Skip to main content
Log in

A propositional fragment of Leśniewski's ontology and its formulation by the tableau method

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The propositional fragment L 1 of Leśniewski's ontology is the smallest class (of formulas) containing besides all the instances of tautology the formulas of the forms: ɛ(a, b) ⊃ ɛ(a, a), ɛ(a, b) ∧ ɛ(b,).⊃ ɛ(a, c) and ɛ(a, b) ∧ ɛ(b, c). ⊃ ɛ(b, a) being closed under detachment. The purpose of this paper is to furnish another more constructive proof than that given earlier by one of us for:

Theorem A is provable in L 1 iff TA is a thesis of first-order predicate logic with equality, where T is a translation of the formulas of L 1 into those of first-order predicate logic with equality such that Tɛ(a, b) = FblxFax (Russeltian-type definite description), TA ∨ B = TA ∨ TB, T ∼ A = ∼TA, etc.

For the proof of this theorem use is made of a tableau method based upon the following reduction rules:

$$\begin{gathered} \frac{{G\left[ {A \vee B} \right]}}{{G\left[ {A \vee B{\text{\_}}} \right] \vee \sim A|G|[A \vee B\_] \vee \sim B,}}{\text{ }}\frac{{G[\varepsilon (a,b)\_]}}{{G[\varepsilon (a,b)\_] \vee \sim \varepsilon (a,a),}} \hfill \\ \frac{{G[\varepsilon (a,b)\_,\varepsilon (b,c)\_]}}{{G[\varepsilon (a,b)\_,\varepsilon (b,c)\_], \vee \sim \varepsilon (a,c),}}{\text{ }}\frac{{G[\varepsilon (a,b)\_,\varepsilon (b,c)\_]}}{{G[\varepsilon (a,b)\_,\varepsilon (b,c)\_] \vee \sim \varepsilon (b,a),}} \hfill \\ \end{gathered} $$

where F[A +] (G[A]) means that A occurs in F[A +] (G[A]) as its positive (negative) part in accordance with the definition given by Schütte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Fitting, Intuitionistic Logic, Model Theory and Forcing, Studies in Logic and the Foundations of Mathematics, Amsterdam-London, 1969.

  2. A. Ishimoto, A propositional fragment of Leśniewski's ontology, Studia Logica XXXVI (1977), pp. 286–299.

    Google Scholar 

  3. S. C. Kleene, Permutability of inferences in Gentzen's calculi LK and LJ, Memoires of American Mathematical Society 10 (1952), pp. 1–26.

    Google Scholar 

  4. A. M. Prior, Existence in Leśniewski and Russell, in: Formal Systems and Recursive Functions, Amsterdam, 1963.

  5. K. Schütte, Beweistheorie, Heidelberg-Berlin, 1957.

  6. K. Schütte, Vollständige System modaler und intutionistischer Logik, Ergebnisse der Mathematik und ihrer Grenzgebiete 42, Berlin-Heidelberg, 1968.

  7. K. Schütte, Proof Theory, Berlin-Heidelberg, 1978.

  8. J. Słupecki, St. V. Leśniewski's calculus of names, Studia Logica III (1955), pp. 1–71.

    Google Scholar 

  9. R. M. Smullyan, First-order Logic, in: Ergebnisse der Mathematik und ihrer Grenzgebiete, Berlin-Heidelberg-New York, 1968.

  10. B. Sobociński, Successive simplification of the axioms systems of Leśniewski's ontology, in: Polish Logic 1920–1939, Oxford, 1967.

  11. S. Toledo, Tableau Systems for First Order Number Theory and Certain Higher Order Theorems, Lecture Notes in Mathematics 447, Berlin-Heidelberg-New York, 1975.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Ishimoto, A. A propositional fragment of Leśniewski's ontology and its formulation by the tableau method. Stud Logica 41, 181–195 (1982). https://doi.org/10.1007/BF00370344

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370344

Keywords

Navigation