastic 

fluctuation in gene expression (Süel et al., 2006). 

 

 

4. Analogical reasoning and noise in the engineering approach 

 

Also in the application-oriented branch of synthetic biology, the functional role of noise 

is presently recognized as an important part of the functioning of biological systems. 

However, instead of providing an interesting new research object in its own right, it 

usually poses a serious challenge for the attempt to design novel biological systems that 

can function in a reliable and predictable fashion. This branch of synthetic biology does 

not aim to mimic biological systems but to engineer novel systems with specific 

functions, which need not be brought about in the same ways as in naturally evolved 

systems. Because of this goal, and also due to the close ties with engineering, noise is 

predominantly regarded as a disturbance within this branch, to the extent that it reduces 

control over the designed biological systems. Much effort has therefore been invested in 

strategies to avoid or reduce noise.  

Consequently, it may not come as a surprise that analogies are drawn in a 

different way and to different kinds of systems than in the basic science-oriented 

component of synthetic biology. In the engineering and application-oriented branch of 

synthetic biology, engineered systems as well as the practice of engineering serve as 

models for how to engineer reliable biological systems. This practice can be justified by 
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the idea that actual biological systems are flexible enough to allow for the realization of 

different engineering paradigms. But it is also possible that the variability we observe in 

biological systems is of such a basic importance that it cannot be avoided and the task of 

engineers is to find such ways of dealing with it that take into account this specificity of 

biological systems.  In the next sections, we will lay out this dialectic and the related 

tension in the engineering-oriented branch of synthetic biology. 

 

 

4.1 Role of noise in purposeful engineered biological systems 

 

In the context of engineering, one recognizes many different forms of noise, like the 

unwanted signals in information theory that interfere with the signal containing the 

information to be transmitted, or acoustic noise in the form of meaningless and very loud 

sounds, or electric noise such as random fluctuations in electric currents. An entire field 

in engineering—reliability engineering—is devoted to the study of the reliability of 

engineered systems as well as to the development of strategies and architectures to make 

an engineered system function in a reliable fashion (Elsayed, 1996). How can reliability, 

then, be achieved in the case of engineered biological systems?  

Drew Endy (2005) discusses at length how the field of synthetic biology should 

be organized, or, as he puts it, how synthetic biology could become a truly engineering 

science. In his proposal, Endy draws a positive analogy to the construction of buildings. 

He argues that the success of the construction process depends on: “(1) the existence of a 

limited set of predefined, refined materials that can be delivered on demand and that 

behave as expected, (2) generally useful rules (that is, simple models), and (3) skilled 

individuals with a working knowledge and means to apply these rules” (ibid., p. 450). 

But, as we have already seen, biology-specific difficulties hinder the application of these 

three rules to biology. These difficulties are according to Endy: “(1) an inability to avoid 

or manage biological complexity, (2) the tedious and unreliable construction and 

characterization of synthetic biological systems, (3) the apparent spontaneous physical 

variation of biological system behavior, and (4) evolution” (ibid., p. 450). 
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In this scheme, noise would fall under the “spontaneous physical variation of 

biological system behavior”. Variations and fluctuations, like the genetic fluctuations 

discussed above, are intrinsic to biological systems.  These fluctuations, or, as they are 

generally called, noise, make it difficult to engineer reliable systems. Endy, drawing yet 

another analogy to engineering, suggests that the problem could be handled by 

introducing the following practices: standardization, decoupling, and abstraction.  

Standards, he writes, “underlie most aspects of the modern world. Railroad gauges, screw 

threads, internet addresses, ‘rebar’ for reinforcing concrete, gasoline formulations, units 

of measure, and so on” (ibid., p. 450). In the same fashion as we make use of standards in 

these different parts of our daily life, Endy wants to introduce standards for biological 

components. 14 By “decoupling” he refers to how complicated/complex problems are 

separated into simpler parts. “Abstraction,” in turn, reduces complexity by organizing 

biological functions hierarchically. The basic idea of how to reduce biological complexity 

is depicted in Figure 6.  

 

 
Figure 6. The diagram shows Endy’s idea of an abstraction hierarchy that would support the 
                                                
14 An example of this agenda is given by BioBriks, which catalogs standardized biological 
parts/components. See: http://partsregistry.org/Catalog (Accessed November 1 2011).  
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engineering of integrated genetic systems (Endy, 2005, p. 451). 

 

 

According to Endy, the “information describing biological functions might be organized 

across levels of complexity using abstraction hierarchies […].” (ibid., p. 451). This form 

of hierarchical organization would be based on exchanges of information across levels, 

allowing individual scientists to work on any of those levels simultaneously without 

needing to take into account the details of the other levels. It is quite obvious, however, 

that this kind of scheme to transform biology into an engineering science does not really 

make any room for noise introducing uncertainty into the biological systems, and it is 

difficult to see how noise could be handled by this framework.  

 

 

4.2 The cell as a computer  

 

Instead of the construction metaphor, one can approach biological systems through an 

analogy to computing. As in other areas of molecular biology, it has become very 

common in synthetic biology to describe biological systems as information processors, 

inviting the drawing of analogies between biological systems and computers. However, 

the analogical reasoning has also been bidirectional; computer systems have functioned 

as a source of inspiration for modeling biological systems, and vice versa, biological 

systems can provide clues for developing computational systems. For instance, biological 

systems can “process” a great amount of information in parallel. Take, for example, 

pattern recognition. Inspired by how the brain processes information, scientists such as 

John Hopfield have investigated alternative ways of processing information than the 

traditional symbolic one (Hopfield, 1982; Loettgers, 2007). 

 In the work of the synthetic biologist Ron Weiss, we find both of these 

approaches. Starting with mathematical modeling and computer simulation, Weiss tried 

to implement digital logic circuits into biological systems, and by doing so, drew an 

analogy from information processing by digital computers to biological systems. In 1999, 

Weiss, who has a strong background in computational science, published together with 
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George E. Homsy and Tom Knight an article entitled “Toward in vivo Digital Circuits” 

(Weiss et al., 1999). The three authors propose in this article: “[…] a mapping from 

digital logic circuits into genetic regulatory networks with the following property: the 

chemical activity of such a genetic network in vivo implements the computation specified 

by the corresponding digital circuit.” (ibid., p. 2). These specially designed genetic 

networks were supposed to be programmed in such a way that they would allow specific 

functions to be performed.  Or as the authors describe it: “This would allow us to fit 

biological cells with digital ‘prostheses’ that enable the cell to perform user-specified 

computational processes. Programmable computation in living cells would be an enabling 

technology for a host of applications such as drug and biomaterial manufacturing, 

nanomachine assembly, sensor/effector arrays, programmed therapeutics, and as a tool 

for studying genetic regulatory networks.”  (ibid., p. 1).  

 What Weiss et al. are envisioning is perhaps more appropriately described as 

forcing an analogy than as drawing an analogy. This is also expressed by their goal of 

“implementing meaning” to introduce something from outside into the system and to 

make the system controllable in a known way. This element of control is central for the 

engineer. The idea of implementing logical digital circuits into biological systems was 

not, however, realized (from mathematical models/computer simulations into actual 

biological systems).  The authors simulated biochemical networks in terms of digital 

networks in which signals represented the synthesis rate of DNA binding proteins. A 

repressor fused to a structural gene was modeled on logic gates such as an inverter. The 

protein binding to the repressor functions as an input, repressing the production of the 

protein linked to the structural gene representing the output. Thus the behavior of 

biological processes was translated into a digital logic. But, interestingly, as we shall see 

below, with the advent of actually designing biological genetic networks the perspective 

of the researchers started to change and biological systems increasingly became a source 

of inspiration. 

 

 

4.3 Biological entities replace mathematical entities  
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With the possibility of engineering simple gene regulatory networks the idea of 

implementing logical digital circuits into genetic circuits was replaced by the idea of 

basic functional modules, which could be used in designing complex biochemical 

networks. The assumption of the modular organization of biological systems became 

central for the research practice of synthetic biology. It enabled synthetic biologists to 

focus on the design of simple networks of genes and proteins that are linked to a specific 

function and could be arranged into more complex networks of interconnected modules. 

Being able to manipulate and work with biological components encouraged scientists like 

Weiss to attempt designs inspired more by biology than by digital computers. This does 

not mean that the goal was to mimic biological systems but rather to come up with more 

biologically inspired designs, which would function in a specific and robust way. In an 

article “Synthetic biology: new engineering rules for an emerging discipline” 

(Andrianantoandro et al., 2006), Ron Weiss and his co-workers contrasted the approach 

taken by biologists with that by synthetic biologists in the following way: “Biologists are 

familiar with manipulation of genes and proteins to probe their properties and understand 

biological processes. Synthetic biologists must also manipulate the material elements of 

the cell, but they do so for the purpose of design, to build synthetic biological systems. 

Synthetic biologists design complex systems by combining basic design units that 

represent biological functions.” (ibid., E2).   

An example of such a basic design principle that could form a module in a larger 

more complex network is shown in Figure 7, taken from Purnick and Weiss's article 

“Second wave of systems biology: from modules to systems” published in 2009 (see also 

Andrianantoandro et al., 2006).  The gene regulatory network depicted is a dual-feedback 

oscillatory circuit. It consists of a transcriptional repressor (lacI) (blue box), a 

transcriptional activator (araC), and a reporter in the form of a green fluorescent protein 

(yemgfp). Each of the three components of the oscillator is located downstream of a 

promoter region 

€ 

(Plac−aral ). The positive feedback is mediated by the protein AraC 

binding to the promoter region of the activator araC. The negative feedback is mediated 

by LacI and IPTG, a protein that is induced and can be controlled from outside. The 
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reporter allows15 the researchers to observe the oscillations in protein production. The 

idea of coupled positive and negative feedback loops is more akin to the functioning of 

biological systems than, for example, the engineering-inspired negative feedback design 

of the Repressilator. Indeed, Andrianantoandro et al. (2006) describe the oscillatory 

design of their synthetic system as follows: “[it] can produce oscillations in a manner 

similar to transcriptional regulatory control mechanisms in certain circadian rhythms” 

(ibid., p. 413, emphasis added). This comment is revealing in that the authors, instead of 

treating engineered systems as model systems, refer to biological systems. It shows, we 

suggest, that the experience of working with actual biological components and systems 

has changed the way the originally engineering-motivated synthetic biologists draw their 

analogies. They are increasingly looking for designs that are “biology-inspired.”16  

James Collins described this shift in how noise is recognized and treated in 

synthetic biology in an interview we made in the following way: “In molecular biology in 

particular, the systems that we’re dealing with are intrinsically very noisy. And many of 

us have explored and characterised the noise […] thinking about ways how you could 

filter it, but I think what we’ve seen is now a shift—towards recognising that it’s a 

feature and not a bug of the system. And that it may be best to accommodate it by 

acknowledging it’s there, and/or to harness [that is] could you harness the noise for 

example, using it as a feature or property of the system. That could produce additional 

functionalities such as the ease of switching and exploring different stable states.”17 But 

as Collins also pointed out, such attemps to make use of noise in engineering biological 

systems are still in their infancy. 

In sum, we have showed above how, by drawing analogies to engineering, 

synthetic biologists import such engineering concepts as feedback mechanisms, 

modularity, and robustness; but when it comes to the question of how the processes are 

controlled, negative analogies to engineered systems become more prominent. Positive 

analogies to the behavior of naturally evolved biological model systems are drawn 

                                                
15 See Loettgers (2009) for a concise depiction of the sophisticated experimental process through which 
Glossop et al. (1999) established the second (positive) interlocked feedback loop in the circadian clock of 
Drosophila.  
16 This is even reflected by the names of the research institutes such as the Wyss Institute of Biologically 
Inspired Engineering at Harvard.  
17 Interview on 1 February 2012.  



 

 

27 

instead—although as the example of lasers shows, new engineering analogs are utilized 

as well. 

 

  
Figure 7. A dual-feedback oscillatory circuit by Ron Weiss and his colleagues (Purnick and 

Weiss, 2009, p. 413).18  

 

Dealing with material objects has a further effect. Synthetic biologists have realized the 

challenges introduced by such details as the structure of proteins, their binding sites and 

strength, and the cellular environment in which the module is designed and supposed to 

function. As a result, in the context of designing actual biochemical networks/modules 

instead of surrogates in the form of mathematical models or computer simulations, the 

analogy to computer systems enters in a different way. Synthetic biologists such as Weiss 

still approach biological systems in terms of information processing, but draw instead a 

negative analogy between the ways in which digital computers and biological systems 

perform computation.  

Adam Arkin and Daniel Fletcher have elaborated this point in their review article 

“Fast, cheap, and somewhat controllable” (Arkin & Fletcher, 2006). The two synthetic 

biologists identified as a major challenge of synthetic biology  “the difficulty of 

predicting what biological components will do, even when the parts are readily 

obtainable and much is known about them individually. On this issue, lessons learned 

from engineering bridges, boats and planes are of little help, because the operating 

                                                
18 Note how much this diagram still resembles those depicting electrical circuits. 
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conditions under which biological systems function are significantly different from those 

of familiar macroscopic systems.” (ibid., p. 114.3). A useful engineered biological system 

is one that could be totally controlled and that functions in a predictable way. According 

to Arkin and Fletcher, this is where the gap between engineered systems and biological 

systems becomes most obvious. “Thermal fluctuations that drive stochastic behavior can 

typically be ignored or managed in traditional engineering, but often not in cells. And in 

situ evolutionary changes in parts and control systems are simply not problems for 

inanimate objects—not so for biology. In fact, biology’s success—its ability to grow and 

evolve new solutions and test fitness through competition—has depended on just those 

behaviors that frustrate predictability. Any engineering of biology to serve our needs 

must recognize, understand and manage this drive towards variation and the evolutionary 

competition with other organisms.” (ibid., p. 114.3). 

In sum, we have described how in the process of drawing positive and negative 

analogies the functional meaning of noise emerged, simultaneously revealing the 

characteristic tension in synthetic biology between engineering and biology. As we have 

shown, this tension is attributable to the question of how far one can carry analogies 

drawn between electrical and mechanical engineered systems and biological systems.  

The neat analogy between the levels of organization of computing systems and biological 

systems displayed, for example, by Andrianantoandro et al. (2006) in Figure 8 breaks 

down since it does not take into account the variation and evolutionary aspects crucial for 

understanding life.  
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Figure 8. A depiction of an analogy between the levels of organization of computing systems and 

biological systems (Andrianantoandro et al., 2006, p. 2). 

 

 

5. Discussion 
 

Above, we have discussed the various ways in which researchers in the area of synthetic 

biology make use of analogical reasoning. The basic science-oriented and engineering-

oriented branches of synthetic biology differ from each other in this respect, which is 

reflected by the place and role of the notion of noise in their theoretical research practice. 

Although the scientists in both branches employ heavily engineering concepts—which 

are imported by drawing analogies between biological, and electrical and mechanical 
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engineered systems—the arguments they present are different, as are the types of 

concrete systems on which the biological systems are modeled. That is, although the 

researchers in both branches of synthetic biology use the same kinds of methods and 

formal tools for modeling the phenomena, the material analogies they draw to various 

kinds of concrete systems are partly different.  

The basic science-oriented branch of synthetic biology builds its modeling 

endeavor on the engineering notion of a feedback control mechanism. Indeed, synthetic 

biologists frequently use the term “genetic circuits” for genetic regulatory networks, thus 

invoking the notion of an electric circuit. However, the mathematical templates used to 

model the dynamics of gene regulatory networks are taken from the study of complex 

systems, which is a formal field of study with applications in various disciplines. Despite 

the reliance of the basic science approach on the notion of a feedback loop, the further 

progress and the direction that the present research has taken are largely due to the 

negative analogies drawn between artificial and biological control systems. Firstly, 

already Goodwin (1963) suggested that oscillations (conceptualized as noise in artificial 

systems) in fact provide the means by which biological systems regulate themselves. A 

further negative analogy as regards the role of noise in artificial vis-á-vis biological 

systems was drawn as a result of synthetic modeling.  Although the mathematical model 

that was used as the basis of the construction of the Repressilator exhibited regular 

oscillations, the Repressilator did not.  

In principle, there are two ways of dealing with the observed noise, indicative of 

the differences between the engineering-oriented and the basic science-oriented branches 

of synthetic biology: On the one hand, one can pursue the positive analogy between 

artificial and biological systems by treating the fluctuations as a disturbance and trying to 

find ways of making the system more robust by changing its architecture. This approach 

is chosen by the engineering-oriented branch of synthetic biology, which uses different 

strategies to isolate and eliminate the various sources of noise.  The basic science 

approach, by contrast, has chosen the opposite direction, drawing a further negative 

analogy to artificial control systems. Recognizing noise as an intrinsic part of biological 

systems, the researchers in this field have started to study the sources and impact of noise 



 

 

31 

on biological systems. As a result of these studies, noise has also been assigned a 

functional role; it supports the various functions of biological systems. 

That the engineering approach sees noise as something that should be eliminated 

does not mean that in principle researchers in this branch would deny that noise could 

have a functional meaning—this view is merely discordant with their engineering aims.  

Scientists working in the engineering-oriented branch of synthetic biology are 

constrained by their aim to come up with engineered biological objects, such as bacteria, 

that could be used for specific purposes, e.g. the production of vaccines and biofuels. 

From this perspective, noise contradicts the goal of designing reliable and predictable 

systems. These engineering-specific constraints become even more critical when it comes 

to engineering such biological objects as cancer cell-killing bacteria, which are brought 

into the human body and interact directly with parts of it. In this context, any kind of 

behavior deviating from the one for which the bacteria was designed, i.e. destroying a 

specific kind of cell, could lead to serious damage. The scientists in the basic science 

branch of synthetic biology are not “limited” by these engineering constraints. Their 

focus is, as we have seen, on gaining more insight into the basic design principles 

underlying specific functions such as the circadian rhythm. The big open question is 

whether the presently intensively studied topic by the basic science approach, the 

functional meaning of noise, and the non-genetic variations producing it, pose a serious 

obstacle for applying the engineering approach to biology. 19 

Regarding the philosophical and cognitive science discussion on analogies, we 

believe that the research practice of synthetic biology discussed above shows the 

fruitfulness of adopting this perspective to scientific reasoning. However, our discussion 

also reveals two related features of analogical reasoning that have received insufficient 

attention to date in the discussion on analogical reasoning. Firstly, neither the cognitive 

science discussion nor the philosophical discussion has adequately targeted the 

importance of negative analogies for scientific reasoning. Secondly, it appears to us that 

the goal of analogical reasoning is not the fixing of a mapping between the target and the 

source systems. Instead, analogical reasoning displays a subtle juxtaposition of positive 

                                                
19 One way to justify the attempt to eliminate noise is to invoke the fact that on the population level the 
effect of stochastic fluctuations usually averages out. 
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and negative analogies, where the analogies drawn are often rather tentative and also 

general in nature. Moreover, the way that the material and formal analogies—often 

adapted from different areas of study—are used side-by-side highlights the heterogeneity 

of analogical reasoning. 

 

1) Epistemic importance of negative analogies 

As our case shows, apart from the positive analogies, one should pay attention to the 

negative analogies. The focus on negative analogies, we suggest, reveals the 

heterogeneous nature of analogical reasoning, which is largely neglected by the 

traditional approach.  The reason why so little attention has been given to negative 

analogies in the literature on analogical reasoning might be because a negative analogy, 

by itself, does not seem to add to our knowledge apart from being used as some kind 

contrast case (see, however, Shelley, 2002a & 2002b; and Morgan, 1997).20 Nevertheless, 

the situation changes if one enlarges the unit of analysis from the source-target pair to 

cover other domains and bodies of work that could give negative analogies a tentative 

interpretation and point towards further study. 

In the case of the notion of noise, the irregular oscillations of the Repressilator 

prompted researchers to search for theoretical tools and methods as well as exemplary 

systems from other fields and disciplines in order to interpret the negative analogy. The 

functional understanding of noise had already emerged in physics, from which synthetic 

biologists adopted the majority of their modeling methods. Especially the work in 

statistical physics provided a well-understood concept of stochastic fluctuations and 

associated formal templates, such as Poisson variations, for the study of the non-

deterministic fluctuations observed in biological systems (cf. Ozbudak et al., 2002). In 

                                                
20 To be sure, there is some existing literature on negative analogies. Shelley 2002a and b discusses the use 
of various kinds of negative analogies in science and philosophy. His focus is somewhat different from 
ours, however: he aims to show that analogical reasoning furnishes a type of inferential reasoning of its 
own and its value is not just heuristic. Cognitive scientists, in turn, mention negative analogies when 
discussing comparisons between two similar examples from the same or related domains that are alike in 
most respects. The purpose of a negative analogy is then to contrast or distinguish (e.g. Jee et al., 2010; 
Holyoak, 2005). See also the discussion of Gentner and Markman (1994) on alignable differences: the idea 
is that attributing similarities also requires differences. We do not regard this work as being easily 
applicable to scientific research, which is usually far from being able to align similarities and differences in 
the way described by cognitive scientists. In the light of our cases, this seems not to be the goal of scientific 
reasoning either. 
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the case of the Elowitz lab, the emerging research program focusing on noise led to new 

collaborations of which the most important was the cooperation with physicist Jordi 

Garcia-Ojalvo, who had studied excitable systems in the context of complex systems 

(Lindner et al., 2004). By perceiving biological systems as complex systems, scientists in 

the basic science-oriented branch of synthetic biology draw analogies to such systems as 

neurons, lasers, and coupled oscillatory systems. The complex behavior of these systems 

has been intensively studied by scientists coming from physics, mathematics, and 

computer science. On the other hand, as discussed above, the engineering-oriented 

approach relies more on analogies to engineered artefacts and their construction 

processes. Yet, even in this case, working with actual biological materials has made 

researchers more wary of hasty analogies to engineering. 

 

2) Transient and heterogeneous nature of analogical reasoning  

The research practice of synthetic biology points towards the transient, heterogeneous, 

and programmatic nature of analogical reasoning in science. In contrast to the prevailing 

literature on analogy, more often than not, establishing a mapping between a source and a 

target system seems not to be the goal of analogical reasoning. Rather, the analogies 

drawn are usually tentative and even very general—to the extent of being 

programmatic—and one can discern a continuous and subtle dialectic between the 

negative and positive analogies drawn. Why has this characteristic of analogical 

reasoning escaped cognitive scientists—and even philosophers of science? One plausible 

answer is suggested by Nersessian and Chandrasekharan (2009). In their account of 

hybrid analogies in neuroscience, they stress the importance of the construction processes 

for the epistemic value of analogical reasoning. They place analogy at that “end of a 

creative continuum” that deals with “extremely complex instances spread over time“ 

(ibid., p. 187). Cognitive science, according to them, has thus far studied “ready-to-hand 

problems”, but such an approach is obviously too simplified with respect to actual 

scientific problems.21 

                                                
21 When cognitive scientists have considered science, they have typically been interested in science 
education, dealing with teaching students already established scientific knowledge (e.g. Jee et al., 2010). 
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 We suspect, however, that there is also a more philosophically inclined reason for 

the neglect of the transient and dialectical nature of analogical reasoning—a reason that 

also underlies the inattention to negative analogies. Namely, both the neglect of negative 

analogies as well as the stress on establishing a fixed mapping between the source and the 

target systems seem to be vestiges of representational ideals still present in the thinking 

about analogies. In mapping, a similarity relationship is established that is akin to a 

representational relationship, which has conventionally been taken as the hallmark of 

knowledge. Furthermore, the stress of Gentner and other cognitive scientists on the 

mapping of structure comes close to the structural conception of scientific 

representantion in that for both it is ultimately the underlying structures that matter (e.g. 

French & Ladyman, 1999)—that is precisely what the recent practice-oriented 

approaches to modeling and representation have sought to avoid (e.g. Giere, 2010; 

Knuuttila, 2005; Mäki, 2009; Suárez, 2010). It seems to us that the goal of highlighting 

the role of analogies in science is to make room for the constructive and imaginative 

moment of scientific reasoning; the different semantic-cum-structuralist accounts fixated 

on the structural relationships between the source and target systems fail to pay attention 

to this.  Furthermore, as such accounts attempt to ground representation in an isomorphic 

or partially isomorphic relationship between the source and target systems, they have no 

need to consider the background information. Analogical reasoning, on the other hand, is 

highly dependent on various sources of experimental evidence and theoretical 

foreknowledge (see, e.g., Shelley, 2002a & 2002b; Nersessian, 2002a). 

As regards the heterogeneity of analogical reasoning, it is interesting to note how 

the material (or concrete)22 and formal analogies alternate in it, as pointed out by Hesse 

(1966) and Nersessian (e.g. 2002a). To be sure, the analogies drawn to engineering 

sciences or engineered systems in synthetic biology do not focus on shared individual 

properties, rather concentrating on the “organizational level”—(e.g., the analogy to how 

computing is organized in different levels or the analogy to the organizational structure of 

traditional engineering science).  Yet, it is interesting to note how analogies are still 

drawn to material systems, especially in the explorative phase of analogical reasoning 
                                                
22 We have been using “material” and “concrete” as synonyms, as is the case with the discussion on 
analogical reasoning.  
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(see also Nersessian, 2002a). As the research program stabilizes, it tends to trade in its 

theorizing more directly with formal structures without the recourse to concrete systems 

that could function as analogs. 

 

 

6. Concluding remarks 

 

Above, we have studied how via analogical reasoning synthetic biologists utilize the 

theoretical results, tools, methods, templates, and concepts of other fields and disciplines. 

The relatively recent practice of synthetic modeling, the engineering of genetic regulatory 

networks from biological substrata, has been of crucial importance in this respect; it has 

significantly changed the attitude of the researchers in the field of systems and synthetic 

biology towards the analogies drawn to engineering. The materiality and the specific 

properties of biological systems exploited by synthetic modeling have caused scientists to 

question the earlier analogies and replace them with new analogies believed to be closer 

to the functioning of biological systems. We have also discussed how analogical 

reasoning typically makes use of concrete and formal analogies simultaneously. In 

synthetic modeling, the analogical reasoning goes one step further, becoming truly 

material.  Yet, it is not a question of mere instrumental “thing” knowledge (Baird, 2004), 

as opposed to theoretical knowledge, since here the engineered things are constructed to 

investigate the theoretical assumptions underlying synthetic biology. And even the 

practice of the engineering-oriented branch of synthetic biology of forcing an analogy (to 

engineered systems) has epistemic implications in probing how far the analogy between 

engineered and biological systems can be extended.  

Lastly, let us note yet another role engineering plays in synthetic biology. 

Namely, with the introduction of synthetic modeling and novel imaging methods 

researchers began to realize the complexity of the question of noise. The new methods 

revealed non-genetic fluctuations at the single-cell level (Elowitz et al., 2002). Such 

fluctuations had remained “invisible” at the previously studied population level, where 

they typically average out, whereas the new methods disclosed a large number of hitherto 

unrecognized non-deterministic fluctuations. This raises the question of why the notion of 
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noise was extended in such a way. Why should researchers continue talking about noise 

when referring to these non-deterministic fluctuations and their possible functional roles? 

This certainly reflects the influence of engineering sciences on biology and the 

background of many synthetic biologists in the research of complex systems. However, 

there seems to be another more profound reason, related to the interdisciplinary transfer 

of concepts and tools typical of modeling. As discussed above, the application of 

engineering notions and modeling methods of physics to biology by way of analogical 

reasoning is not unproblematic. The sources of the fluctuations in biological organisms 

are largely unknown in all but a few cases, as is also their exact impact on the dynamics 

of biological systems. One reason for the use of the notion of noise is precisely this 

uncertainty; noise functions both as an umbrella term and as a place holder for the 

emerging research on different forms of fluctuations, their sources, and their 

consequences for the dynamics of biological systems. 
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