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NEWTON’S ABSOLUTE TIME 

H. Kochiras 

 

 

  When Newton articulated the concept of absolute time in his treatise, Philosophae 

Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), 

along with its correlate, absolute space, he did not present it as anything controversial.  

Whereas his references to attraction are accompanied by the self-protective caveats that 

typically signal an expectation of censure, the scholium following Principia’s 

definitions is free of such remarks, instead elaborating his ideas as clarifications of 

concepts that, in some manner, we already possess.  This is not surprising.  The germ of 

the concept emerged naturally from astronomers’ findings, and variants of it had 

already been formulated by other seventeenth century thinkers. Thus the novelty of 

Newton’s absolute time lay mainly in the use to which he put it.   

 

NEWTON’S INTELLECTUAL AND HISTORICAL CONTEXT 

 Newton formulated his concept of absolute time on the heels of several significant 

developments, both conceptual and technological.  At least some of these were critical 

preconditions for his mathematical physics, and all of them contributed in one way or 

another to his conclusion that no actual events could serve as infallible timekeepers.   

Galileo’s mathematical treatment of time 

The first development to note was Galileo’s innovative mathematical treatment of 

time.  Galileo’s finding that free-falling bodies naturally accelerate, and at a uniform 

rate such that distance is proportional to the square of the time interval (as eventually 

stated in 1638 in his Discorsi), would in itself be vital to Newton’s gravitational theory.  

It was also critically important, however, for its treatment of time as a variable in a 
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function, to speak anachronistically.  The concept of a function, though it would be 

employed by Newton and Leibniz among others, would not be explicitly articulated in 

general form until the mid-eighteenth century.1  Galileo lacked the concept, and his 

progress toward it was hampered by his adherence to Euclid’s homogeneity condition 

for ratios (Book 5, Def. 3’s condition, which restricted the magnitudes figuring in a 

ratio to those of the same kind).  However, he took a critical step toward the function 

concept by representing time intervals geometrically, by line segments, and by then 

understanding distance of fall as dependent upon those intervals. 

 

Increasing awareness of the celestial clock’s fallibility  

As a second development, the long-present awareness that celestial motions could 

not serve directly as an infallible clock was intensifying.  That awareness reached back 

to the Hellenistic period, which brought challenges to the views found in Plato and 

Aristotle.  In his Timaeus, Plato had actually identified time with the celestial bodies’ 

wanderings.  While Aristotle took a more moderate view by denying that identification, 

he nevertheless held that there cannot be time without change.2  He further held that the 

celestial bodies’ telos was perfectly circular motion, which meant that their motions 

could serve as a clock.  By the second century, however, it was evident that the lengths 

of true solar days (i.e., the elapsed time between the sun’s zenith of any two successive 

days) were uneven.  Ptolemy’s Almagest hypothesized the twofold cause of that 

variability to be non-uniform solar motion along an inclined ecliptic.3  Introducing the 

concept of a mean solar day,4 the Almagest then provided remarkably accurate means 

                                                             
1 On the concept of a function, see Youschkevitch, 1976; in particular, see pp. 49-50 on Galileo’s steps 
toward the concept and their similarity to ideas of Nicolas Oresme; §6 on Newton’s and Leibniz’s 
understandings of the concept; and §7-8 and on Euler’s general formulation in the mid-eighteenth 
century.  
2 Physics, IV.10-11.  Interestingly, Aristotle does not take time to be a property of change (see Coope, 
31), and thus takes time’s relationship to change to differ from extension’s relation to matter.  
3 Linton, 2004, 70. 
4 Linton, 2004, 70.  
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for reckoning it—the so-called equation of time (or correction of time).5 Fast-

forwarding from the Hellenistic to the early modern period, belief in an infallible 

timekeeper was under considerable pressure by the 1660’s, by which point Kepler’s 

elliptical orbits and the varying velocity implied by his area law had gained significant 

acceptance.6  That pressure only increased with the advent of better clocks (see 

Matthews, 2000, 145, 178).  For despite the regularity (in controlled circumstances) of 

the gravity-driven frequency of pendulums having the same length, one consequence of 

the Richer expedition (discussed below) was the realization that gravity is a local 

property and that pendulum frequencies vary accordingly.   

 

Advances in timekeeping 

A third development, then, was the invention of more precise clocks, which would 

underwrite discoveries in astronomy and terrestrial physics, and would also indirectly 

help reveal the distinction between mass and weight.  The push for better timekeeping 

came from investigations of natural phenomena, but even more insistently from the 

commercially driven need for navigators to be capable of determining their longitude at 

sea.  The celestial clock and its sundials were a long way from providing the precision 

required for either sort of endeavor, and for his investigations of free fall via inclined 

plane experiments, Galileo accordingly devised a water clock.  Using a raised container 

of water, he opened the spigot upon releasing a ball at the top of the inclined plane, 

closed it when the ball hit the bottom, and weighed the water that had flowed into a 

receptacle during the time interval of the ball’s descent.   

This water clock was an improvement over available alternatives, but crude in 

comparison to the pendulum clocks that would soon follow. Those pendulum clocks 

would utilize some of Galileo’s findings about pendulum motion, but as corrected and 

                                                             
5 Linton 2004, 70-72 is useful here; see also Neugebauer, 1975, 61-66.  
6  See John L. Russell; in Applebaum (1996, 456); see also Heidarzadeh, 2008, p. 80, note 190.  
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furthered by others, not least Christiaan Huygens.7  Realizing that the cycloid—not the 

circle, as Galileo had thought—provides the curve of fastest descent, Huygens created a 

cycloidal pendulum clock, which he hoped would provide the key for solving the 

longitude problem.  While in fact the solution was a century away, Huygens’ pendulum 

clock was brought on Jean Richer’s 1672 scientific expedition to Cayenne, and was 

unexpectedly found to have a longer period there, near the equator, than it had had at 

home.  This suggested that gravity varied with latitude.  For Newton, that variability 

with latitude indicated an oblate earth and, significantly, a distinction between weight 

and mass.  (Also influential in Newton’s realization was the 1680 comet; the precise 

role of the Richer expedition’s findings for that realization is unknown (Cohen, 1999, 

19-20).)  Newton would reference the expedition’s discovery in the Principia, while 

setting the problem of comparing bodies’ weights at different locations on earth (Book 

3, Proposition 20, Problem 4).8   

 

Historical precedents of the absolutist concept of time 

In a fourth development, by the eve of Newton’s Principia, several thinkers had 

already concluded that no events could serve as an infallible clock, and had already 

formulated absolutist conceptions of time.  While questions about Newton’s intellectual 

debts and sources of influence are too complex to consider here, striking similarities 

may be found in the writings of Pierre Gassendi, whose ideas were largely accessible to 

Newton, at least through Walter Charleton, and of Isaac Barrow.  Newton quite likely 

attended Barrow’s geometrical lectures (Westfall, 1980, 99), and in any case he 

received the lectures in written form in 1670 (Feingold, 1990, 336).9  As the most 

notable similarity among these thinkers, they repudiate the reductionist view, 
                                                             
7 On Huygens’ pendulum clock and its consequences, see Yoder, 1988. On the extent of Galileo’s 
contributions for Huygens’ clock and questions of priority, see Yoder, 130-134.  See also Matthews, 
2000, chp. 5-6.  
8 Principia, Book 3, Proposition 20, Problem 4, pp. 826-832. 
9 While he foregoes any full investigation of Newton’s sources of influence, Arthur does consider the 
question in his important 1995 study of Newton’s concept of time and its connection to his theory of 
fluxions; see pp. 328-331.   
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concluding instead that time is independent of objects and motions.  As Gassendi 

explains matters in his Syntagma, our common conception of time errs by supposing 

time to be the continued existence of things and hence an accident of them.10  In fact, 

time is “a certain flux...that is no less independent of motion than of rest” (Gassendi, 

1972, 394); and though we use the sun’s motion as a clock (Ibid., 395), “it is as far from 

the truth that time is the measure of celestial motion as that celestial motion is the 

measure of time” (Ibid., 394).  Indeed, he asserts, time would elapse at exactly the same 

rate even if the sun moved twice as fast (Ibid., 396), or if the universe were destroyed 

(Ibid., 390-391). Gassendi also considers this eternal flux to be actual; those 

philosophers who considered an eternal flux, independent of motions, to be only 

imaginary had caught only a “glimpse” of the truth (Ibid., 394-395).  

Unlike Gassendi, Barrow demotes his absolutist conception of time to the status 

often labeled ‘imaginary’, that is, a potentiality: “Time therefore does not imply an 

actual existence, but only the Capacity or Possibility of the Continuance of Existence; 

just as Space expressed the Capacity of a Magnitude contain’d in it”(Barrow, 1735, 7). 

Nevertheless, he denies that time can be reduced to actual motion or existence.  Using 

some phrases similar to those that Newton would employ, he answers the question of 

whether time implies motion by asserting that its “absolute and intrinsic nature” does 

not imply motion any more than it implies rest; and that “Time flows perpetually with 

an equal Tenor” regardless of whether things move or stand still.  Driving the point 

home, he adds, “If you suppose all the fixed Stars to have stood still from their 

Beginning; not the least Portion of Time wou’d be lost by this.” (Ibid., 7) To be sure, 

Barrow acknowledges, we have no direct access to time itself, and our attempts to 

measure it are accordingly fallible; in answer to the question of how we can know 

whether the times of two years are exactly equal, Barrow answers that apart from “what 

we gather from divine testimony”, we can only attempt to determine this by comparing 

the sun’s motion to other regular motions. (Ibid., 10) Significantly, Barrow treats time 

                                                             
10 The view that time should be understood in terms of the existence of things (as opposed to motion) is 
found in Nicole Oresme (1320-1382).  
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as a quantity, and one that is fundamental for understanding force. Although as a 

mathematician, Barrow explains, he need not follow philosophers in their subtle 

disputes about the nature or causes of motion, he praises Aristotle’s dictum that to be 

ignorant of motion is to be ignorant of nature.  And he accordingly concerns himself 

with time, since “the quantity of motive Force cannot be known without Time”. (Ibid., 

3-4)  

 

TIME IN THE PRINCIPIA’S SCHOLIUM TO THE DEFINITIONS AND ITS PLACE IN 
NEWTON’S PHYSICS 

The focal text for Newton’s concept of absolute time is the scholium that appears 

directly after the Principia’s definitions, although the ideas there show a strong 

continuity with certain manuscripts, in particular the earlier De gravitatione, and the 

later Tempus et Locus.11 Commonly known as the scholium on space and time, it 

enumerates absolute time, absolute space, place, and absolute motion as the quantities 

to be explicated.   

Although time is the concept that Newton presents first, it is hardly possible to 

consider it apart from space, place, and motion, and so some mention of those must be 

given.  Absolute space is a three-dimensional Euclidean magnitude (as is evident 

elsewhere), which is homogeneous, immobile and independent of all bodies (Newton, 

Principia, 1999, 408-409).  Further, as Newton explains later, its parts are the only 

places that remain fixed in relation to one another from infinity to infinity (Ibid., 412).  

Relative spaces, meanwhile, are bounded parts of that space, demarcated by bodies, an 

example being the hold of a ship, demarcated by the planks constituting its sides.  If a 

                                                             
11 McGuire (1978) dates Tempus et Locus to the early 1690’s.  As for De gravitatione, the date of its 
composition has been a matter of considerable interest and controversy.  Mordechai Feingold (2004) 
concludes that an original version “might be more precisely dated to around 1671, and to a course of 
lectures Newton delivered at Cambridge against Descartesʼ mechanics and Henry Moreʼs hydrostatics”, 
but that the extant is a later reworking of those ideas: “A decade or so later, I would argue, Newton 
contemplated reworking his earlier lectures into a more sustained philosophical argument against 
Descartes” (Feingold, 2004, 26).  Feingold dates the extant manuscript to approximately the mid 1680’s, 
based upon its mention of inertia: “That the document in its present form is of late composition, albeit 
incorporating earlier material, can be deduced from its invocation of the concept of inertia, a term not 
used by Newton before the mid-1680s.” (Ibid., 194).  
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relative space is moving, it will consist in successive parts of absolute space.  Turning 

to place, the next concept enumerated, a body’s absolute place is the part of absolute 

space that it occupies (and most definitely not, as in an Aristotelian-Cartesian view, the 

body’s outer surface or boundary with adjacent bodies); and its relative place is its part 

of a relative space.  Finally, absolute motion is the change of a body’s position from one 

part of absolute space to another, while relative motion is a change from one part of 

relative space to another.  Since a body partakes of the motion of any relative space in 

which it is placed, and since such relative spaces may be nested, a body’s true 

(absolute12) motion results from the combination of all such motions with respect to 

absolute space—e.g., when a marble rolls in a box set in the hold of a ship traveling the 

seas of a moving earth.    

 

The scholium’s concept of absolute time  

The scholium opens with a twofold explanatory note concerning the need to distinguish 

between absolute and relative quantities, and it then proceeds to the details of those 

distinctions, beginning with time and then passing on to the concepts just mentioned.  

Thus far it has seemed best to explain the senses in which less familiar words 
are to be taken in this treatise.  Although time, space, place and motion are 
very familiar to everyone, it must be noted that these quantities are popularly 
conceived solely with reference to the objects of sense perception.  And this 
is the source of certain preconceptions; to eliminate them it is useful to 
distinguish these quantities into absolute and relative; true and apparent; 
mathematical and common.   
Absolute, true, and mathematical time, in and of itself and of its own nature, 
without reference to anything external, flows uniformly and by another name 
is called duration.  Relative, apparent, and common time is any sensible and 
external measure (precise or imprecise) of duration by means of motion; such 
a measure – for example, an hour, a day, a month, a year – is commonly used 
instead of true time. (Ibid., 408)   

                                                             
12 Newton uses the terms ‘absolute motion’ and ‘true motion’ interchangeably in the passage presenting 
the concept.  It is also clear that he takes ‘absolute’, ‘true’, and ‘mathematical’ on the one hand, and 
‘relative’ ‘apparent’, and ‘common’ on the other, to be sets of co-referential terms.  The precise meanings 
and interrelationships among the terms at each point in the scholium is another matter, however, and one 
beyond the scope of this article.   
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All motions can be accelerated and retarded, but the flow of absolute time 
cannot be changed. The duration or perseverance of the existence of things is 
the same, whether their motions are rapid or slow or null; accordingly, 
duration is rightly distinguished from its sensible measures. (Ibid., 410)  

As the order of the parts of time is unchangeable, so, too, is the order of the 
parts of space.  Let the parts of space move from their places and they will 
move (so to speak) from themselves.  For times and spaces are, as it were, the 
places of themselves and of all things.  All things are placed in time with 
reference to the order of succession and in space with reference to the order 
of position. (Ibid., 410)  

Here Newton presents absolute time as a quantity of infinite, linear extension, 

characterized by the successive order of its parts, and indicates that it is unidirectional 

via the metaphor of flux or flow.13  The rate of that flow is immutable, since time as 

presented here is absolute in the sense of being wholly independent of corporeal bodies 

and their motions.  Absolute time, like absolute space, is imperceptible in itself, giving 

rise to the need for relative times. Relative time, then, is not an alternative conception of 

time itself (as it is for Leibniz, who later champions a relationalist conception in his 

correspondence with Samuel Clarke), but a measure of some bounded part of infinite, 

absolute time, taken by means of perceptible bodies and their motions.  As Newton 

remarks later on in the scholium: “Relative quantities, therefore, are not the actual 

quantities whose names they bear but are those sensible measures of them (whether true 

or erroneous) that are commonly used instead of the quantities being measured.”(Ibid., 

411)   

Although relative times (and spaces) are benign in themselves and moreover 

indispensible, the scholium’s central aim is to prevent the “preconception” that our 

reliance upon them could induce.  We might mistake sensible object-based measures of 

time for time itself (and we might make a similar mistake with space).14  Newton most 

                                                             
13 Extensive analyses and very different interpretations of Newton’s understanding of time’s flow may be 
found in Earman (1989); Arthur (1995).  Arthur is particularly concerned with connections to Newton’s 
theory of fluxions; on that, see also Guicciardini (1999, esp. 42, 245-246).  
14 Gassendi’s discussion of “mere time” similarly refers to both measured parts of time itself, and to the 
error we make when we suppose that time itself consists in only those measured parts, and more 
specifically, that it is the duration of things and hence an accident of them. In the following passage, 
“mere time” is the measured components of duration itself.   



Author’s Manuscript 
Kochiras: “Newton’s Absolute Time” 

in Time and Tense, ed. S. Gerogiorgakis; Munich: Philosophia (Basic Phil.Concepts) 2016; pp. 169-195. Available at:  
http://en.philosophiaverlag.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=191&cat

egory_id=12&manufacturer_id=0&option=com_virtuemart&Itemid=26 
 

 
 

 9 

clearly describes that problem (mentioned also by his predecessors) in Tempus et Locus, 

an aforementioned manuscript from the early 1690’s which draws directly upon the 

scholium: “Time and Place in themselves do not fall under the senses, but are measured 

by means of sensible things, such as magnitudes of bodies, their positions, local 

motions, and any changes uniformly made.  And the vulgar take these measures to be 

the things measured, for example days, months, and years to be times.”15  What is not 

communicated by those dispassionate words, yet certainly lies behind them, is the 

consequence of such a mistake (one discussed further below): to fall into a Cartesian 

physics, undercutting the very possibility of distinguishing inertial states from 

accelerated ones, and hence of identifying the causes of natural phenomena involving 

local motion.   

The aim of eliminating that preconception is expressed as part of the twofold 

explanatory remark that opens the scholium, and the other part is noteworthy too. It is 

because we are already familiar with time, space, and motion that Newton discusses 

them in a scholium, which is a further explication, rather than in the definition section, 

which he reserved for the unfamiliar.  Yet that familiarity does not obviate the need for 

clarification, due to the aforementioned risk of error. Those remarks communicate 

Newton’s quite interesting and significant belief that this concept of absolute time (like 

that of space) is the one that, in some manner, we already possess.  (How it is that we 

possess the concept of absolute time or space, even as we employ relative times and 

spaces, is suggested by his presentation of the latter as measures of the former; we are 

led to absolute time or space by imaginatively removing the bodies measuring the parts, 

and taking a broader view.)  

                                                             
 “There seems to exist some incorporeal duration independent of bodies, which, though called 
imaginary, is the same as the one which constitutes the measure of time.  For just as that space 
extends through every position beyond mere place, which belongs to the universe and all is parts, so 
this duration goes beyond mere time, which belongs to the universe and everything existing in it and 
is conceived as having been extended beyond any beginning of the universe and as extending 
without limit even if the universe were destroyed.” (Gassendi, 390-391, emphasis added) 

15 Newton, Tempus et Locus, in McGuire, 1978, 117, his translation.  
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An additional feature of Newton’s concept of time is absolute simultaneity.  That 

presumption, universal before relativity theory, is both implied by the scholium and 

directly evident in De gravitatione.  In the latter text, Newton tries to explain how a 

mind might be spatially located by invoking, as an uncontroversial case, the belief that 

“the moment of duration is the same at Rome and at London, on the earth and on the 

stars, and throughout all the heavens.”16 

Also worth noting—especially in light of later charges that Newton’s absolutist 

concepts were nothing but metaphysical interlopers—is the very different way that 

Newton answers the question of whether time is absolute in the Principia as compared 

to De gravitatione.  De gravitatione is famously dominated by a philosophical 

digression addressing a range of metaphysical questions, including the ultimate 

ontological status of time and space and their relation to God.  There, since he has 

extended the domain of entities to include God, Newton argues that space and time are 

not absolute; for to be absolute is to be independent, and he takes space and time to be 

emanative effects of God and thus dependent.  The Principia, by contrast, has the more 

restricted domain of entities appropriate to a treatise of rational mechanics;17 the 

question of whether space and time are independent is posed solely with respect to 

corporeal bodies, and Newton therefore considers time and space to be absolute.  That 

he considers them absolute in the domain of physics, because independent of corporeal 

bodies and their motions, yet denies that they are absolute in the domain of 

metaphysics, because they are dependent upon God, does not answer the charge that his 

purportedly physical concepts are in fact metaphysical, that is, without empirical 

grounding.  Still, it prepares the way for an answer, by reminding us of his intention to 

keep the two domains apart. 

 

 

                                                             
16 De gravitatione, in Newton 2004, 26.  
17 I disregard here the 1713 General Scholium, which extends natural philosophy’s domain to God, if the 
deity is considered from phenomena. 
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The equation of time and Newton’s stance toward his concept 

Given just how controversial Newton’s concepts of absolute time and space would 

be, it is interesting to note his utter insouciance when presenting them. One indication 

that he does not expect controversy is that the discussion is free of caveats, and their 

absence is especially apparent because the scholium follows the definitions.  In 

particular, it immediately follows the wagon-circling remarks that close his definition of 

motive force: “I use interchangeably and indiscriminately words signifying attraction, 

impulse, or any sort of propensity toward a center....Therefore, let the reader beware of 

thinking that by words of this kind I am anywhere defining a species or mode of 

attraction or a physical cause or reason.”(Newton, Principia, 1999, 408).) Had Newton 

wished to diminish the impact of his concept of absolute time (or space), he might have 

added some comparable remarks.  Specifically, he might have cautioned his readers to 

beware supposing absolute time to be actual—as opposed to the potentiality (“capacity 

or possibility”) that Barrow allowed.  Instead, he says nothing to diminish the impact.  

Furthermore, he does not present absolute time as a concept requiring defense against 

any viable competitor; as already noted, Newton’s relative time is a measure of some 

part of absolute time, not the reductionist, relationalist conception of time that Leibniz 

will later promote.18  

Newton’s reasons for supposing that his absolutist concept is the one that we 

already in some manner possess are evident in later passages of the scholium.  Those 

passages indicate how naturally the concept emerges from astronomy’s correction or 

equation of time.19  That is to say, the concept emerges from the equation of time when 

                                                             
18 As commentators have regularly acknowledged since Stein’s 1967 article, Newton’s target in this 
scholium was not Leibniz but Descartes, just as it was in his attack upon the Cartesian doctrine of motion 
in his unpublished De gravitatione, with which the scholium is largely continuous.  
19 Cohen (Newtonian Revolution, 174), is eloquent on this point and on the place of Newton’s concepts in 
his physics: “For Newton, time is 'absolute, true, and mathematical' or 'relative, apparent, and common'—
as he put the matter in the scholium following the definitions in the Principia. This distinction was a 
natural one to any astronomer, who must be aware of the difference between mean time and local 
apparent solar time: an artificial and absolute time, regular and uniform, and a local or common time. 
And, since this absolutely flowing time, which occurs in Newton's mathematics and also analogously in 
his physics of motion, is measured (as Newton says) by a velocity; it follows that there must exist an 
absolute velocity; and such an absolute velocity necessarily defines and requires an absolute space. Much 
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considered in connection with Galileo’s lesson that “in philosophy abstraction from the 

senses is required”. (Ibid., 411)  It is possible for any actual motion to be accelerated or 

retarded, Newton notes; and in the following passage, he indicates that what the 

astronomers’ correction produces is not true time but only a “truer” one.   

In astronomy, absolute time is distinguished from relative time by the 
equation of common time.  For natural days, which are commonly considered 
equal for the purpose of measuring time, are actually unequal.  Astronomers 
correct this inequality in order to measure celestial motions on the basis of a 
truer time. (Ibid., 410)  

This “truer time”, or mean solar time, is in itself an abstraction, and Newton soon 

indicates why further abstraction, away from all motions, is required: “It is possible that 

there is no uniform motion by which time may have an exact measure.” (Ibid., 410) The 

possibility that no motion is uniform appears quite dramatically in Newton’s pre-

Principia manuscript De Motu, as he describes the consequences of the planets’ mutual 

perturbations: "Each time a planet revolves it traces a fresh orbit.... Unless I am much 

mistaken, it would exceed the force of human wit to consider so many causes of motion 

at the same time, and to define the motions by exact laws which would allow of any 

easy calculation."20  (The possibility becomes more dramatic still in the speculative 

Query 31, as Newton forecasts the eventual disruptions of the orbits, and intimates the 

need for divine intervention.)  Given the possibility that no motion is uniform, Newton 

sees the need for absolute time in physics.   

 

The place of absolute time in Newton’s physics 

Fundamental to Newton’s physics is the distinction between inertial states and the 

accelerated ones produced by impressed forces, with his three laws providing the means 

to draw that distinction.  The second and third laws provide positive characterizations of 

impressed forces, describing what happens in their presence; and the first law provides 
                                                             
has been written on Newton's concepts of absolute space and time, including the suggestion that his belief 
in an absolute space may have been caused by his psychological needs, without taking cognizance of this 
basic aspect of Newton's mathematical dynamics and dynamics-based mathematics.” 
20 Unpublished Scientific Papers of Isaac Newton, 281.    
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the negative characterization, describing what happens in their absence: “Every body 

perseveres in its state of being at rest or of moving uniformly straight forward, except 

insofar as it is compelled to change its state by forces impressed"(Newton, Principia, 

1999, 417).  The laws, which appear in the Principia just after the scholium, depend 

upon its concepts of absolute time and space, as will be discussed below.  

The Principia’s muted presentation of the need to distinguish inertial and 

accelerated states, and its concomitant claim that doing so requires reference to absolute 

time and space, has a more aggressive ancestor in De gravitatione, where one of 

Newton’s main preoccupations is to analyze the failings of Cartesian physics.  The 

connected roots of the problems are Descartes’ identification of matter with extension, 

his Aristotelian definition of a body’s place in terms of its contiguous neighbors in the 

plenum, and his related doctrine of motion.  According to that doctrine, a body’s one 

true or proper motion is its motion in the “philosophical” sense—the sliding away from 

the formerly contiguous bodies that had defined its place.  Given this definition, 

Descartes can both assert a heliocentric cosmos and insist that the earth is at rest; for 

because there is no mutual translation of surfaces between the earth and the fluid vortex 

that carries it as it swirls around the sun, the earth is at rest in his true or philosophical 

sense of motion.  The earth may be said to move, Descartes holds, only in the common 

or vulgar sense that he denies is true motion—the change of a body’s place relative to 

other bodies with which it is not contiguous, as when the earth is considered with 

respect to the sun.21   

Newton sees this doctrine of motion as having consequences that are fatal for 

Cartesian physics.  One is the unacceptable consequence that a body that was not 

subjected to any impressed force could nevertheless be said to accelerate.  For instance, 

Newton explains, if God stopped the fluid vortex from gyrating, then there would be a 

mutual translation of surfaces between that fluid aether and the earth, whereas there had 

been none before; but instead of implying that the vortex decelerated, Cartesian physics 

implies that the earth accelerated, even though no force was applied to it. (The 
                                                             
21 Descartes, Principles of Philosophy, II.54; II.25.  
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Principia’s scholium will therefore explain that while relative motion can be generated 

or changed without impressing force on a body, true motion can be generated or 

changed only by impressing forces “on the moving body itself”(Newton, 1999, 413).)  

Another unacceptable consequence is that it is not possible to define rectilinear motion 

or to determine any distances, directions or speeds.  Since Cartesian physics provides 

nothing motionless against which places and trajectories could be defined, “not even 

God himself could define the past position of any moving body accurately and 

geometrically now that a fresh state of things prevails, since, on account of the changed 

positions of the bodies, the place does not exist in nature any longer.”22   

Having shown that something motionless is required in physics, Newton 

emphasizes the need for absolute space, both in De gravitatione and then in the 

Principia’s scholium.  No bodies will serve the purpose, since as he writes in the 

scholium, “It is possible that there is no body truly at rest to which places and motions 

may be referred.”(Newton, Principia, 1999, 411).  And though one of his remarks 

appears, given hindsight, to formulate the concept of a frame of reference (“we reckon 

all places on the basis of the positions and distances of things from some body that we 

regard as immovable, and then we reckon all motions with respect to these places” 

(Ibid., 410)), he does not in fact pursue the thought to full development.  He therefore 

sees physics as requiring absolute space.23 

Although in De gravitatione Newton gives the stage to absolute space—and 

understandably, since he elaborates his own ideas by opposing a physics that fails 

because of its notions of place and space—absolute time is no less fundamental to his 

                                                             
22 De gravitatione, in Newton, 2004, p. 20.  The inability to define any location, as needed to determine 
such things as the distance a body has traveled, its trajectory and speed is, to be clear, a consequence of 
Descartes’ official position, with its philosophical sense of motion; Newton points out that in noting the 
planets tendency to recede from the sun, Descartes implicitly invokes the vulgar sense of motion that he 
claims to reject (see Newton 2004, 15).   
23 If one adopts a less historical perspective by considering concepts not fully available to or articulated 
by Newton, one might ask what “Newtonian physics” requires.  This is the question DiSalle poses, and he 
answers that the laws presuppose only absolute time, not absolute space; in particular, since they cannot 
determine absolute velocities or distinguish between absolute rest and absolute rectilinear, uniform 
motion, “Newton’s laws require not absolute space, but a four-dimensional structure known as 
“Newtonian space-time.” (DiSalle, 2002, 35). 
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physics.  In particular, absolute time is presupposed by Law 1, since the perseverance of 

the same state requires the notion of equal times; uniform rectilinear motion, for 

instance, requires that equal distances be traversed in equal times.  Absolute time then 

draws empirical warrant, despite being itself imperceptible, through the success of the 

theory that presupposes it.  That point was made, although overoptimistically, by Euler 

as he defended Newton’s absolutist concepts against “metaphysicians” such as Leibniz. 

“There is not the least doubt that bodies of themselves behave in accordance with these 

principles”, he writes, dividing Newton’s first law into distinct principles concerning 

rest and uniform rectilinear motion; and “if it is not possible to conceive the two 

principles adduced from mechanics without being involved in the ideas of space and 

time”, one may justifiably conclude “that both absolute space, and time, such as are 

represented by mathematicians, are real things.”24  Although he was writing near the 

zenith of confidence in Newton’s physics, well before relativity theory revealed its 

limitations and the need for a concept of space-time, we can appreciate the rudiments of 

Euler’s point.25  

As for Newton, he establishes empirical credentials for absolute time indirectly, via 

his discussion of absolute motion.  The fact that absolute space and time are 

imperceptible raises the epistemological question of how any absolute motions could be 

identified.  Although the inertial states of uniform rectilinear translation and absolute 

rest are indistinguishable, as Newton acknowledges in Corollary 5,26 he focuses upon a 

particular class of absolute motions when addressing the epistemological question, 

namely, those involving absolute rotation.  Although it is “certainly very difficult” to 

differentiate true from apparent motions, he acknowledges, “the case is not utterly 
                                                             
24 Leonhard Euler (1748, 117).  
25 A discussion of the weaknesses in Euler’s remarks may be found in Van Fraassen, 1970, 114.    
26 "Corollary 5.  When bodies are enclosed in a given space, their motions in relation to one another are 
the same whether the space is at rest or whether it is moving uniformly straight forward without circular 
motion.  For in either case the differences of the motions tending in the same direction and the sums of 
those tending in opposite directions are the same at the beginning (by hypothesis), and from these sums or 
differences there arise the collisions and impulses [literally, impetuses] with which the bodies strike one 
another.  Therefore, by law 2, the effects of the collisions will be equal in both cases….On a ship, all the 
motions are the same with respect to one another whether the ship is at rest or is moving uniformly 
straight forward."  (Principia, 423.) 
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hopeless”, since there is some available evidence.  One source of evidence is apparent 

motion, which is the difference between true motions; for instance, if we observed 

motion between a sphere and a shell enclosing it, we would know that at least one of 

those bodies was rotating, even if we did not know which.  Another source of evidence 

is “the forces that are the causes and effects of the true motions.”(Newton, Principia, 

1999, 414) Here Newton refers on the one hand to the impressed forces that generate or 

change true motion; and on the other to inertial effects, specifically, to “the forces of 

receding from the axis of circular motion”. (Ibid., 412)   

Within the scholium, Newton then provides such evidence by way of a thought 

experiment involving a revolving system of two connected globes.   

For example, if two balls, at a given distance from each other with a cord 
connecting them, were revolving about a common center of gravity, the 
endeavor of the balls to recede from the axis of motion could be known from 
the tension of the cord, and thus the quantity of circular motion could be 
computed. (Ibid., 414) 

Here the tension in the cord enables us to determine that there is an impressed force 

acting, one preventing the bodies from following inertial trajectories by which they 

would recede from the axis of motion.  It further enables us to measure quantity of 

motion.  As the passage continues, Newton explains how the direction of motion could 

be found, in both (i) the case of the bodies being in a vacuum, such that they could not 

be compared to other bodies, and (ii) the case of their being surrounded by bodies akin 

to the fixed stars (i.e., fixed in their positions relative to one another).  In that latter case, 

Newton supposes relative motion between the globe-system and the surrounding bodies; 

but while the apparent motion tells us only that at least one of these two systems is 

rotating without telling us which, we can determine from the tension in the cord that it 

is the globe-system that revolves, not the surrounding bodies.  The bulk of the evidence, 

however, will of course come in the rest of the Principia, as Newton indicates with the 

scholium’s closing words: “But in what follows, a fuller explanation will be given of 

how to determine true motions from their causes, effects, and apparent differences, and, 

conversely, of how to determine from motions, whether true or apparent, their causes 
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and effects.  For this was the purpose for which I composed the following treatise.” 

(Ibid., 415)  

Then, in one of the treatise’s crucial moves, by which Newton develops his 

gravitational theory, absolute time underwrites the equal intervals of time that he 

supposes when passing from a force acting by impulse to one acting continuously.  

Articulated first in De motu (a manuscript he produced, in five extant versions, 

following Halley’s inquiry about the orbit produced by a central inverse-square force) 

and then in the Principia’s Book I, Proposition 1, the process begins by supposing that 

“time be divided into equal parts”.  It then supposes that a body moving inertially with 

respect to a point S will experience “a single but great impulse” (Ibid., 444) at each of 

those equal intervals of time.  As a result, the point S is a center and the impulses are 

centripetal forces directed toward it, such that as the body moves around S, it describes 

a polygon whose sides indicate, by their number, the number of impulses delivered.  

Radii drawn from the endpoints of those sides to the center produce triangles of areas 

proportional to the times.  Newton then passes to a continuously acting force: “Now let 

the number of triangles be increased and their width decreased indefinitely, and their 

ultimate perimeter...will...be a curved line; and thus the centripetal force by which the 

body is continually drawn back from the tangent of the curve will act uninterruptedly.” 

(Ibid., 445; see 444 for the diagram)  Each decrease in the triangles’ width corresponds, 

clearly enough, to a decrease in the length of the time interval.27   

 

THE AFTERMATH 

If Newton saw his concepts of absolute time and space as innocuous, a good 

number of commentators disagreed. Leibniz was not the only critic among Newton’s 

contemporaries, but his attack was by far the most visible and influential, being 

communicated through his widely circulated correspondence with Clarke.  Resurrecting 

the reductionist, relationalist conception of time, Leibniz faulted the absolutist concepts 
                                                             
27 On the proper understanding of Newton’s second law, as able to accommodate both a succession of 
forces and a continually acting force, see Cohen, Newtonian Revolution, 173-174.  
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for violating metaphysical principles that were fundamental to his natural philosophy 

and his conception of God.  Asserting in his fourth letter that “metaphysics becomes 

real and demonstrative through the grand principles of sufficient reason and of the 

identity of indiscernibles”,28 he dismisses Clarke’s claim that a free and perfect deity 

could have chosen to create the world earlier, as only absolute time allows.  On 

Leibniz’s view, such a proposition cannot be reconciled with a perfect deity, since there 

could be no reason for choosing to create at one instant rather than another.  Subsequent 

evaluations of Newton’s concepts turned upon a quite different question, that of 

empirical warrant.  Euler gave an excessively sanguine defense of Newton’s concepts, 

as we saw earlier, while Ernst Mach later attacked them “monstrous” metaphysical 

conceptions, because they failed to meet his positivism-informed empirical criteria.  

With the demise of absolute simultaneity and the advent of relativity theory, space 

and time gave way to space-time. Newton’s own concepts were accordingly no longer 

at issue, and the debate focused upon successor concepts, with a good number of 

commentators, such as Hans Reichenbach, rushing to proclaim victory for relationalism.  

Those assessments have not survived, but greater sensitivity to the philosophical 

implications of new physics has not ended debate, instead shifting it to more subtle and 

branching questions.29 

As for Newton’s own concepts, historians are left with a number of problems.  

These include questions about Newton’s early ideas about space and time and their 

relation to his atomist ideas (e.g., Palmerino, 2013); questions about the role of his 

theory of fluxions for fostering his ideas about time in physics (e.g., Cohen, 1978; 

Arthur, 1995; Guicciardini, 1999, 2009); and of course the relationship between the 

concepts figuring in his physics and those in his metaphysics (e.g. McGuire, 1978 and 

Arthur, 1995 toward one end of the spectrum, and DiSalle, 2002, toward the other).   

 

                                                             
28 Leibniz, fourth letter to Clarke, paragraph 5 (ed. Robinet, 1957), p. 84; my translation. 
29 Some years ago, Earman (1989, 2) listed a considerable number of positions and debates, and the 
literature has of course grown since then.  
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