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This document contains further technical discussion of the semantic frame-
work developed in “Metalinguistic Gradability” (Rudolph and Kocurek, 2024).
There, we developed a novel semantics for constructions like the following:

(1) a. Ann is more a linguist than a philosopher.
b. Ann is (exactly) as much a linguist as a philosopher.
c. Ann is very much/sorta a linguist.

We use the term metalinguistic gradability (or metagradability for short) to
classify these constructions. In many ways, these constructions parallel their
“ordinary” gradable counterparts, as in (2).

(2) a. Ann is taller than Ben.
b. Ann is (just) as tall as Ben.
c. Ann is very/sorta tall.

But in some respects, themorphosyntactic and semantic properties of these two
constructions diverge. Our task in Rudolph and Kocurek 2024 was to develop a
general theory ofmetalinguistic gradability thatwould encompass not justmet-
alinguistic comparatives, such as in (1a), which have been studied extensively
elsewhere (Huddleston and Pullum, 2002, Giannakidou and Yoon, 2011, Gi-
annakidou and Stavrou, 2009, Morzycki, 2011, Wellwood, 2014, 2019, Rudolph
and Kocurek, 2020), but also metalinguistic equatives, degree modifiers, and
conditionals.

The basic idea we develop in Rudolph and Kocurek 2024 is to analyze
metalinguistic gradability in terms of the relative strength of a speaker’s com-
mitment to an interpretation. Roughly, (1a) expresses a stronger commitment
towards interpretations which count Ann exclusively in the extension of ‘is a
linguist’ than towards those which count Ann exclusively in the extension of
‘is a philosopher’. This leads to an approach we call semantic expressivism,
which holds that when speakers make assertions, they express not only their
factual commitments, i.e., their beliefs about the world, but also their seman-
tic commitments, i.e., their plans for how to interpret linguistic expressions
(cf. Barker 2013, Kocurek et al. 2020, Mena 2023, Kocurek 2023).

For ease of exposition, we start in section A by quickly reviewing the basic
semantics for metagradable constructions developed in Rudolph and Kocurek
2024. Section B discusses amendments that are needed to the basic semantics
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to ensure the transitivity of the metalinguistic equative. Section C introduces
a degree-theoretic formulation of this generalized semantics. Section D gen-
eralizes the semantics further to allow nontotal semantic orderings. Section E
extends the semantics with quantifiers, which allows us to formalize the differ-
ent metalinguistic “superlative” readings.

A Review of the Basic Semantics
We start by analyzing metalinguistic comparatives (MCs). To do this, we intro-
duce an operator ą, where � ą � can be read “It is more the case that � than
that �”. We also introduce an operator « for metalinguistic equatives (MEs),
where �« � stands for “It is exactly as much the case that � as it is that �”.

Here, then, is our starting language:

�F %01 . . . 0= |  � | p�^ �q | p� ą �q | p�« �q

We’ll define the other boolean connectives _, Ą, and ” in the standard way.
Throughout, I’ll use lowercase ?, @, A, . . . for propositional variables, which can
be understood as 0-place predicates. We define J B p? _  ?q and K B  J.
Finally, we further define a “weak” metalinguistic comparative ě, where �ě �
stands for “It is at least as much the case that � as it is that �”, as follows:

p� ě �q B p� ą �q _ p�« �q.

In the basic semantics, we could define � ě � as  p� ą �q and � « � as
 p� ą �q ^  p� ą �q. But this definition depends on the assumption that our
ordering of interpretations is total, which we consider dropping in section D.

The truth of a formula is evaluated relative to three parameters: a world,
an interpretation, and a semantic ordering. Given a nonempty set of worlds,
and nonempty set of objects �, an interpretation is a function 8 where:

(i) 8p0q : , Ñ � for each name 0

(ii) 8p%=q : , Ñ ℘p�=q for each =-place predicate %=

A semantic ordering is a total preorder ď on a set � of interpretations, i.e., for
all 8 , 9 , : P �:

• reflexivity: 8 ď 8

• transitivity: if 8 ď 9 ď :, then 8 ď :

• totality: either 8 ď 9 or 9 ď 8.

A model in our framework, then, is a tuple x,, �, �,ďy, where , is a set of
worlds, � is a set of objects, � is a set of interpretations over, and �, and ď
is a semantic ordering over �. Throughout, the background model will be left
implicit.
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The truth conditions for atomics and booleans are standard. Here are the
truth conditions for our specifically metalinguistic operators (ą, «, ě):

~� ą ��ď,8 ,F “ 1 iff D81 ď 8 : (i) ~�^ ��ď,81 ,F “ 1
(ii) @82 ď 8 : ~� ^ ��ď,82 ,F “ 1 ñ 82 ă 81.

~� ě ��ď,8 ,F “ 1 iff @81 ď 8 : if ~� ^ ��ď,81 ,F “ 1,
then D82 ď 8 : ~�^ ��ď,82 ,F “ 1 & 81 ď 82.

~�« ��ď,8 ,F “ 1 iff @81 ď 8 : (i) if ~�^ ��ď,81 ,F “ 1,
then D82 ď 8 : ~� ^ ��ď,82 ,F “ 1 & 81 ď 82

(ii) if ~� ^ ��ď,81 ,F “ 1,
then D82 ď 8 : ~�^ ��ď,82 ,F “ 1 & 81 ď 82.

In many of the proofs, it is cumbersome to keep mentioning ď and F, which
never change as our language does not include operators that shift them. For
readability, then, we’ll often drop mention of ď and F. Thus, we may write
~��8 in place of ~��ď,8 ,F where ď and F are implicit.

In Rudolph and Kocurek 2024, we defined two notions of consequence:
truth-preservation (() and acceptance-preservation (,). The former is defined
in the standard way: �1 , . . . , �= ( � iff ~��ď,8 ,F “ 1 whenever ~�1�

ď,8 ,F “

¨ ¨ ¨ “ ~�=�
ď,8 ,F “ 1. The latter can be defined in terms of the former using the

following abbreviation:

⊟� B p� ą �q.

Here, ⊟� stands for the claim that � is accepted, i.e., it is true at all the top-
ranked interpretations.

Fact 1. ~⊟��ď,8 ,F “ 1 iff @81 ” 8 : ~��ď,81 ,F “ 1.

Using this, we can define �1 , . . . , �= , � as short for ⊟�1 , . . . ,⊟�= ( ⊟ �
(i.e., whenever the premises are accepted, the conclusion is, too).

Since ( captures truth preservation across all ranked interpretations while
, captures truth preservation across all the top-ranked interpretations, we im-
mediately have the following:

Fact 2. If �1 , . . . , �= ( �, then �1 , . . . , �= , �.

As we note in Rudolph and Kocurek 2024, (section 4.4), the converse isn’t true.
In particular, �, � , �ą � (in line with Observation 3 from section 2.5) even
though �, � * � ą �. By the same token, we observed that , is nonclassical
as it invalidates proof by cases: as desired,. ⊟�_⊟ � even though� , ⊟�
and  � , ⊟ � (and , �_ �).
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We now record the following entailment facts, including the other observa-
tions from section 2.5.

Fact 3.

(a) � ą �, �^ � * K and � ą �, �^ � * K (Observation 1)
(b) � ą �, � ( � (Observation 2)
(c) �« � (  p� ą �q ^  p� ą �q (Observation 4)
(d) �« � * K (Observation 5)
(e) � ą � (  p� ą �q (ą is strict)
(f) (  p� ą �q (ą is irreflexive)
(g) � ą �, � ą � ( � ą � (ą is transitive)
(h) � ą � (  � ą � (ą obeys contraposition)
(i) � ą p� _ �q ( p� ą �q ^ p� ą �q (ą obeys right strengthening)

(in fact: if � ( �, then � ą � ( � ą �)
(j) p�^ �qą � ( p� ą �q ^ p� ą �q (ą obeys left weakening)

(in fact: if � ( �, then � ą � ( � ą �)
(k) ( �« � (« is reflexive)
(l) �« � ( � « � (« is symmetric)

(m) �« � (  �« � (« obeys contraposition)
(n) ( p� ą �q _ p� ą �q _ p�« �q (totality; see section D)

Reminder: In the proofs below, we allow ourselves to drop mention of ď and
F in the indices for readability, writing ~��8 in place of ~��ď,8 ,F .

Proof. Most of these are straightforward to verify. The most difficult one is (g),
i.e., the transitivity of ą. We’ll assume (A) and (B) to establish (C) below:

(A) D80 ď 8 : ~�^ ��80 “ 1 &@9 ď 8 : ~� ^ ��9 “ 1 ñ 9 ă 80 . (� ą �)

(B) D81 ď 8 : ~� ^ ��81 “ 1 &@9 ď 8 : ~� ^ ��9 “ 1 ñ 9 ă 81 . (� ą �)

(C) D82 ď 8 : ~�^ ��82 “ 1 &@9 ď 8 : ~� ^ ��9 “ 1 ñ 9 ă 82 . (� ą �)

In particular, we’ll show that we can take 82 to be either 80 or 81 , depending on
which (if any) is higher.

Suppose first that 80 ď 81 . By (A), ~��81 “ 1. (So ~� ^ ��81 “ 1.) Suppose
for reductio that 81 ď 9 ď 8 where ~ � ^ ��9 “ 1. If ~��9 “ 1, then we violate
(A), since 80 ď 81 ď 9 and ~�^ ��9 “ 1. If ~��9 “ 0, then we violate (B), since
81 ď 9 and ~� ^  ��9 “ 1. Contradiction. Hence, if 9 ď 8 and ~ � ^ ��9 “ 1,
then 9 ă 81 .

Now suppose 81 ď 80 . By (B), ~��80 “ 0. (So ~� ^ ��80 “ 1.) Suppose for
reductio that 80 ď 9 ď 8where ~ �^��9 “ 1. If ~��9 “ 1, thenwe violate (A). If
~��9 “ 0, thenwe violate (B). Contradiction. Hence, if 9 ď 8 and ~ �^��9 “ 1,
then 9 ă 81 .
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B The Revised Semantics: Transitivity for MEs
Though the basic semantics presented can explain quite a few entailment pat-
terns governing MCs and MEs, there is one entailment governing MEs that it
fails to predict: the transitivity of MEs. Intuitively, such inferences seem quite
plausible:

(3) a. Ann is as much a linguist as she is a philosopher.
b. Ann is as much a philosopher as she is a psychologist.
c. Thus, Ann is as much a linguist as she is a psychologist.

The basic semantics does not validate this inference: � « �, � « � * � « �.
Figure 1 contains a minimal counterexample. To make the counterexample
more intuitive, let’s interpret �, �, and � as follows:

• � = “Ann is a linguist”
• � = “Ann is a philosopher”
• � = “Ann is a psychologist”

Then, intuitively, the following inference seems valid. Yet in situations like the
one depicted in Figure 1, (4a–b) are true according to the basic semantics while
(4c) is false (specifically, it predicts Ann is more a linguist than a psychologist).

(4) a. Ann is as much a linguist as she is a philosopher.
b. Ann is as much a philosopher as she is a psychologist.
c. Thus, Ann is as much a linguist as she is a psychologist.

9
���

8
���

:
���

;
���

Figure 1: Counterexample to the transitivity of « in the basic semantics from
section 4.2. Subscripts indicatewhichof�, �, and� is true at that interpretation.
Reflexive and transitive arrows are omitted from the diagram.

Examining this counterexample, it seems like this example should satisfy
�« �: while there is a top-ranked interpretation making � true and � false, it
is ranked equally highly with a p�^ �q-interpretation and with a p �^ �q-
interpretation. That should be sufficient to make �«� true. As it stands, how-
ever, our current semantics doesn’t predict this, since the top-ranked p�^ �q-
interpretation is not matched by any equally-ranked p �^ �q-interpretation.
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Interestingly, as we observed in Fact 3(g), the basic semantics does validate
transitivity for ą. Still, the failure of transitivity for « suggests we need to
revise the semantics of MEs. And if we weaken the semantics for MEs so that
� « � comes out true in Figure 1, we must also strengthen the semantics for
MCs so that �ą� and �«� are incompatible. This means we must revise the
semantics for MCs, even though ą doesn’t suffer from transitivity failures.

Here is our proposed amendment to the semantics of MEs:

~�« ��ď,8 ,F “ 1 iff either:
(i) @81 ď 8 :

(a) ~�^ ��ď,81 ,F “ 1 ñ
D82 ď 8 : ~� ^ ��ď,82 ,F “ 1 & 81 ď 82

(b) ~� ^ ��ď,81 ,F “ 1 ñ
D82 ď 8 : ~�^ ��ď,82 ,F “ 1 & 81 ď 82

or:
(ii) @81 ď 8 : if ~�Ø  ��ď,8 ,F “ 1, then:

(a) D82 ď 8 : ~�^ ��ď,82 ,F “ 1 & 81 ď 82 and
(b) D82 ď 8 : ~ �^ ��ď,82 ,F “ 1 & 81 ď 82.

In words, �« � is true iff either every p�^ �q-interpretation is matched with
a p� ^ �q-interpretation that’s ranked at least as high and vice versa (i.e., the
semantics in section 4.2), or else every p�^ �q-interpretation is matched with
some p�^ �q-interpretation and some p �^ �q-interpretation that’s ranked
at least as high and similarly for every p� ^  �q-interpretation—exactly the
kind of situation depicted in Figure 1.

Using totality as a guide for how to revise the semantics of MCs, we obtain
the following:1

~� ą ��ď,8 ,F “ 1 iff D81 ď 8 :
(i) ~�^ ��ď,81 ,F “ 1
(ii) @82 ď 8 : ~� ^ ��ď,82 ,F “ 1 ñ 82 ă 81

(iii) either:
(a) @82 ď 8 : ~�^ ��ď,82 ,F “ 1 ñ 82 ă 81 or:
(b) @82 ď 8 : ~ �^ ��ď,82 ,F “ 1 ñ 82 ă 81.

In words, � ą � is true iff there is an p� ^  �q-interpretation that’s ranked
higher than any p� ^ �q-interpretation (i.e., the semantics in section 4.2) and
there aren’t both p� ^ �q-interpretations and p � ^  �q-interpretations that
are ranked at least as high as it. Applied to Figure 1, condition (iii) is what
ensures that � ą � is false.

1This semantics can be generalized to cover failures of totality; see section D.

6



We can simplify the truth conditions for ą in this revised semantics. Essen-
tially, � ą � is true iff there’s an p� ^  �q-interpretation that is either higher
than any �-interpretation or higher than any  �-interpretation.

~� ą ��ď,8 ,F “ 1 iff D81 ď 8 :
(i) ~�^ ��ď,81 ,F “ 1
(ii) either:

(a) @82 ď 8 : ~��ď,82 ,F “ 1 ñ 82 ă 81 or:
(b) @82 ď 8 : ~ ��ď,82 ,F “ 1 ñ 82 ă 81.

While it is a chore, one can verify that all of the entailment patterns Fact 3
still hold in the revised semantics for ą and «. Since the proof of transitivity
for ą was involved even for the basic semantics, we’ll provide the proof that
this entailment still holds. Throughout, let (A stand for truth-preservation in
the revised semantics.

Fact 4. � ą �, � ą � (A � ą �.

Proof. Recall in the proof of Fact 3(g), we showed either 80 or 81 could be our
witness 82 for conditions (i) and (ii) of � ą �, depending on which is higher.
We’ll now show that, whichever it is, it also satisfies condition (iii) for � ą �
(given 80 satisfies (iii) for �ą � and 81 satisfies (iii) for �ą �). Here, we just do
the 80 ď 81 case, since the 81 ď 80 is similar.

Suppose 80 ď 81 (so 81 is our witness 82). Since 80 satisfies condition (iii)
for � ą �, and since ~� ^ ��81 “ 1, that means 80 satisfies condition (iiib) in
particular, i.e., if 80 ď 82 ď 8, then ~ � ^  ��82 “ 0, i.e., ~� _ ��8

2

“ 1. But if
~��8

2

“ 0 where 80 ď 82 ď 8, that means ~��82 “ 1, which violates (A). Hence,
if 80 ď 82 ď 8, then ~��82 “ 1. So if 81 ď 82 ď 8, then since 80 ď 81 , we have
~��8

2

“ 1, and so ~ �^ ��82 “ 0, i.e., 81 satisfies (iiib) for � ą �.

Fact 5. All of the entailment patterns in Fact 3 still hold for (A .

And of course, the revised semantics now validates transitivity for «, as
we’ll now demonstrate:

Fact 6. �« �, � « � (A �« �.

Proof. Suppose (A) ~�« ��8 “ 1 and (B) ~� « ��8 “ 1. We want to show;

(C1) If (iia) for �« � fails, then condition (i) for �« � holds.

(C2) If (iib) for �« � fails, then condition (i) for �« � holds.

Notice that it suffices to establish (C1) given that � « � (  � «  �. For
condition (iib) for � « � is the same as condition (iia) for  � «  �. So if
condition (iib) for � « � fails, then condition (iia) for  � « � fails, which by
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(C1) means condition (i) for  � «  �, which is the same as condition (i) for
�« �, holds. Hence, we only need to establish (C1).

Suppose (iia) fails for � « �. So D81 ď 8 : ~� Ø  ��8
1

“ 1 such that
~�^��8

2

“ 0 whenever 81 ď 82 ď 8. We’ll just establish (ia), since the reasoning
for (ib) is symmetric. Let : ď 8 where ~� ^  ��: “ 1. Suppose for reductio
that @:1 ď 8 : : ď :1 ñ ~ �^ ��:

1

“ 0. We first establish the following:
Claim 1. Let 9 ď 8 be such that 81 ď 9 and : ď 9. Then ~��9 “ ~��9 “ ~��9 “ 0.

Proof. By our choice of 81, ~� ^ ��9 “ 0. By our choice of :, ~ � ^ ��9 “ 0.
Hence, ~��9 “ 0.

Now, suppose for reductio ~��9 “ 1, so that ~�^ ��9 “ 1. By �«�, there
is a 91 ď 8 where 91 ě 9 and either ~� ^ ��91 “ 1 (if clause (i) for � « � holds)
or else ~� ^ ��9

1

“ 1 (if clause (ii) holds). Either way, this contradicts the fact
that ~��91 “ 0 for all 91 ě 9, since 9 ě 81 , :. Hence, ~��9 “ 0.

Finally, suppose for reductio that ~��9 “ 1, so that ~� ^ ��9 “ 1. Similar
to above, by � « �, there is a 91 ď 8 where 91 ě 9 and either ~� ^  ��91 “ 1 or
~� ^ ��9

1

“ 1, which contradicts the fact that ~��91 “ 0 for all 91 ě 9. Hence,
~��9 “ 0.

Now, if 81 ď :, then by Claim 1, ~��: “ 0, contrary to our choice of :.
Hence, : ă 81, and so by Claim 1, ~�Ø  ��8

1

“ 0, contrary to our choice of 81.
Contradiction.

Thus, we can revise the basic metagradable semantics to accommodate the
transitivity of « without lose of predictive power. Cases like those depicted in
Figure 1 where transitivity fails for « are not common, however. We struggle
to think of a realistic yet simple example where one would need to appeal to
these revised clauses when evaluatingMCs andMEs. For most purposes, then,
the basic semantics is a good enough approximation to work with.

In fact, we can define the ą from the basic semantics using the ą from the
revised semantics and vice versa. Let ą1 have the truth conditions of ą in the
basic semantics and ąA have the truth conditions of ą in the revised semantics.
Then:

Fact 7.

(a) ~� ą1 ��
8 “ ~p�^ �qąA p� ^ �q�

8 .
(b) ~� ąA ��

8 “ ~pp�^ �qą1  �q _ pp�^ �qą1 �q�
8 .

In a similar vein, the revised truth conditions for « can be defined in terms
of the basic truth conditions for « and vice versa by using the equivalence
between p�«�q and p�ą�q^ p�ą�q. The two semantic frameworks only
differ, then, in which operator they take to be primitive, ą1 or ąA .
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C Degree-theoretic formulation
In Rudolph and Kocurek 2024, we mentioned a degree-theoretic formulation
of the expressivist semantics (assuming we adopt the revisions in section B to
ensure « obeys transitivity). More precisely, given an index xď, 8 , Fy, we can
define a linear order xDeg,Ăy and a mapping, deg, of sentences to elements
of Deg so that ~� ą ��ď,8 ,F “ 1 iff degp�q Ą degp�q and ~� « ��ď,8 ,F “ 1 iff
degp�q “ degp�q.

The key is to take the “metalinguistic degree” of a sentence � (relative to
xď, 8 , Fy) to be a set of sets of interpretations, where each set of interpretations
is “ranked as high” as the others. Let �8 “ t9 | 9 ď 8u. Define the following
relation on sets of interpretations -,. Ď �8 :

- „8 . iff either:
(i) @81 ď 8 :

(a) 81 P - ´ . ñ D82 P . ´ - : 81 ď 82

(b) 81 P . ´ - ñ D82 P - ´ . : 81 ď 82

or:
(ii) @81 P p- Y .q ´ p- X .q, then:

(a) D82 P - X . : 81 ď 82 and

(b) D82 P - X . : 81 ď 82.

This definitionmirrors the truth conditions for�«� from section B. Technically,
we should write „ď,8 ,F , but again, I’m leaving ď and F implicit throughout to
reduce on cumbersome notation. To simplify further, I will also drop mention
of 8, writing - „ . and leaving the choice of 8 implicit.

It is easy to verify that „ is reflexive and symmetric, and the proof that „ is
transitive is effectively the same as the proof of Fact 6. Hence:

Fact 8. „ is an equivalence relation.

Given this, we may define the metalinguistic degree (relative to xď, 8 , Fy) of
a set of interpretations- as the„-equivalence class of-, and themetalinguistic
degree of a sentence as the degree of the set of interpretations where the
sentence is true:

degp-q “ r-s„ “ t. Ď �8 | - „ .u

~��8 “ t9 ď 8 | ~��8 “ 1u
degp�q “ degp~��q.

Using these definitions, it is easy to establish the following:

Fact 9. ~�« ��8 “ 1 iff degp�q “ degp�q (i.e., ~��8 „ ~��8).
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Now to define the ordering on degrees. This definition mirrors the truth
conditions for ą in section B.

- Ą . iff D81 ď 8 :
(i) 81 P - ´ .
(ii) @82 P . ´ - : 82 ă 81

(iii) either:
(a) @82 P - X . : 82 ă 81 or:

(b) @82 P - X . : 82 ă 81.

Fact 10. ~� ą ��8 “ 1 iff ~��8 Ą ~��8 .

We can lift this order to an order on degrees as follows:

degp-q Ą degp.q ô - Ą ..

We need to show that (1) this definition of Ą over degrees is well-defined in
that it does not depend on the choice of - and ., and (2) Ą is a linear order.

To show that this is well-defined, we need to prove that if - 1 P deg8p-q and
.1 P deg8p.q, then - 1 Ą .1 iff - Ą .. It suffices to prove the following:

Fact 11. Where -,., / Ď �8 :

(a) if - Ą . and . „ /, then - Ą /.
(b) if - Ą . and . „ /, then - Ą /.

Proof. We just prove (a), since the proof of (b) is similar. Suppose - Ą . and
. „ /. Let 81 ď 8 be our witness to - Ą ., i.e.:

(i) 81 P - ´ .
(ii) @82 P . ´ - : 82 ă 81

(iii) either:

(iiia) @82 P - X .82 ă 81, or:
(iiib) @82 P - X . : 82 ă 81.

We split the proof into two cases, depending on whether 81 P /.

Case 1: 81 P /. Thus, 81 P / ´ ..
Claim 2. Condition (iiib) above holds.

Proof. Since . « /, there is some 82 ě 81 where either 82 P . ´ / or
82 P . X /. Either way, 82 P ., and so 82 P -, since 81 is ranked higher
than any interpretation in - ´ .. Hence, there is an 82 P - X . and
82 ě 81, meaning (iiia) above fails. That means (iiib) holds.
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So 9 ă 81 whenever 9 P . ´ - (by (ii) above) or 9 P - X . (by Claim 2).
That means 9 ă 81 for any 9 R -. Our witness for - Ą / will then
depend on which condition for . „ / holds.
Suppose condition (i) for . „ / holds. That means there is an 82 ě 81

where 82 P . ´ /. By Claim 2, 82 P -. Since 82 ě 81, that means 82 ą 9
for any 9 R -. Hence, 82 automatically satisfies conditions (ii) and (iib)
for - Ą /: it is ranked higher than any interpretation in / ´ - and
it is ranked higher than any interpretation in / X -. So 82 witnesses
- Ą /.
Suppose now condition (ii) for. „ / holds. So there are some 9 , : ě 81

where 9 P . X /, and : P . X /. Now, since 81 witnesses - Ą ., 9 P -.
Hence, condition (iiia) above fails, and so condition (iiib) above holds.
Since : ě 81 and : R ., that means : P -. Thus, : P - ´ /. Moreover,
since : ě 81, that means :1 ă : for any :1 R -. Hence, : automatically
satisfies conditions (ii) and (iiib) for - Ą /. So : witnesses - Ą /.

Case 2: 81 R /. Thus, 81 P - ´ /. As in Case 1, if 81 satisfies (iiib) above, then
81 is ranked above any interpretation not in -, and so automatically
satisfies conditions (ii) and (iiib) for - Ą /. So suppose 81 does not
satisfy (iiib) above. Thus, it satisfies (iiia), i.e., for all 82 P -X., 82 ă 81.
Since 82 ă 81 for all 82 P . ´ -, that means that for all 82 P ., 82 ă 81.
We’ll now show that 81 witnesses - Ą /.
First, we show (ii) for - Ą /. Suppose for reductio that 82 P / ´ -
where 81 ď 82. By the above, 82 R ., i.e., 82 P / ´ .. By . „ /, there is
some 83 ě 82 where either 83 P .´/ or 83 P .X/. Either way, 83 P .,
which contradicts 82 ě 81 being ranked above all interpretations in ..
Hence, if 82 P / ´ -, then 82 ă 81.
Next, we show (iiia) for - Ą / holds. Suppose for reductio that
82 P -X/ where 81 ď 82. Again, 82 R ., i.e., 82 P /´.. But again, since
. „ /, this implies that 83 P . for some 83 ě 82, which contradicts
82 ě 81 being ranked above all interpretations in.. Hence, if 82 P -X/,
then 82 ă 81.

So regardless of whether 81 P /, we have our witness for - Ą /.

Hence, Ą is well-defined. The fact that Ą is a linear order on degrees follows
by the reasoning that shows that ą is irreflexive, transitive, and total.

Fact 12. On degrees, Ą is a linear order, i.e., for all -,., / Ď �8 :

(a) degp-q Č degp-q.
(b) if degp-q Ą degp.q and degp.q Ą degp/q, then degp-q Ą degp/q.
(c) if degp-q ‰ degp.q, then either degp-q Ą degp.q or degp.q Ą degp-q.

We also note that this linear order has top and bottom elements: degpJq “
degp�8q “ t�8u is the top element while degpKq “ degp∅q “ t∅u is the bottom
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element. (These are, in fact, singletons: one can prove that if ∅ ‰ - ‰ �8 , then
�8 Ą - Ą ∅.)

Fact 13.

(a) degpJq “ t�8u is the maximum element with respect to Ą.
(b) degpKq “ t∅u is the minimum element with respect to Ą.

D Dropping totality
Throughout, we’ve assumed that semantic orderings are total, i.e., for any 8 and
9, either 8 ď 9 or 9 ď 8. This means ( p� ą �q _ p� ą �q _ p� « �q. Here,
we generalize that semantics for MCs to avoid the totality assumption. We
start by stating the generalization as it applies to the basic semantics (the one in
section A, before adjustments to ensure « is transitive).

~� ą ��ď,8 ,F “ 1 iff (i*) D81 ď 8 : ~�^ ��ď,81 ,F “ 1
(ii*) @9 ď 8 : ~� ^ ��ď, 9 ,F “ 1 ñ D91 ď 8 :

(a) 9 ă 91

(b) ~�^ ��ď, 91 ,F “ 1
(c) @92 ď 8 : ~� ^ ��ď, 92 ,F “ 1 ñ 91 ę 92

If the semantic ordering is non-total, then the ordering effectively “branches”
on incomparable interpretations (the branches may converge again later). The
above truth conditions state that �ą� is true iff (i*) there is a ranked p�^ �q-
interpretation, and (ii*) on each branch with a p� ^ �q-interpretation, there’s
some p�^ �q-interpretation on that branch that has no p�^ �q-interpretation
ranked higher than it. If the semantic ordering is total, then there’s only one
“branch” of the ordering. So these truth conditions reduce to those in section 4.2
given totality.

All the entailment patterns highlighted in section 2.5 hold in this general-
ized semantics, with the exception of (n), which is an object-language statement
of totality. Below, we just prove the transitivity of ą, which is the most diffi-
cult to establish. Let’s use (61 for the “generalized basic semantics”, i.e., the
generalization of the basic semantics to allow nontotal orderings.

Fact 14. � ą �, � ą � (61 � ą �.

Proof. Suppose ~�ą��8 “ ~�ą��8 “ 1. We first establish clause (i*) for �ą�.
For reductio, suppose there is no 81 ď 8 where ~�^ ��81 “ 1. By (i*) for �ą�,
however, there is an 80 ď 8 where ~� ^  ��80 “ 1. Hence, by our reductio
supposition, ~��80 “ 1 since ~��80 “ 1. But now, since ~� ^  ��80 “ 1, it
follows by clause (ii*) for � ą � that there’s a 91 ą 80 such that ~� ^ ��91 “ 1
and 91 ę : for any : ď 8 where ~� ^  ��: “ 1. By our reductio supposition,
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~��91 “ 0 since ~��91 “ 0. But now, since ~� ^  ��91 “ 1, it follows by clause
(ii*) for �ą � that there’s a :0 ą 91 such that ~�^ ��:0 “ 1 and :1 ę 9 for any
9 ď 8 where ~�^ ��9 “ 1. Again, by our reductio assumption, ~��:0 “ 1. But
the fact that ~� ^ ��:0 “ 1 and :1 ą 91 contradicts the fact established earlier
that 91 ę : for any : ď 8 where ~� ^ ��: “ 1.

Now we establish clause (ii*) for � ą �. Suppose :2 ď 8 is such that
~� ^  ��: “ 1. We want to find a :1 ď 8 such that :2 ă :1, ~� ^  ��:1

“ 1,
and :1 ę :2 for any :2 ď 8 where ~� ^ ��:2

“ 1. We split the proof into two
cases depending on the value of ~��:2 .
Case 1: ~��:2 “ 1. By (ii*) for � ą �, since ~� ^  ��:2 “ 1, there must be an

80 ď 8where 80 ą :2 , ~�^ ��80 “ 1, and for all 81 ď 8, if ~�^ ��81 “ 1,
then 80 ę 81. If 80 satisfies (ii*b) and (ii*c) for � ą �, then we’re done.
So suppose otherwise.
Claim 3. There is some 91 ď 8 such that 91 ą 80 , ~�^ ��91 “ 1, and for
all 91 ď 8, if ~� ^ ��91 “ 1, then 91 ę 91.

Proof. If ~��80 “ 1, then clause (ii*) for � ą � immediately establishes
this, since ~� ^  ��80 “ 1. If ~��80 “ 0, then 80 satisfies (ii*b). Since
we’re assuming it doesn’t also satisfy (ii*c), that means there is an 81 ď 8
where ~� ^  ��81 “ 1 and 80 ď 81. But since 80 ę 82 for all 82 ď 8
where ~�^ ��82 “ 1, that means ~��81 “ 0. Hence, by clause (ii*) for
� ą �, since ~� ^  ��81 “ 1, there is a 91 ą 81 ě 80 with the desired
properties.

We’ll show that 91 is our desired witness :1, i.e., it satisfies (ii*b) and
(ii*c). First, if ~��91 “ 0, then 91 contradicts the fact that 80 ę 9 for any
9 ď 8where ~�^ ��9 “ 1. Hence, ~��91 “ 1, and thus ~�^ ��91 “ 1,
i.e., 91 satisfies (ii*b).
Next, suppose for reductio that 9 ď 8 where ~� ^ ��9 “ 1 and 91 ď 9.
Since 9 ą 80 , that means ~��9 “ 0. But the fact that ~� ^ ��9 “ 1 and
91 ď 9 contradicts Claim 3. Hence, 91 satisfies (ii*c).

Case 2: ~��:2 “ 0. By (ii*) for �ą�, since ~�^ ��:2 “ 1, theremust be a 91 ď 8
where 91 ą :2 , ~� ^  ��91 “ 1, and for all 91 ď 8, if ~� ^  ��91 “ 1,
then 91 ę 91. If 91 satisfies (ii*b) and (ii*c) for � ą �, then we’re done.
So suppose otherwise.
Claim 4. There is some 80 ď 8 such that 80 ą 91 , ~�^ ��80 “ 1, and for
all 81 ď 8, if ~� ^ ��81 “ 1, then 80 ę 81.

Proof. If ~��91 “ 0, then clause (ii*) for � ą � immediately establishes
this, since ~� ^  ��91 “ 1. If ~��91 “ 1, then 91 satisfies (ii*b). Since
we’re assuming it doesn’t also satisfy (ii*c), that means there is an 91 ď 8
where ~�^ ��91 “ 1 and 91 ď 91. But since 91 ę 92 for all 92 ď 8 where
~� ^  ��8

2

“ 1, that means ~��91 “ 1. Hence, by clause (ii*) for
� ą �, since ~� ^  ��91 “ 1, there is a 80 ą 91 ě 91 with the desired
properties.
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We’ll show that 80 is our desired witness :1, i.e., it satisfies (ii*b) and
(ii*c). First, if ~��80 “ 1, then 80 contradicts the fact that 91 ę 81 for any
81 ď 8where ~�^ ��81 “ 1. Hence, ~��80 “ 0, and thus ~�^ ��80 “ 1,
i.e., 80 satisfies (ii*b).
Next, suppose for reductio that 81 ď 8where ~�^ ��81 “ 1 and 80 ď 81.
Since 81 ą 91 , that means ~��81 “ 1. But the fact that ~� ^  ��81 “ 1
and 80 ď 81 contradicts Claim 4. Hence, 80 satisfies (ii*c).

Thus, either way, we have found our witness :1.

Retaining the original basic semantics for «, we no longer validate the
totality principle: *61 p�ą�q_ p�ą�q_ p�«�q. Figure 2 contains a minimal
example where � ą �, � ą �, and � « � are all false in this generalized basic
semantics. Note that this counterexample crucially relies on the incomparability
of 9 and :. If we made 9 ” :, then �« � would be true. If we made 9 ą :, then
� ą � would be true. And if we made 9 ă :, then � ą � would be true.

8��

9
�� :

��

Figure 2: Counterexample to totality in the nontotal semantics for ą.

It is possible to similarly generalize the revised semantics from section B to
accommodate nontotal preorders, though we will not provide the gory details
here. The key idea is to require the truth conditions for ą and « given in
section B to hold within every “branch” rooted at 8. This approach will ensure
that all the desired entailment patterns hold within every branch, which (apart
from totality) suffices to ensure they hold generally.

E Quantifiers and Metalinguistic “Superlatives”
We close by briefly presenting a semantics for first-order and second-order
quantifiers that can be used in the analysis of “metalinguistic superlatives” as
quantified comparatives (section 6.2).

Let �ď be the set of interpretations ranked by ď, i.e., �ď is the field of ď. We
assume context supplies a set �1 (the first-order domain) of functions 
 from
ranked interpretations 8 P �ď to functions 
p8q : , Ñ �, as well as a set �2
(the second-order domain) of functions �= from ranked interpretations 8 P �ď
to functions �=p8q : , Ñ ℘p�=q. Given these sets, a variable assignment is
a function 6 mapping each first-order variable G to a member of �1 and each
second-order variable -= to a member of �2 of the right arity. We write 6G
 for
the result of reassigning G to 
, and similarly for 6-� .

14



A first-order term is either a name or first-order variable. A second-order
term is either a predicate or a second-order variable. Where C is a first-order
term, wewrite ~C�ď,8 ,F,6 for 8pCqpFq if C is a name and 6pCqp8qpFq if C is a variable.
Likewise for second-order terms ).

Truth is relativized to variable assignments. Thus, the atomic clause looks
like this:

~)=C1 . . . C=�
ď,8 ,F,6 “ 1 iff x~C1�

ď,8 ,F,6 , . . . , ~C=�
ď,8 ,F,6y P ~)=�ď,8 ,F,6 .

We assume “ for first-order terms amounts to coextensionality:

~C1 “ C2�
ď,8 ,F,6 “ 1 iff ~C1�

ď,8 ,F,6 “ ~C2�
ď,8 ,F,6 .

For second-order terms, which denote properties relative to interpretations,
identity is a stronger condition than coextensionality:

~)1 “ )2�
ď,8 ,F,6 “ 1 iff @F P, : ~)1�

ď,8 ,F,6 “ ~)2�
ď,8 ,F,6 .

Finally, the quantifier clauses are given below:

~@G��ď,8 ,F,6 “ 1 iff @
 P �1 : ~��ď,8 ,F,6G
 “ 1

~@-=��ď,8 ,F,6 “ 1 iff @�= P �2 : ~��ď,8 ,F,6
-=

�= “ 1.

In Rudolph and Kocurek 2024, section 6.2, we observed we can use quanti-
fied comparatives to construct two kinds of metalinguistic “superlatives”. One
is what we call a first-order superlative, which compares individuals, as in (5):

(5) Ann is more a linguist than anyone else.

First-order superlatives have the following form:

@GpG ‰ 0 Ą p�0 ą �Gqq

The truth condition for this formula is as follows:

@
 P �1 : 
p8qpFq ‰ 8p0qpFq ñ ~�0 ą �G�ď,8 ,F,6
G

 “ 1

In other words, this first-order superlative is true iff for each relevant 1 distinct
from 0, there’s an interpretation where 0 is � but not 1 that’s ranked higher
than any interpretation where the reverse is the case.

There are also second-order superlatives, which compare properties, as in (6):

(6) Ann is more a linguist than anything else.

Second-order superlatives have the following form:

@-p- ‰ � Ą p�0 ą -0qq

The truth condition for this formula is as follows:

@� P �2 : 8p�q ‰ �p8q ñ ~�0 ą -0�ď,8 ,F,6
-
� “ 1.

In other words, this second-order superlative is true iff for each relevant prop-
erty � distinct from �, there’s an interpretation where 0 is � but not � that’s
ranked higher than any interpretation where the reverse is the case.
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