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Abstract. This is the second part of a two-part series on the logic of hyperlogic,
a formal system for regimenting metalogical claims in the object language (even
within embedded environments). Part A provided a minimal logic for hyperlogic
that is sound and complete over the class of all models. In this part, we extend these
completeness results to stronger logics that are sound and complete over restricted
classes of models. We also investigate the logic of hyperlogic when the language is
enriched with hyperintensional operators such as counterfactual conditionals and
belief operators.

B1 Introduction
This is the second part of a two-part series on the logic of hyperlogic, a
hyperintensional semantics designed to regiment metalogical claims (e.g.,
“Intuitionistic logic is correct” or “The law of excluded middle holds”) in
the object language. To recap, this regimentation is achieved using:

• a multigrade entailment operator ▷
• propositional quantifiers @𝑝 and D𝑝

• interpretation terms � that double as atomic formulas (“� is correct”)
• hybrid operators @� (“according to �”) and Ó 𝑖 (“where 𝑖 is the current

interpretation”).

The semantics of hyperlogic introduces the notion of a “hyperconvention”,
i.e., a complete interpretation of the propositional variables, boolean connec-
tives, and▷ over some space of possible worlds propositions. Interpretation
terms denote “conventions”, modeled as sets of hyperconventions. Propo-
sitional quantifiers range over (special kinds of) index propositions, i.e., sets
of world-hyperconvention pairs. Models in this semantics determine (i) a
set of worlds 𝑊 ; (ii) a domain of admissible conventions 𝐷ℂ; (iii) a domain
of admissible index propositions 𝐷ℙ; and (iv) a valuation 𝑉 . Truth-in-a-
model is evaluated relative to worlds and hyperconventions. Operators like
@� can shift the hyperconvention parameter. This allows formulas to be
assessed on alternative interpretations of the connectives and entailment.
Hyperintensionality is thus captured through shifting these interpretations.
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B2 Restrictions on Hypermodels

In Part A (Kocurek, 2022), a complete axiomatization for this semantics
was given. The axiomatization in Part A captures consequence over the
class of all models. Almost no constraints are placed on either a model’s
convention or proposition domain. The resulting logic for hyperlogic is,
therefore, fairly minimal. For example, no constraints are placed on the
interpretations the entailment operator ▷ can receive. Yet, intuitively, it
would be a stretch to say ▷ really represents a notion of “entailment” if,
say, it wasn’t factive (i.e., if ▷𝜙 did not imply 𝜙), or if it wasn’t reflexive
or transitive. It would then be natural to inquire into how imposing such
constraints affects the underlying logic of hyperlogic.

Furthermore, hyperlogic was initially motivated by concerns with the
interaction between metalogical claims and hyperintensional operators such
as attitude verbs, counterfactuals, and so on. Yet the language of hyperlogic
introduced in Part A does not contain any of such operators.

In Part B of this series, we take initial steps to filling these gaps. We start
by studying stronger logics for hyperlogic that can be obtained by adding
additional rules and axioms in §B2. These stronger logics can be shown
to be sound and complete over classes of models whose convention and
proposition domains satisfy certain natural constraints. In §B3, we examine
how the completeness results from Part A carry over to languages with
hyperintensional operators. We conclude in §B4 with some questions left
open by this two-part investigation into the logic of hyperlogic. §B5 is a
technical appendix containing proofs of completeness for various classes of
hypermodels.

Note: as this is a continuation of a two-part series, I will freely refer back
to the definitions, notation, and results from Part A (Kocurek, 2022), rather
than repeat them. Labels for sections, definitions, theorems, and tables are
prefixed with the part that they refer to (e.g., ‘§A3’ refers to §3 of Part A).

B2 Restrictions on Hypermodels
Let us start by exploring constraints we may impose on the class of hyper-
models and how that affects the logic of hyperlogic. In §B2.1, we look at
general constraints on the convention domain and present axiomatizations
in the quantifier-free fragment over those hypermodels. In §B2.2, we extend
some of these results to languages with propositional quantifiers. Finally,
in §B2.3, we examine constraints on the proposition domain.
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B2 Restrictions on Hypermodels

B2.1 Quantifier-Free Fragment

Table B1 contains a sample of constraints one may want to impose on the
convention domain. For the analyticity constraint, we write 𝑐 « 𝑐1 to mean
𝑐 and 𝑐1 are exactly alike except possibly in how they interpret propositional
variables (i.e., 𝑐p△q “ 𝑐1p△q for all △). The intersection of each class in
Table B1 is denoted by concatenation (e.g., the class of analytic and full
hypermodels is AnF). Where X is a class of hypermodels, we define classical
and universal entailment over X, written Γ (X 𝜙 and Γ

)

X 𝜙 respectively,
as in Definition A2.16 except restricting to hypermodels in X.

Name Class Constraint (on all 𝐶 P 𝐷ℂ)

full F 𝜋𝑐 “ ℘𝑊 for each 𝑐 P 𝐶

atomic At t𝑤u P 𝜋𝑐 for each 𝑐 P 𝐶 and 𝑤 P 𝑊

boolean B 𝜋𝑐 is closed under complement and finite inter-
section for each 𝑐 P 𝐶

quantification uniform Uq 𝜋𝑐 “ 𝜋𝑐1 for each 𝑐, 𝑐1 P 𝐶

operation uniform Uo 𝑐p△q “ 𝑐1p△q for each 𝑐, 𝑐1 P 𝐶 and each△
singular Si |𝐶| “ 1
analytic An for any 𝑐, 𝑐1 P 𝐷ℍ, if 𝑐 P 𝐶 and 𝑐 « 𝑐1, then 𝑐1 P 𝐶

S5-universal S5 each 𝑐 P 𝐶 is classical
classically complete Co𝑐𝑙 𝑉p𝑐𝑙q “ t𝑐 P ℍ

𝑊
| 𝑐 is classicalu

Table B1: Some constraints on convention domains.

Table B2 contains axiomatizations of consequence over various classes.
Some of the axioms make use of the following abbreviations:

p@� 𝜙 B „ @� „ 𝜙 p𝜙q� “ p𝜓q� B p@� 𝜙 “ @� 𝜓q.

Here are their truth conditions (where v𝜙w
𝐶

“
Ş

𝑐P𝐶 v𝜙w
𝑐):

𝑤, 𝑐 , p@� 𝜙 ô for some 𝑐1 P 𝑉p�q: 𝑤, 𝑐 , 𝜙

𝑤, 𝑐 , p𝜙q� “ p𝜓q� ô v𝜙w
𝑉p�q

“ v𝜓w
𝑉p�q .

In addition, we write 𝜙 for 𝜙1 , . . . , 𝜙𝑛 , and 𝜙
�

“ 𝜓
λ

for &𝑛
𝑖“1p𝜙�

𝑖
“ 𝜓λ

𝑖
q.

Where L is a logic and A is an axiom, L ` A is the result of extending L with
A (i.e., the rules still apply to formulas derived using A). If R is a rule, L ` R
is the result of closing L under R along with the other rules. Given this, we
have the following:
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B2 Restrictions on Hypermodels

Name Axiom/Rule

Unio � P �, λ P �, 𝜙
�

“ 𝜓
λ

, p△p𝜙qq� “ p△p𝜓qqλ

Sing , |�|1
Self-Dual@ @� 𝜙 -, p@� 𝜙

Bool, ☆𝜙 -, ☀𝜙

p𝜙 ◯ 𝜓q -, p𝜙 ‚ 𝜓q

RAn if 𝛼, |�|1 , |λ|1 , p𝑝q� “ p𝑞qλ , p△p𝑝qq� “ p△p𝑞qqλ for each△where
none of 𝑝, 𝑞 are in 𝛼, then 𝛼, |�|1 , |λ|1 , p� P �q ” pλ P �q

Class Axiomatization

F, Uq, At, B H
Uo H + Unio
Si H + Sing = H + Self-Dual@
AnF, AnUq H + RAn
S5 H + Bool,

Table B2: Axiomatizations inℒH for various classes from Table B1. Axiomatizations
in ℒHE (except those appealing to RAn, which becomes infinitary when add▷) are
obtained by replacing H with H▷ and generalizing the corresponding axioms
accordingly.

Theorem B2.1 (Relative Completeness in ℒH and ℒHE). The ax-
iomatic systems in Table B2 are sound and complete for (consequence
over) the relevant class of hypermodels.1 (See §B5.1 for the proof.)

In addition, we can consider imposing restrictions specifically on the
interpretation of ▷. Usual suspects include reflexivity, transitivity, mono-
tonicity, etc. But there are also “unusual” suspects to consider (e.g., factivity)
since ▷ is an object language operator. Table B3 contains examples of such
constraints, with their corresponding axioms stated in Table B4. Following
our earlier convention, we write 𝑋 for 𝑋1 , . . . , 𝑋𝑛 . (If 𝑛 “ 0, then 𝑋 “ xy.)
We also write p𝑋 ▷𝑐 𝑌q for

Ş

𝑖p𝑋 ▷𝑐 𝑌𝑖q.
1 It is an open question whether consequence in ℒH over An or Co𝑐𝑙 can be axiomatized.

An axiomatization for An in ℒQH is given in §B2.2. (Interestingly, the key axiom invokes
@D-quantification, which cannot be directly expressed in ℒH.) By contrast, consequence for
Co𝑐𝑙 in ℒQH is provably unaxiomatizable (Corollary B2.5).
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B2 Restrictions on Hypermodels

Name Constraint (on all 𝑐, 𝑐1 P 𝐷ℍ)

reflexive p𝑋 ▷𝑐 𝑋q “ 𝑊

transitive p𝑋 ▷𝑐 𝑌q X p𝑌 ▷𝑐 𝑍q Ď p𝑋 ▷𝑐 𝑍q

monotonic p𝑋,𝑌 ▷𝑐 𝑍q Ď p𝑋,𝑈, 𝑌 ▷𝑐 𝑍q

contractive p𝑋,𝑈,𝑈, 𝑌 ▷𝑐 𝑍q Ď p𝑋,𝑈, 𝑌 ▷𝑐 𝑍q

commutative p𝑋,𝑈1 , 𝑈2 , 𝑌 ▷𝑐 𝑍q “ p𝑋,𝑈2 , 𝑈1 , 𝑌 ▷𝑐 𝑍q

congruential pp𝑋 ▷𝑐 𝑌q X p𝑌 ▷𝑐 𝑋q X p𝑋 ▷𝑐 𝑍qq Ď p𝑌 ▷𝑐 𝑍q

self-aware p𝑋 ▷𝑐 p𝑌 ▷𝑐 𝑍qq “ p𝑌 ▷𝑐 𝑍q

fully aware p𝑋 ▷𝑐 p𝑌 ▷𝑐1 𝑍qq “ p𝑌 ▷𝑐1 𝑍q

import-export p𝑋 ▷𝑐 p𝑌 ▷𝑐 𝑍qq “ p𝑋,𝑌 ▷𝑐 𝑍q

Ą-residuation p𝑋,𝑌 ▷𝑐 𝑍q “ p𝑋 ▷𝑐 p𝑌 Y 𝑍qq

Ñ-residuation p𝑋,𝑌 ▷𝑐 𝑍q “ p𝑋 ▷𝑐 p𝑌 Ñ𝑐 𝑍qq

&-fusion p𝑋,𝑈1 , 𝑈2 , 𝑌 ▷𝑐 𝑍q “ p𝑋,𝑈1 X 𝑈2 , 𝑌 ▷𝑐 𝑍q

^-fusion p𝑋,𝑈1 , 𝑈2 , 𝑌 ▷𝑐 𝑍q “ p𝑋,𝑈1 ^𝑐 𝑈2 , 𝑌 ▷𝑐 𝑍q

factive pp𝑋 ▷𝑐 𝑌q X 𝑋1 X ¨ ¨ ¨ X 𝑋𝑛q Ď 𝑌

noncontingent either p𝑋 ▷𝑐 𝑌q “ 𝑊 or p𝑋 ▷𝑐 𝑌q “ H

strict p𝑋 ▷𝑐 𝑌q “ t𝑤 P 𝑊 | 𝑋1 X ¨ ¨ ¨ X 𝑋𝑛 Ď 𝑌 u

Table B3: Some constraints on the interpretation of ▷.

Theorem B2.2 (Relative Completeness for ▷). The axiomatic sys-
tems resulting from adding the relevant axioms in Table B4 to H▷
are sound and complete for the relevant class of hypermodels.

Proof (Sketch): We revise the definition of the proposition space for
canonical hyperconventions (Definition A3.13) so that𝜋𝑐� “ t𝑋 | r𝑋s� ‰ Hu.2
The completeness proof in §A3.2 remains in tact. We just need to
verify that if we impose an axiom, the canonical model satisfies
the corresponding constraint. The proof is more-or-less the same
for each case. We illustrate with the transitivity case. Suppose
Δ P p𝑋 ▷𝑐� 𝑌q X p𝑌 ▷𝑐� 𝑍q. Since Δ P p𝑋 ▷𝑐� 𝑌q, there are some
𝜙 P r𝑋s� and 𝜓 P r𝑌s� such that @�p𝜙 ▷ 𝜓𝑖q P Δ for each 𝑖 (note: we
can let 𝜙 be the same for each 𝜓𝑖 by Lemma A3.12 and Rep▷). Since

2 Observe that this revised definition of 𝜋𝑐� is not guaranteed to be full or atomic, so this proof
does not automatically carry over when these constraints are also imposed.
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B2 Restrictions on Hypermodels

Name Axiom Corresponding Constraint

Id , p𝜙 ▷ 𝜙q reflexive
Tr p𝜙 ▷ 𝜓q, p𝜓 ▷ 𝜒q , p𝜙 ▷ 𝜒q transitive
Weak p𝛼, 𝛽 ▷ 𝜒q , p𝛼, 𝜙, 𝛽 ▷ 𝜒q monotonic
Contr p𝛼, 𝜙, 𝜙, 𝛽 ▷ 𝜒q , p𝛼, 𝜙, 𝛽 ▷ 𝜒q contractive
Perm p𝛼, 𝜙,𝜓, 𝛽 ▷ 𝜒q , p𝛼,𝜓, 𝜙, 𝛽 ▷ 𝜒q commutative
Cong p𝜙 ▷ 𝜓q, p𝜓 ▷ 𝜙q, p𝜙 ▷ 𝜒q , p𝜓 ▷ 𝜒q congruential
Self-Aware p𝜙 ▷ p𝜓 ▷ 𝜒qq -, p𝜓 ▷ 𝜒q self-aware
Aware p𝜙 ▷ p𝜓 ▷� 𝜒qq -, p𝜓 ▷� 𝜒q fully aware
IE p𝜙 ▷ p𝜓 ▷ 𝜒qq -, p𝜙,𝜓 ▷ 𝜒q import-export
ResĄ p𝜙 ▷ p𝜓 Ą 𝜒qq -, p𝜙,𝜓 ▷ 𝜒q Ą-residuation
ResÑ p𝜙 ▷ p𝜓 Ñ 𝜒qq -, p𝜙,𝜓 ▷ 𝜒q Ñ-residuation
FusX p𝛼, 𝜙,𝜓, 𝛽 ▷ 𝜒q -, p𝛼, 𝜙 & 𝜓, 𝛽 ▷ 𝜒q &-fusion
Fus^ p𝛼, 𝜙,𝜓, 𝛽 ▷ 𝜒q -, p𝛼, 𝜙 ^ 𝜓, 𝛽 ▷ 𝜒q ^-fusion
T▷ p𝜙 ▷ 𝜓q, 𝜙 , 𝜓 factive
Rigid▷ p𝜙 ▷ 𝜓q , ∎p𝜙 ▷ 𝜓q noncontingent
Strict▷ p𝜙 ▷ 𝜓q -, ∎pp𝜙 Ą 𝜓q strict

Table B4: Axiomatizations in ℒHE for various classes from Table B3.

Δ P p𝑌 ▷𝑐� 𝑍q, there is a 𝜒 P r𝑍s� such that @�p𝜓 ▷ 𝜒q P Δ. By Tr,
@�p𝜙 ▷ 𝜒q P Δ. Hence, Δ P p𝑋 ▷𝑐� 𝑍q. ∎

B2.2 Adding Quantifiers

Adding propositional quantifiers to the language allows us the ability to
distinguish between classes of models that previously generated the same
logic. Notably, the consequence relations over F, Uq, At, and B are now all
distinguishable. In addition, we can now present an axiomatization for An,
which was absent from §B2.1 (see footnote 1).

Axiomatizations for some of those classes are given in Table B5. Where
Σ is a set of axioms of the form , 𝜎, we let LYΣ be the proof system defined
as follows: Γ ,LYΣ 𝜙 iff Γ Y t𝜎 | p, 𝜎q P Σu ,L 𝜙 (in other words, Σ are
treated as premises, not axioms; this means, among other things, that one
cannot necessarily derive the universal generalization of members of Σ).
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B2 Restrictions on Hypermodels

The axiomatizations in Table B5 make use of the following abbreviations:

𝜋� Ď 𝜋λ B @𝑝 D𝑞p𝑝� “ 𝑞λq 𝜋� “ 𝜋λ B p𝜋� Ď 𝜋λq & p𝜋λ Ď 𝜋�q

|𝜋�|1 B @𝑝 @𝑞p𝑝 “� 𝑞q � « λ B & t△� “ △λu△ & p𝜋� “ 𝜋λq.

These have the obvious truth conditions assuming |𝑉p�q| “ |𝑉pλq| “ 1
(which is the only relevant case for the axiomatizations below).

Name Axiom/Rule

Atom , D𝑝p𝑝 & @𝑞p∎p𝑝 Ą @� 𝑞q `∎p𝑝 Ą „ @� 𝑞qqq

BoolEx , E „ 𝑝

, Ep𝑝 & 𝑞q

Ex , E𝜙
An „ |�|1 , � P �, |λ|1 , � « λ , λ P �

ManyINom , p|𝑙|1 & |�|1 & � « 𝑙q Ą p� “ 𝑙q where 𝑙 P INom
Uniq � P �, λ P � , 𝜋� “ 𝜋λ
Unio@ � P �, λ P � , � « λ

Class Axiomatization

At QH + Atom
B QH + BoolEx
Uq QH + Uniq
Uo QH + Unio@

An (QH + An) Y ManyINom

Si QH + Sing = QH + Self-Dual@
S5 QH + Bool, + Ex

Table B5: Axiomatizations in ℒQH for various classes from Table B1.

Theorem B2.3 (Relative Completeness in ℒQH). The proof systems
in Table B5 are sound and complete for the relevant class of hyper-
models. (See §B5.2.)

Notice that no axiomatization for F is stated. This is because consequence
over F is unaxiomatizable.

Theorem B2.4 (Unaxiomatizability of Full Consequence inℒQH). (F
in ℒQH is unaxiomatizable. Moreover, where X is the intersection of
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B2 Restrictions on Hypermodels

any of the classes mentioned in Table B1 and Table B6, if FX ‰ H,
then (FX in ℒQH is unaxiomatizable.

Proof : Let Atp𝑝q B ◆ 𝑝 & @𝑞p∎p𝑝 Ą 𝑞q ` ∎p𝑝 Ą „ 𝑞qq. It is easy to
verify that if 𝑐 is full, then ℳ , 𝑤, 𝑐 , Atp𝑝q iff |𝑉p𝑝qp𝑐q| “ 1. Let Δ
consist of the following formulas:

@𝑝 @𝑘p¬ 𝑝 “ „ 𝑝q @𝑝 @𝑘p◇ 𝑝 “ ¬◻¬ 𝑝q

@𝑝 @𝑞 @𝑘pp𝑝 ^ 𝑞q “ p𝑝 & 𝑞qq @𝑝 @𝑞 @𝑘 ∎p◻p𝑝 Ñ 𝑞q Ñ p◻ 𝑝 Ñ◻ 𝑞qq

@𝑝 @𝑞 @𝑘pp𝑝 _ 𝑞q “ p𝑝 ` 𝑞qq @𝑝 @𝑘p∎ 𝑝 Ą∎◻ 𝑝q

@𝑝 @𝑞 @𝑘pp𝑝 Ñ 𝑞q “ p𝑝 Ą 𝑞qq @𝑝 @𝑘 ∎p@𝑞pAtp𝑞q Ą◻p𝑞 Ą 𝑝qq Ą◻ 𝑝q.

Since the propositionally quantified modal logic K𝜋` is unaxiomatiz-
able (Fine, 1970), it suffices to show that for any 𝜙 P ℒQ (the language
of propositionally quantified modal logic), (K𝜋` 𝜙 iffΔ, |𝑘|1 (F @𝑘 𝜙.
We do this by constructing, for each K𝜋`-model, an equivalent full
hypermodel of Δ and vice versa.

First, let 𝒦 “ x𝑊, 𝑅,𝑉y be a K𝜋`-model. Let 𝑐𝑘 be defined as
follows:

𝜋𝑐𝑘 “ ℘𝑊 ¬𝑐𝑘 𝑋 “ 𝑋

𝑐𝑘p𝑝q “ 𝑉p𝑝q 𝑋 ^𝑐𝑘 𝑌 “ 𝑋 X 𝑌

◻𝑐𝑘 𝑋 “ t𝑤 P 𝑊 | 𝑅r𝑤s Ď 𝑋 u 𝑋 _𝑐𝑘 𝑌 “ 𝑋 Y 𝑌

◇𝑐𝑘 𝑋 “ t𝑤 P 𝑊 | 𝑅r𝑤s X 𝑋 ‰ Hu 𝑋 Ñ𝑐𝑘 𝑌 “ 𝑋 Y 𝑌.

Define ℳ𝒦 “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉
𝒦 y so that (i) 𝑐𝑘 P 𝐷ℍ, (ii) each 𝑐 P 𝐷ℍ

is full, (iii) 𝑉𝒦 p𝑝q “ 𝑃𝑝 , and (iv) 𝑉𝒦 p𝑘q “ t𝑐𝑘u. Clearly, ℳ𝒦 , 𝑤, 𝑐𝑘 ,

Δ Y t|𝑘|1u. Moreover, by induction, for all 𝜙 P ℒQ and all 𝑄1 , . . . , 𝑄𝑛

where 𝑄𝑖p𝑐𝑘q “ 𝑋𝑖 , we have 𝒦 𝑞1 ,...,𝑞𝑛
𝑋1 ,...,𝑋𝑛

, 𝑤 , 𝜙 iff pℳ𝒦 q
𝑞1 ,...,𝑞𝑛
𝑄1 ,...,𝑄𝑛

, 𝑤, 𝑐𝑘 ,

𝜙. Hence, 𝒦 , 𝑤 , 𝜙 iff ℳ𝒦 , 𝑤, 𝑐 , @𝑘 𝜙.
Next, let ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y be a full hypermodel satisfying

ΔYt|𝑘|1u. Let 𝑐𝑘 be such that𝑉p𝑘q “ t𝑐𝑘u. Define𝒦ℳ “ x𝑊, 𝑅,𝑉ℳy

so that (i) 𝑤𝑅𝑣 iff for all 𝑋 Ď 𝑊 , if 𝑤 P ◻𝑐𝑘 𝑋, then 𝑣 P 𝑋, and (ii)
𝑉ℳp𝑝q “ 𝑐𝑘p𝑝q. We establish by induction that for all 𝜙 P ℒQ and
all 𝑄1 , . . . , 𝑄𝑛 where 𝑄𝑖p𝑐𝑘q “ 𝑋𝑖 , we have ℳ𝑞1 ,...,𝑞𝑛

𝑄1 ,...,𝑄𝑛
, 𝑤, 𝑐𝑘 , 𝜙

iff p𝒦ℳq
𝑞1 ,...,𝑞𝑛
𝑋1 ,...,𝑋𝑛

, 𝑤 , 𝜙. The only interesting case is the ◻-clause.
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B2 Restrictions on Hypermodels

Observe that 𝑅r𝑤s “ t𝑣 P 𝑊 | 𝑤 P ◇𝑐𝑘 t𝑣uu.3 For notational ease, let
ℳ˚ “ ℳ𝑞1 ,...,𝑞𝑛

𝑄1 ,...,𝑄𝑛
and 𝒦˚ “ p𝒦ℳq

𝑞1 ,...,𝑞𝑛
𝑋1 ,...,𝑋𝑛

.
(ñ) Suppose ℳ˚ , 𝑤, 𝑐𝑘 , ◻𝜙. Thus, 𝑤 P ◻𝑐𝑘 v𝜙w

ℳ˚ ,𝑐𝑘 . Let
𝑣 P 𝑅r𝑤s. Then for all 𝑋 Ď 𝑊 , if 𝑤 P ◻𝑐𝑘 𝑋, then 𝑣 P 𝑋. Hence,
𝑣 P v𝜙w

ℳ˚ ,𝑐𝑘 , which by IH means 𝑣 P v𝜙w
𝒦˚

. Hence, 𝒦˚ , 𝑤 , ◻𝜙.
(ð) Suppose ℳ˚ , 𝑤, 𝑐𝑘 . ◻𝜙. Thus, 𝑤 R ◻𝑐𝑘 v𝜙w

ℳ˚ ,𝑐𝑘 . Since
𝑐𝑘 is full, by Definition A2.11 (constraint ii on 𝐷ℙ), there exists a 𝑃

such that 𝑃p𝑐𝑘q “ v𝜙w
ℳ˚ ,𝑐𝑘 . By the definition of Δ, pℳ˚q

𝑝

𝑃
, 𝑤, 𝑐𝑘 ,

D𝑞pAtp𝑞q ^◇p𝑞 ^ ¬ 𝑝qq. Let 𝑄 be such that pℳ˚q
𝑝,𝑞

𝑃,𝑄
, 𝑤, 𝑐𝑘 , Atp𝑞q ^

◇p𝑞 ^ ¬ 𝑝q. Thus, 𝑄p𝑐𝑘q “ t𝑣u for some 𝑣 R 𝑃p𝑐𝑘q “ v𝜙w
ℳ˚ ,𝑐𝑘 . By

IH, 𝑣 R v𝜙w
𝒦˚

, i.e., 𝒦˚ , 𝑣 . 𝜙. And since 𝑤 P ◇𝑐𝑘 p𝑄p𝑐𝑘q X 𝑃p𝑐𝑘qq “

◇𝑐𝑘 t𝑣u, that means 𝑣 P 𝑅r𝑤s, and so 𝒦˚ , 𝑤 . ◻𝜙. ∎

Corollary B2.5 (Unaxiomatizability of Classically Complete Con-
sequence in ℒQH). (Co𝑐𝑙 in ℒQH is unaxiomatizable, as is (Co𝑐𝑙X for
any X that is the intersection of any of the classes mentioned in Ta-
ble B1 and Table B6 where Co𝑐𝑙X ‰ H.

Proof : Since𝑉p𝑐𝑙q “ t𝑐 P ℍ
𝑊

| 𝑐 is classicalu, there is a 𝑐 P 𝑉p𝑐𝑙q such
that 𝑐 is full. So adding @𝑐𝑙 @𝑝 D𝑞p𝑝 “ @𝑘 𝑞q to Δ is enough to ensure
that 𝑐𝑘 is full. ∎

B2.3 Constraints on Propositions

Let’s now turn to constraints on the proposition domain. A sample of such
constraints is given in Table B6. For strong closure, we write ℳ « ℳ1

to mean ℳ and ℳ1 are based on the same hyperframe (i.e., only differ in
valuation). Axiomatizations for consequence over some classes are stated
in Table B7. Some of the axioms use the following abbreviation: p𝜙 “� 𝜓q B

@�p𝜙 “ 𝜓q. Completeness for the intersections of these classes can be gotten

3 For the Ď-direction: If 𝑣 P 𝑅r𝑤s “ t𝑢 P 𝑊 | @𝑋 Ď 𝑊 : 𝑤 P ◻𝑐𝑘 𝑋 ñ 𝑢 P 𝑋 u, then 𝑤 R

◻𝑐𝑘 t𝑣u “ ◻𝑐𝑘 ¬𝑐𝑘 t𝑣u, and so 𝑤 P ◇𝑐𝑘 t𝑣u. For the Ě-direction: If 𝑤 P ◇𝑐𝑘 t𝑣u, then
𝑤 R ◻𝑐𝑘 t𝑣u. So let𝑋 Ď 𝑊 where𝑤 P ◻𝑐𝑘 𝑋. If 𝑣 R 𝑋, then𝑋 Ď t𝑣u. Thus, p𝑋Ñ𝑐𝑘 t𝑣uq “ 𝑊 .
By the necessitation formula, ◻𝑐𝑘 𝑊 “ 𝑊 . Hence, 𝑤 P ◻𝑐𝑘 p𝑋 Ñ𝑐𝑘 t𝑣uq. By the K axiom
formula, 𝑤 P ◻𝑐𝑘 t𝑣u,  . Hence, 𝑣 P 𝑋.
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B3 Hyperintensional Operators

from combining the relevant axiomatizations, with the exception of ClΦDfΦ
and Cl`

Φ
DfΦ, which are mentioned explicitly in Table B7.

Name Class Constraint (on all 𝑃 P 𝐷ℙ)

complete Cp 𝐷ℙ “ ℙ𝐷ℍ

correlated Cr 𝑃p𝑐q “ 𝑃p𝑐1q whenever 𝑐, 𝑐1 P 𝐶

closed under
Φ

ClΦ v𝜙w
ℳ

P 𝐷ℙ for all 𝜙 P Φ

strongly
closed under
Φ

Cl`
Φ

v𝜙w
ℳ1

P 𝐷ℙ for all 𝜙 P Φ and all ℳ1 « ℳ

definable in Φ DfΦ if 𝑃 P 𝐷ℙ, then there is a 𝜙 P Φ such that v𝜙w
ℳ

“ 𝑃

discerning Di for all 𝑐, 𝑐1 P 𝐷ℍ, if 𝑐 ‰ 𝑐1, then for some 𝑃 P 𝐷ℙ,
𝑃p𝑐q ‰ 𝑃p𝑐1q

combinatorial Cb if 𝑋1 P 𝜋𝑐1 , . . . , 𝑋𝑛 P 𝜋𝑐𝑛 for some distinct 𝑐1 , . . . , 𝑐𝑛 P

𝐷ℍ, then for some 𝑃 P 𝐷ℙ such that 𝑃p𝑐𝑖q “ 𝑋𝑖 for 𝑖 ď 𝑛

Table B6: Some constraints on proposition domains.

Theorem B2.6 (Relative Completeness in ℒQH). The proof systems
in Table B7 are sound and complete over the relevant class. (See
§B5.3.)

B3 Hyperintensional Operators
In this section, we enrich the language of hyperlogic with hyperintensional
operators and explore their logic(s). We start by adding a counterfactual
conditional and then show how a similar approach can apply to belief and
knowledge operators. In §B3.1, we expand the syntax and semantics from
§A2 to include a counterfactual conditional (following Kocurek (2021b)).
In §B3.2, we axiomatize the minimal counterfactual hyperlogic on this se-
mantics. In §B3.3, we extend this axiomatization to include an entailment
operator/propositional quantifiers. In §B3.4, we explore stronger coun-
terfactual hyperlogics obtained by imposing restrictions on the selection
function. Finally, in §B3.5, we show how a similar approach can address the
hyperlogic of belief/knowledge.
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B3 Hyperintensional Operators

Name Axiom/Rule

Corr � P �, λ P � , @𝑝p𝑝� “ 𝑝λq

Elim@Φ @𝑝 𝜙 , 𝜙r𝜒{𝑝s where 𝜒 P Φ and 𝜒 is free for 𝑝
ExΦ , D𝑝&𝑛

𝑖“1p𝑝 “�𝑖 𝜒q where 𝜒 P Φ and 𝑝 does not occur free in 𝜒

Ex´

Φ
, E𝜒 where 𝜒 P Φ

PII` |�|1 , |�|1 , @𝑝p𝑝 � “ 𝑝�q , p� “ �q

PII`

1 |�|1 , |�|1 , @𝑝p𝑝 � “ 𝑝�q, |𝜋�|1 , p� “ �q

Split t|�𝑖 |1u
𝑛
𝑖“1 , tp�𝑖 ‰ � 𝑗qu

𝑖‰𝑗
, D𝑝&𝑛

𝑖“1p𝑝 “�𝑖 𝑞𝑖q where 𝑝 R t𝑞1 , . . . , 𝑞𝑛u

HomΦ , @𝑝p𝑝 “� 𝜒 Ą 𝑝 “� 𝜒q where 𝜒 P Φ and 𝑝 does not occur free in 𝜒

Gen@Φ if each 𝜒 P Φ is free for 𝑝 in 𝜓 and ®𝛼 , 𝜓r𝜒{𝑝s for each 𝜒 P Φ, then
®𝛼 , @𝑝 𝜓

Class Axiomatization

Cr QH + Corr
ClΦ QH Y ExΦ
Cl`

Φ
QH + ExΦ = QH + Elim@Φ

DfΦ QH + Gen@Φ (only weakly complete if Φ is infinite)
ClΦDfΦ (QH Y ExΦ) Y HomΦ = (QH Y Ex´

Φ
) Y HomΦ

Cl`
Φ
DfΦ (QH + ExΦ) Y HomΦ

Di QH + PII`

Cb QH + PII` + Split = QH + PII`

1 + Split
CpSi QH + Split + Sing = QH + Split + Self-Dual@

Table B7: Axiomatizations in ℒQH for various classes from Table B6.

B3.1 Selection Semantics

For any language ℒ˚ mentioned in Part A, we can consider the langauge
ℒ˚
� that results from extending ℒ˚ with a counterfactual conditional�.

For instance, ℒ0
� is the result of extending ℒ0 with�, ℒH

� the result of
extending ℒH with �, and so on. To extend hyperlogic with a counter-
factual conditional, Kocurek (2021b) proposes we allow counterfactuals to
shift the hyperconvention parameter of an index. This can be achieved by
simply replacing worlds in the standard (intensional) selection semantics for
counterfactuals (Stalnaker, 1968; Lewis, 1973) with world-hyperconvention
pairs. Thus, we revise Definitions A2.11 and A2.12 as follows:

11



B3 Hyperintensional Operators

Definition B3.1 (Selection Hypermodel). A selection hyperframe is
a tuple ℱ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑓 y where x𝑊, 𝐷ℂ , 𝐷ℙy is a hyperframe
and 𝑓 : ℘ 𝕀

𝐷ℍ
ˆ 𝕀

𝐷ℍ
Ñ ℘ 𝕀

𝐷ℍ
is a selection function. A selection

hypermodel overℱ is a selection hyperframe paired with a valuation
forℱ . Satisfaction is defined as in Definition A2.12 with the following
addition, where v𝜙w

ℳ
“
␣

x𝑣, 𝑑y P 𝕀
𝐷ℍ

| ℳ , 𝑣, 𝑑 , 𝜙
(

:

ℳ , 𝑤, 𝑐 , 𝜙� 𝜓 ô 𝑓 pv𝜙w
ℳ , 𝑤, 𝑐q Ď v𝜓w

ℳ .

At the outset, we impose no restrictions on the selection function. Some
theorists (e.g., Cohen 1990; Nolan 1997) argue that if counter(meta)logicals
are nonvacuous, then the logic of counterfactuals is trivial. For example, it
is nearly universally accepted that 𝜙� p𝜓 ^ 𝜒q ( 𝜙� 𝜓. Yet, here is an
alleged counterexample:

(1) a. If every instance of conjunction elimination had failed, Alice and
Beth would be sad.

b. ?
œ If every instance of conjunction elimination had failed, Alice
would be sad.

Similar “counterexamples” can be constructed to nearly every principle of
counterfactual reasoning.4 Even principles such as ( 𝜙� 𝜙 have been
called into question (Nolan, 1997, p. 555).5

4 Nolan (1997) makes an exception for modus ponens (𝜙� 𝜓, 𝜙 ( 𝜓), which is immune to
counterexamples of this sort.

5 We might try to save the standard logic for counterfactuals with possible antecedents (Bro-
gaard and Salerno, 2013; Berto et al., 2018). It is not obvious this will work, though. Imagine
Alice endorses a strange logic on which every instance of conjunction elimination fails. Then
(i) is as problematic as (1) despite only having counterfactuals with possible antecedents (Al-
ice could have had the right views about logic).

(i) a. If Alice were right about logic, every instance of conjunction elimination would
fail.

b. If Alice were right about logic, Beth and Cher would be sad.
c. Therefore, if Alice were right about logic, Beth would be sad.

One may try to block this counterexample by denying the first premise on the grounds that
the antecedent is possible and “nothing impossible would obtain were something that’s
possible to obtain”. This reasoning appeals to what Nolan (1997) calls the “Strangeness of
Impossibility Condition”: no impossible world can occur closer to the actual world than any
possible world. But this principle has been called into question (Nolan, 1997; Vander Laan,
2004; Bernstein, 2016; Clarke-Doane, 2019). Hyperlogic, by contrast, can explain what’s

12



B3 Hyperintensional Operators

Hyperlogic offers refuge to those who find this disheartening. As we’ll
see, even though counter(meta)logicals are nonvacuous in hyperlogic, its
counterfactual logic is nontrivial: the standard counterfactual principles
can be salvaged when the connectives used to state those principles are
classically rigidified. This means, among other things, that imposing con-
straints on the selection function is not incompatible with the nonnvacuity
of counter(meta)logicals, such as those in (1).

B3.2 Completeness

Let’s turn to the logic of counterfactual hyperlogic. Given that we are
not placing any constraints on the selection function, what counterfactual
principles, if any, are valid?

Kocurek and Jerzak (2021, Appendix) show that the logic of classical
consequence in ℒ0

� is the same as the logic of the standard “impossible
worlds” semantics for counterfactuals, where we can model an impossible
world as an arbitrary set of formulas. But this is only because (as Cohen
(1990); Nolan (1997) suggest) there are no valid principles of counterfactual
reasoning that aren’t already substitution instances of S5-theorems. Thus,
without further constraints, (1) is invalid in the hyperconvention semantics
when regimented so:

p@𝑝 @𝑞 „pp𝑝 ^ 𝑞q▷ 𝑝q� p𝑎 ^ 𝑏qq 6 p@𝑝 @𝑞 „pp𝑝 ^ 𝑞q▷ 𝑝q� 𝑎q.

Fortunately, counterfactual hyperlogic in ℒH
� is more interesting, since

it has the expressive resources to “hold fixed” the interpretation of a certain
connective within the scope of a counterfactual (Kocurek and Jerzak, 2021,
p. 21). If we require a certain formula within a counterfactual to be inter-
preted according to, say, a classical hyperconvention, then any entailments
that formula generates in classical logic must be preserved. For example, the
reason (1) seems to invalidate conjunction elimination in the consequent is
that the word ‘and’ in the consequent is being interpreted relative to a logic
where conjunction elimination fails. If we force that ‘and’ to be interpreted
classically, however, then the argument is valid. That is, (1) is valid when

going on in examples like (1) and (i) without taking a stand on this issue.

13



B3 Hyperintensional Operators

regimented so:6

p@𝑝 @𝑞 „pp𝑝 ^ 𝑞q▷ 𝑝q� p𝑎 & 𝑏qq 6 p@𝑝 @𝑞 „pp𝑝 ^ 𝑞q▷ 𝑝q� 𝑎q.

This could explain why (1) has a ring of plausibility to it. Even though
the counterlogical supposition is asking us to interpret conjunction so that
conjunction elimination fails, it’s nevertheless tempting to hold on to our
“standard” classical way of interpreting ‘and’ when evaluating the conse-
quent.7

We can generalize this observation by axiomatizing consequence in ℒH
�.

The axiomatic system H� is given in Table B8. Some notation:

𝜙�� 𝜓 B @�p𝜙� 𝜓q 𝜙�� 𝜓 B „ @�p𝜙�„𝜓q

◻𝜙,� 𝜓 B 𝜙�� 𝜓 ◇𝜙,� 𝜓 B 𝜙�� 𝜓

◻
𝛼
𝜙,� 𝜓 B 𝛼 Ą◻𝜙,� 𝜓 ◇

𝛼
𝜙,� 𝜓 B 𝛼 &◇𝜙,� 𝜓

⊡
𝛼
𝜙,� 𝜓 B ◻

𝛼1
𝜙1 ,�1

¨ ¨ ¨◻
𝛼𝑛

𝜙𝑛 ,�𝑛
𝜓 ⟐

𝛼
𝜙,� 𝜓 B ◇

𝛼1
𝜙1 ,�1

¨ ¨ ¨◇
𝛼𝑛

𝜙𝑛 ,�𝑛
𝜓.

6 As an anonymous referee points out, hyperlogic predicts the following inference is still
(universally) valid:

p@𝑝 @𝑞 „pp𝑝 & 𝑞q▷ 𝑝q� p𝑎 & 𝑏qq 6 p@𝑝 @𝑞 „pp𝑝 & 𝑞q▷ 𝑝q� 𝑎q.

Here, ‘(the law of) conjunction elimination’ is regimented using & rather than ^. I am
unsure whether this is an unwelcome result (we are, after all, still using our actual notion of
entailment to reason about these counterfactuals, not the notion of entailment denoted by▷
in the antecedent). However, if we want to avoid this result, we could revise the semantics of
hyperlogic, following a suggestion from Kocurek (2021b, p. 13683), so that counterfactuals
can shift the denotation of interpretation nominals (though not interpretation variables).
Since & is defined in terms of 𝑐𝑙, this revision would allow that & no longer has its classical
meaning in the consequent. The resulting counterfactual logic would still be nontrivial,
since the inference would hold if we regiment the premise as follows (given interpretation
variables have rigid denotation):

Ó 𝑖.@𝑐𝑙 Ó 𝑘.@𝑖p@𝑝 @𝑞 „pp𝑝 ^ 𝑞q▷ 𝑝q� Ó 𝑗.@𝑘p@𝑗 𝑎 ^ @𝑗 𝑏qq.

It is an open question how this revision would affect the resulting logic of hyperlogic.
7 This strategy requires we interpret ‘and’ in the consequent of (1a) in terms of & even though

we interpret ‘(the law of) conjunction elimination’ in terms of ^. We see a similar phenomena
with in-scope de re readings of counterfactuals. Consider:

(i) If I hadn’t gone to college, my professor would find the class easier to teach.

Here, ‘my professor’ in the consequent picks out the speaker’s professor in the actual world
even though we are entertaining the speaker never going to college. The claim that ‘and’
in the consequent of (1a) can be interpreted according to our actual (classical) conventions
even though we are entertaining an alternative convention is similar.
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B3 Hyperintensional Operators

H�
All the axioms and rules in H, plus:

K� 𝜙� p𝜓 Ą 𝜒q, 𝜙� 𝜓 , 𝜙� 𝜒

Nec� @�∎𝜓 , 𝜙� p� Ą 𝜓q

Gen� if ®𝛼, |�|1 , 𝜙� p� Ą 𝜓q where � does not occur free in ®𝛼, 𝜙, or 𝜓,
then ®𝛼 , 𝜙� 𝜓

REA if ®𝛼 , 𝜙 “� 𝜙1 where � do not occur free in ®𝛼, 𝜙, or 𝜙1, then
®𝛼 , p𝜙� 𝜓q “ p𝜙1� 𝜓q

Derivable rules:
Gen�� if ®𝛼, |�|1 , 𝜙�� p� Ą𝜓q where � does not occur free in �, ®𝛼, 𝜙, or 𝜓,

then ®𝛼 , 𝜙�� 𝜓

RK�p�q if 𝜓1 , . . . ,𝜓𝑛 , 𝜒, then 𝜙�p�q 𝜓1 , . . . , 𝜙�p�q 𝜓𝑛 , 𝜙�p�q 𝜒

Table B8: Axioms and rules for provability in ℒH
� (with some derivable rules). The

rules for , can be converted into rules for $ (given � isn’t 𝑐𝑙) by applying C2U,
U2C, and Cl.

As before, let ℒH`
� be the expansion of ℒH with Prop` and INom`.

Definition B3.2 (Lindenbaum Set). A set Γ Ď ℒH`
� is Lindenbaum

if it is a ℒH`
� -maximal consistent set that satisfies constraints (i)–

(iii) from Definition A3.6 (nominalized, witnesses¬@s, differentiates
terms) as well as the following:
(iv) Γ` differentiates antecedents: if p◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓q P Γ`, then

|𝑙`|1 P Γ` and p𝜙 ‰𝑙` 𝜙1q P Γ` for some fresh 𝑙` P INom`.
(v) Γ` witnesses actual ⟐s: if ⟐𝛼

𝜙,� 𝜓 P Γ`, then |𝑙`|1 P Γ` and
⟐

𝛼
𝜙,�p𝑙

` & 𝜓q P Γ` for some fresh 𝑙` P INom`.
(vi) Γ` witnesses possible⟐s: if◇p𝛼0 ^⟐𝛼

𝜙,� 𝜓q P Γ`, then |𝑙`|1 P

Γ` and◇p𝛼0 ^⟐𝛼
𝜙,�p𝑙

` & 𝜓qq P Γ` for some fresh 𝑙` P INom`.

Lemma B3.3 (Counterfactual Lindenbaum). If Γ Ď ℒH
� is consis-

tent, then there is a Lindenbaum set Γ` Ď ℒH`
� such that Γ Ď Γ`.
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B3 Hyperintensional Operators

Proof : The construction is the same as that in Lemma A3.7 except for
how we define Γ𝑘`1 from Γ1

𝑘
(both 𝑙` and 𝑝` are unused throughout):

Γ𝑘`1 “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Γ1

𝑘
Y t𝑙` P �,¬@𝑙` 𝜓u if 𝜙𝑘 P Γ1

𝑘
where 𝜙𝑘 “ ¬@� 𝜓

Γ1

𝑘
Y t@� 𝑝

` ‰ @� 𝑝
`u if 𝜙𝑘 P Γ1

𝑘
where 𝜙𝑘 “ p� ‰ �q ^ |�|1 ^

|�|1
Γ1

𝑘
Y t|𝑙`|1 , 𝜙 ‰𝑙` 𝜙1u if 𝜙𝑘 P Γ1

𝑘
where 𝜙𝑘 “ p◻𝜙,� 𝜓 ‰

◻𝜙1 ,� 𝜓q

Γ1

𝑘
Y t⟐𝛼

𝜙,�p𝑙
` & 𝜓q, |𝑙`|1u if 𝜙𝑘 P Γ1

𝑘
where 𝜙𝑘 “ ⟐𝛼

𝜙,� 𝜓

Γ1

𝑘
Y t◇p𝛼0 ^⟐𝛼

𝜙,�p𝑙
` & 𝜓qq, |𝑙`|1u if 𝜙𝑘 P Γ1

𝑘
where 𝜙𝑘 “ ◇p𝛼0 ^⟐𝛼

𝜙,� 𝜓q

Γ1

𝑘
otherwise

Suppose for reductio that Γ𝑘`1 is inconsistent. The only cases we need
to check are where 𝜙𝑘 “ p◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓q, where 𝜙𝑘 “ ⟐𝛼

𝜙,� 𝜓, and
where 𝜙𝑘 “ ◇p𝛼0 ^⟐𝛼

𝜙,� 𝜓q. Assume throughout the contradiction
is derivable from 𝛾1 , . . . , 𝛾𝑛 P Γ𝑘 .

Suppose 𝜙𝑘 “ p◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓q. Thus:

p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓, |𝑙`|1 $ 𝜙 “𝑙` 𝜙1

𝑐𝑙, 𝑙Γ , p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓, |𝑖|1 , 𝜙 “𝑖 𝜙
1 Lemma A3.2, C2U

@𝑙Γ 𝑐𝑙,@𝑙Γ p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓, |𝑖|1 , 𝜙 “𝑖 𝜙
1 Gen@, Red, Red

@𝑙Γ 𝑐𝑙,@𝑙Γ p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓 , 𝜙 “ 𝜙1 GenÓ, VacÓ, IdleÓ

@𝑙Γ 𝑐𝑙,@𝑙Γ p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓 , 𝜙 “𝑙` 𝜙1 Gen@, Red

𝑙Γ , |𝑙Γ|1 , p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓 , 𝜙 “𝑙` 𝜙1 Intro@, Cl

𝑙Γ , |𝑙Γ|1 , p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓 $ 𝜙 “𝑙` 𝜙1 U2C

𝑙Γ , |𝑙Γ|1 , p𝛾,◻𝜙,� 𝜓 ‰ ◻𝜙1 ,� 𝜓 $ ◻𝜙,� 𝜓 “ ◻𝜙1 ,� 𝜓 REA,  (𝑙Γ , |𝑙Γ|1 P Γ𝑘).

Suppose 𝜙𝑘 “ ⟐𝛼
𝜙,� 𝜓. Thus:

p𝛾,⟐𝛼
𝜙,� 𝜓, |𝑙`|1 $ ¬⟐𝛼

𝜙,�p𝑙
` & 𝜓q

p𝛾,⟐𝛼
𝜙,� 𝜓, |𝑙`|1 $ ⊡

𝛼
𝜙,� „p𝑙` & 𝜓q def. of⟐𝛼

𝜙,�

p𝛾,⟐𝛼
𝜙,� 𝜓, |𝑙`|1 $ ⊡

𝛼
𝜙,�p𝑙

` Ą „𝜓q RK��

p𝛾,⟐𝛼
𝜙,� 𝜓 $ ⊡

𝛼
𝜙,� „𝜓 Gen��

p𝛾 $ ¬⟐𝛼
𝜙,� 𝜓 def. of⟐𝛼

𝜙,�,  .
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Suppose 𝜙𝑘 “ ◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q. Thus:

p𝛾,◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q, |𝑙`|1 $ ◻p𝛼0 Ñ⊡

𝛼
𝜙,�p𝑙

` Ą „𝜓qq

◇ p𝛾,◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q, |𝑙`|1 , 𝛼0 $ ⊡

𝛼
𝜙,�p𝑙

` Ą „𝜓q S5, Rigid

◇ p𝛾,◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q, 𝛼0 $ ⊡

𝛼
𝜙,� „𝜓 Gen��

◇ p𝛾,◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q $ ◻p𝛼0 Ñ⊡

𝛼
𝜙,� „𝜓q RK, S5

p𝛾 $ ◻p𝛼0 Ñ⟐𝛼
𝜙,� „𝜓q S5,  .

∎

Lemma B3.4 (Counterfactual Existence). Where Δ P 𝑊Γ:
(a) If ◻𝜙 R Δ, then there is a Δ1 P 𝑊Γ such that 𝜙 R Δ1.
(b) If ◇𝜙,�p𝑙 & �q P Δ where |𝑙|1 P Δ, then there is a Δ1 P 𝑊Γ

extending t𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 �u Y t@𝑙 𝜒 | ◻𝜙,�p𝑙 Ą 𝜒q P Δu.

Proof : Start with (a). By the proof in Lemma A3.9, Δ–◻Y t¬𝜙u is con-
sistent. Enumerate all formulas of the form¬@� 𝜓, of the form⟐𝛼

𝜙,� 𝜓,
or of the form◇p𝛼0 ^⟐𝛼

𝜙,� 𝜓q as 𝜒1 , 𝜒2 , 𝜒3 , . . . . We define a sequence
of formulas 𝛿0 , 𝛿1 , 𝛿2 , . . . depending on the form of 𝜒𝑛`1. As before,
𝛿0 B ¬𝜙. If 𝜒𝑛`1 “ ¬@� 𝜓, then define 𝛿𝑛`1 as in Lemma A3.9.
If 𝜒𝑛`1 “ ⟐𝛼

𝜙,� 𝜓, define 𝛿𝑛`1 B 𝜒𝑛`1 Ñ p|𝑙`|1 ^ ⟐𝛼
𝜙,�p𝑙

` & 𝜓qq,
where 𝑙` is the first nominal such that Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ñp|𝑙`|1 ^

⟐
𝛼
𝜙,�p𝑙

` & 𝜓qq & K. Suppose for reductio there were no such 𝑙`.
Reasoning as in Lemma A3.9, we can conclude that ◻pp𝛿 Ñ 𝜒𝑛`1q P

Δ and ◻pp𝛿 Ñ ¬p|𝑙`|1 ^ ⟐𝛼
𝜙,�p𝑙

` & 𝜓qqq P Δ for all 𝑙`, and that
◇pp𝛿 ^ 𝜒𝑛`1q P Δ. Since Δ witnesses possible ⟐s, there is a 𝑙` such
that◇pp𝛿 ^⟐𝛼

𝜙,�p𝑙
` & 𝜓qq P Δ,  .

If 𝜒𝑛`1 “ ◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓q, define 𝛿𝑛`1 B 𝜒𝑛`1 Ñ p|𝑙`|1 ^◇p𝛼0 ^

⟐
𝛼
𝜙,�p𝑙

` &𝜓qqq, where 𝑙` is the first such that Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ñ

p|𝑙`|1 ^◇p𝛼0 ^⟐𝛼
𝜙,�p𝑙

` &𝜓qqq & K. Suppose there is no such 𝑙`. Then
◻pp𝛿Ñ 𝜒𝑛`1q P Δ and◻pp𝛿Ñ¬p|𝑙`|1 ^◇p𝛼0 ^⟐𝛼

𝜙,�p𝑙
` &𝜓qqqq P Δ for

all 𝑙`. As before, ◇pp𝛿 ^ 𝜒𝑛`1q P Δ, i.e., ◇pp𝛿 ^◇p𝛼0 ^⟐𝛼
𝜙,� 𝜓qq P Δ.
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By S5, ◇ p𝛿 ^ ◇p𝛼0 ^ ⟐𝛼
𝜙,� 𝜓q P Δ. Since Δ witnesses possible ⟐s,

there is an 𝑙` such that ◇p𝛼0 ^ ⟐𝛼
𝜙,�p𝑙

` & 𝜓qq P Δ. By S5 again,
◇pp𝛿 ^◇p𝛼0 ^⟐𝛼

𝜙,�p𝑙
` & 𝜓qqq P Δ,  .

Now for (b). Let Δ–◻𝜙,� “ t@𝑙 𝜒 | ◻𝜙,�p𝑙 Ą 𝜒q P Δu. Then Δ–◻𝜙,� Y

t𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 �u is consistent. For suppose not. Then for some
@𝑙 𝜒1 , . . . ,@𝑙 𝜒𝑛 P Δ–◻𝜙,� , we have:

𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 p𝜒 $ „ @𝑙 � Bool
𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 p𝜒 $ @𝑙 „� Dist@

𝑐𝑙, 𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 p𝜒 , @𝑙 „� C2U
@𝑙Δ 𝑐𝑙, |𝑙Δ|1 , |𝑙|1 ,@𝑙 p𝜒 , @𝑙 „� Gen@, Ref, Red

𝑙Δ P 𝑐𝑙, |𝑙|1 ,@𝑙 p𝜒 , @𝑙 „� Elim&

𝑙Δ P 𝑐𝑙, |𝑙|1 , 𝑙 , p𝜒 , „� Intro@, Elim@

𝑙Δ P 𝑐𝑙, |𝑙|1 , 𝑙 Ą p𝜒 , 𝑙 Ą „� S5

◻𝜙,�p𝑙Δ P 𝑐𝑙q,◻𝜙,� |𝑙|1 ,◻
𝑙
𝜙,� p𝜒 , ◻

𝑙
𝜙,� „� RK��

𝑙Δ P 𝑐𝑙, |𝑙|1 ,◻
𝑙
𝜙,� p𝜒 , ◻

𝑙
𝜙,� „� Rigid, Nec�, Gen�� .

Since ◻𝑙
𝜙,�

p𝜒, p𝑙Δ P 𝑐𝑙q, |𝑙|1 P Δ, that means ◻𝑙
𝜙,� „� P Δ, contrary to

our initial assumption that◇𝑙
𝜙,� � P Δ,  .

Now, suppose ◻ 𝜒 P Δ. Thus, @𝑙 ∎@𝑙Δ 𝜒 P Δ (by Rigid, Intro@,
Red, Bool, and Dist`

@ ). By Nec�, ◻𝜙,�p𝑙 Ą @𝑙Δ 𝜒q P Δ. Hence,
@𝑙 @𝑙Δ 𝜒 P Δ–◻𝜙,� . Since 𝑙Δ , |𝑙Δ|1 $ @𝑙 @𝑙Δ 𝜒 Ø 𝜒, the set Σ B Δ–◻𝜙,� Y

t𝑙Δ , |𝑙Δ|1 , |𝑙|1 ,@𝑙 �u Y t𝜒 | ◻ 𝜒 P Δu is consistent. The proof strategy
from here is essentially the same as in part (a), though some changes
need to be made to ensure the steps go through. The main change is
that we need to replace◻pp𝛿 Ñ ¨ ¨ ¨ q and◇pp𝛿 ^ ¨ ¨ ¨ q with◻𝜙,�p

p𝛿 Ą ¨ ¨ ¨ q

and ◇𝜙,�p
p𝛿 & ¨ ¨ ¨ q. To illustrate, I’ll use the case where 𝜒𝑛`1 “

◇p𝛼0 ^⟐𝛼
𝛽,� 𝜓q. As before, we define 𝛿𝑛`1 B 𝜒𝑛`1 Ñ p|𝑙`|1 ^◇p𝛼0 ^

⟐
𝛼
𝛽,�p𝑙` & 𝜓qqq, where 𝑙` is the first such that: Σ, 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ñ

p|𝑙`|1 ^ ◇p𝛼0 ^ ⟐𝛼
𝛽,�p𝑙` & 𝜓qqq & K. By Bool and the fact that

𝑙Δ , |𝑙Δ|1 P Σ, this condition is equivalent to Σ, 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ą

p|𝑙`|1 &@𝑙Δ◆p𝛼0 &⟐𝛼
𝛽,�p𝑙` &𝜓qqq & K. Suppose, for reductio, there’s

no such 𝑙`. So for all 𝑙`, there are some 𝛾1 , . . . , 𝛾𝑛 P Σ such that
p𝛾 $ p𝛿 Ą „p𝜒𝑛`1 Ą @𝑙Δ◆p𝛼0 &⟐𝛼

𝛽,�p𝑙` & 𝜓qqq. By RK�� , ◻𝜙,�
p𝛾 $
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◻𝜙,�p
p𝛿Ą „p𝜒𝑛`1 Ą @𝑙Δ◆p𝛼0 &⟐𝛼

𝛽,�p𝑙` &𝜓qqqq. Since◻𝜙,�
p𝛾 P Δ,8 this

means◻𝜙,�p
p𝛿Ąp𝜒𝑛`1&„p|𝑙`|1&@𝑙Δ◆p𝛼0&⟐𝛼

𝛽,�p𝑙`&𝜓qqqqq P Δ for all
𝑙`. As before,◇𝜙,�p

p𝛿&𝜒𝑛`1q P Δ, i.e.,◇𝜙,�p
p𝛿&@𝑙Δ◆p𝛼0 &⟐𝛼

𝛽,� 𝜓qq P

Δ. By RK�� , ◇𝜙,�
p𝛿 P Δ and ◇𝜙,� @𝑙Δ◆p𝛼0 & ⟐𝛼

𝛽,� 𝜓q P Δ. By
Nec� and Gen�� , @𝑙Δ ∎p𝛼0 & ⟐𝛼

𝛽,� 𝜓q , ◻𝜙,� @𝑙Δ ∎p𝛼0 & ⟐𝛼
𝛽,� 𝜓q.

Since |𝑙Δ|1 P Δ, that means @𝑙Δ◆p𝛼0 & ⟐𝛼
𝛽,� 𝜓q P Δ. Since 𝑙Δ P Δ,

that means ◇p𝛼0 ^ ⟐𝛼
𝛽,� 𝜓q by Bool. Since Δ witnesses possible

⟐s, there is an 𝑙` such that |𝑙`|1 & @𝑙Δ◆p𝛼0 & ⟐𝛼
𝜙,�p𝑙

` & 𝜓qq P Δ.
By Nec�, ◻𝜙,�p|𝑙`|1 & @𝑙Δ◆p𝛼0 & ⟐𝛼

𝜙,�p𝑙
` & 𝜓qqq P Δ. By RK�� ,

◇𝜙,�p
p𝛿 & p|𝑙`|1 & @𝑙Δ◆p𝛼0 &⟐𝛼

𝛽,�p𝑙` & 𝜓qqqq P Δ,  . ∎

The proofs of the other intermediate lemmas are all as before. To finish
the proof, we need to define the selection function for our canonical model.

Definition B3.5 (Defining Formula). Where 𝐴 Ď 𝕀
𝑊Γ

, we define the
set r𝐴s B

␣

𝜙 P ℒH`
� | 𝐴 “ txΔ, 𝑐�y | @� 𝜙 P Δu

(

.

Lemma B3.6 (Replacement of Definitions). For all 𝐴 Ď 𝕀
𝑊Γ

, all 𝑐�,
all 𝜙, 𝜙1 P r𝐴s, and all 𝜓, we have pp𝜙�� 𝜓q “ p𝜙1�� 𝜓qq P Γ.

Proof : Suppose for reductio that pp𝜙�� 𝜓q “ p𝜙1�� 𝜓qq R Γ. Since
Γ differentiates antecedents, there are some 𝑙` such that (by Dist@)
p@𝑙` 𝜙 ‰ @𝑙` 𝜙1q P Γ. Since 𝜙, 𝜙1 P r𝐴s, p@𝑙` 𝜙 “ @𝑙` 𝜙1q P Γ𝑛 ,  . ∎

Definition B3.7 (Canonical Selection Function). We define 𝑓Γ, the
canonical selection function for Γ, as follows for all 𝐴 Ď 𝕀

𝑊Γ
, all

Δ P 𝑊Γ, and all 𝑐�. First, if r𝐴s “ H, then 𝑓Γp𝐴,Δ, 𝑐�q “ txΔ, 𝑐�yuX𝐴.
Second, if 𝜙 P r𝐴s, then xΔ1 , 𝑐λy P 𝑓Γp𝐴,Δ, 𝑐�q iff for all 𝜓 P ℒH`

� , if
p𝜙�� pλĄ 𝜓qq P Δ, then @λ 𝜓 P Δ1.

By Lemma B3.6, if𝜙, 𝜙1 P r𝐴s, then p𝜙��pλĄ𝜓qq P Δ iff p𝜙1��pλĄ𝜓qq P Δ,
so this definition for 𝑓Γ is well-defined.

8 This is the step that would not have gone through without the relevant change, since we do
not have◻ p𝛾 P Δ.
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Definition B3.8 (Canonical Model). The canonical selection hyper-
model of Γ is the selection hypermodel ℳΓ “ x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑓Γ , 𝑉Γy

where x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑉Γy is defined as in Definition A3.15 and 𝑓Γ is
defined as in Definition B3.7.

Lemma B3.9 (Truth). ℳΓ ,Δ, 𝑐� , 𝜙 iff @� 𝜙 P Δ.

Proof : The inductive steps are all the same as before. We just need to
check the� step goes through. First,Δ, 𝑐� , 𝜙�𝜓 iff 𝑓Γpv𝜙w ,Δ, 𝑐�q Ď

v𝜓w. By Lemma B3.6 and by IH (𝜙 P rv𝜙ws), this holds iff the following
holds for all Δ1 and 𝑐λ:

if @𝜒 P ℒH`
� : p𝜙�� pλĄ 𝜒qq P Δ ñ @λ 𝜒 P Δ1 , then @λ 𝜓 P Δ1.

We now show this condition holds for allΔ1 and 𝑐λ iff @�p𝜙�𝜓q P Δ.
(ð) Suppose @�p𝜙� 𝜓q P Δ. Let Δ1 and 𝑐λ be such that for all

𝜒 P ℒH`
� , if p𝜙�� pλĄ𝜒qq P Δ, then @λ 𝜒 P Δ1. Since @�p𝜙�𝜓q P Δ,

we have by RK�� that @�p𝜙� pλĄ 𝜓qq P Δ. Hence, @λ 𝜓 P Δ1.
(ñ) Suppose @�p𝜙� 𝜓q R Δ. Thus, 𝜙�� „𝜓 P Δ. Since

Δ witnesses actual ⟐s, there is an 𝑙` such that 𝜙�� p𝑙` & „𝜓q.
By Lemma B3.4, there is a Δ1 P 𝑊Γ such that Δ1 Ě t¬@𝑙` 𝜓u Y

t@𝑙` 𝜒 | 𝜙�� p𝑙` Ą 𝜒q P Δu. Hence, xΔ1 , 𝑙`y is the counterexample
we need. ∎

B3.3 Adding ▷ and Quantifiers

What changes if we add an entailment operator or propositional quantifiers
to ℒH

�? In the former case, no additional axioms are required apart from
those in H▷ and H�: all the proofs in §B3.2 go through in the presence of
▷. In the latter case, we do need one additional axiom. Observe that the
Barcan formula and its converse are universally valid for counterfactuals
(where 𝑝 does not occur free in 𝜙):

@𝑝p𝜙� 𝜓q )

)𝜙� @𝑝 𝜓.

The converse Barcan formula is derived just by combining QH and H�:

@𝑝 𝜓 , 𝜓 Elim@

20



B3 Hyperintensional Operators

𝜙� @𝑝 𝜓 , 𝜙� 𝜓 RK�
@𝑝p𝜙� @𝑝 𝜓q , @𝑝p𝜙� 𝜓q RK@

𝜙� @𝑝 𝜓 , @𝑝p𝜙� 𝜓q Vac@.

However, the Barcan formula, which is needed to prove the analogue of
Lemma A4.6, must be added separately. Other than that, the proofs of
completeness for ℒQH and ℒH

� can be straightforwardly combined to yield
a proof of completeness for ℒQH

� .

QH�
All the axioms and rules in QH and H�, plus:

BF� @𝑝p𝜙� 𝜓q , 𝜙� @𝑝 𝜓 where 𝑝 does not occur free in 𝜙

Table B9: Axioms and rules for provability in ℒQH
�

B3.4 Constraints on Selection Function

Let’s now look at some constraints on the selection function. Table B10
contains several such constraints. We can extend the completeness result to
include such constraints by adding the relevant axioms from Table B11.

Name Class Constraint (on all 𝐴, 𝐵 Ď 𝕀
𝐷ℍ

)

success Suc 𝑓 p𝐴, 𝑤, 𝑐q Ď 𝐴

weak centering W if x𝑤, 𝑐y P 𝐴, then x𝑤, 𝑐y P 𝑓 p𝐴, 𝑤, 𝑐q

strong centering C if x𝑤, 𝑐y P 𝐴, then 𝑓 p𝐴, 𝑤, 𝑐q “ tx𝑤, 𝑐yu

Stalnaker’s assumption Stal | 𝑓 p𝐴, 𝑤, 𝑐q| ď 1
vacuism Vac if 𝐴p𝑐q “ H, then 𝑓 p𝐴, 𝑤, 𝑐q “ H

necessary consequent NC 𝑓 p𝐴, 𝑤, 𝑐q Ď 𝑊 ˆ t𝑐u

necessary entailment NEC 𝑓 p𝐴, 𝑤, 𝑐q Ď 𝐴p𝑐q ˆ t𝑐u

strangeness of impossibility SIC if 𝐴p𝑐q ‰ H, then 𝑓 p𝐴, 𝑤, 𝑐q Ď 𝑊 ˆ t𝑐u

operational rigidity Ro 𝑓 p𝐴, 𝑤, 𝑐q Ď 𝑊 ˆ t𝑐1 P 𝐷ℍ | 𝑐 « 𝑐1 u

Table B10: Some constraints on selection functions.

Theorem B3.10 (Relative Completeness in ℒH
�). The proof systems

in Table B11 are sound and complete for the relevant class of selection
hypermodels. (See §B5.4.)
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Name Axiom(s) Corresponding Constraint
Id� , 𝜙� 𝜙 success
MP� 𝜙, 𝜙� 𝜓 , 𝜓 weak centering
Cen 𝜙 , p𝜙� 𝜓q ” 𝜓 strong centering
CEM , p𝜙� 𝜓q ` p𝜙�„𝜓q Stalnaker’s assumption
Vac „◆𝜙 , 𝜙� 𝜓 vacuism
NC ∎𝜓 , 𝜙� 𝜓 necessary consequent

, Ó 𝑖.p𝜙� 𝑖q

NEC ∎p𝜙 Ą 𝜓q , 𝜙� 𝜓 necessary entailment
, Ó 𝑖.p𝜙� p𝑖 & 𝜙qq

SIC ◆𝜙,∎𝜓 , 𝜙� 𝜓 strangeness of impossibility
◆𝜙 , Ó 𝑖.p𝜙� 𝑖q

Ro , Ó 𝑖.◻𝜙 Ó 𝑗.r△p𝜙q “ @𝑖△p@𝑗 𝜙qs operational rigidity

Table B11: Axiomatizations in ℒ0
� for various classes from Table B10.

Let me briefly explain the motivation behind some of these constraints.
Vacuism is the view that all counterpossibles (counterfactuals with impos-
sible antecedents) are vacuously true.9 Often, vacuists also endorse the
necessary consequent and necessary entailment principles, which are all
coderivable given success (the labels come from French et al. 2020). Some
of these principles have equivalent “hybrid” formulations. In the hypercon-
vention semantics (with success), counterpossibles are vacuous when we
hold fixed the interpretation of the antecedent. This goes back to one of the
main motivations for considering hyperlogic as a semantics for metalogical
claims, viz., it can formalize “conventionalist” approaches to hyperinten-
sionality, which explain hyperintensionality in terms of convention-shifting
(§A1). We can regiment this idea of “holding fixed” an interpretation using
the hybrid binder Ó, which is what allows alternative axiomatizations for
some of these principles.

Second, the “strangeness of impossibility condition” was introduced by
Nolan (1997, p. 550). If we think of selection functions as selecting the “clos-
est” or “most similar” antecedent-worlds, then the condition effectively says
that impossible worlds are always “far out” in that they’re less similar than

9 For a defense of vacuism, see Stalnaker 1968, 1996; Lewis 1973; Kratzer 1979; Bennett 2003;
Williamson 2007, 2017; Emery and Hill 2017. For criticism, see Cohen 1987, 1990; Zagzebski
1990; Mares 1997; Nolan 1997; Merricks 2001; Goodman 2004; Vander Laan 2004; Kim and
Maslen 2006; Krakauer 2012; Brogaard and Salerno 2013; Kment 2014; Bernstein 2016; Berto
et al. 2018; Jenny 2018; Tan 2019. See Berto and Nolan 2021; Kocurek 2021a for an overview.
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any possible world.10 French et al. (2020) present an impossible worlds se-
mantics where this corresponds to the axiom p◇𝜙^◻𝜓qÑp𝜙�𝜓q, which
has an analogue in Table B11. Again, this has an equivalent formulation
in terms of convention-shifting: counterconventional readings only arise
when the antecedent in question is impossible (on its actual interpretation).

Finally, operational rigidity, in effect, states counterlogical vacuism, i.e.,
the view that all counterlogicals (counterfactuals with logically impossible
antecedents) are vacuously true. Some nonvacuists have held that even
if counterpossibles are generally nonvacuous, counterlogicals are a special
exception, while others have argued there’s no relevant difference between
counterlogicals and other counterpossibles.11 In hyperlogic, this turns on
whether counterfactuals are allowed to shift the interpretation of the connec-
tives. Thus, those who maintain that counterlogicals are a special exception
can hold that counterfactuals are only allowed to shift the interpretation of
nonlogical vocabulary.

B3.5 Belief and Knowledge

Thus far, we have focused on counterfactual hyperlogic. But the selection
semantics (or something like it) is also often employed as a semantics for
dyadic belief and knowledge, where B𝜙𝜓 says the agent believes that 𝜓
given 𝜙 and likewise for K𝜙𝜓.12 It is standard to define the monadic belief
operator as B𝜙 B BJ𝜙 (here, we can define J B p𝑝 ` „ 𝑝q). Letting
𝑅p𝑤, 𝑐q B 𝑓 pvJw , 𝑤, 𝑐q, we then have the following semantics for monadic
belief:

ℳ , 𝑤, 𝑐 , B𝜙 ô for all x𝑣, 𝑑y P 𝑅p𝑤, 𝑐q: ℳ , 𝑣, 𝑑 , 𝜙.

Thus, we can import the results in §B3.2 to give a logic of belief and knowl-
edge within hyperlogic. As in §B3.4, one could consider imposing any of
the usual restrictions on 𝑅 to obtain stronger logics.

10 See Mares 1997; Nolan 1997; Vander Laan 2004; Krakauer 2012; Jago 2014; Kment 2014;
Bernstein 2016; Clarke-Doane 2019 for discussion of this principle. See Kocurek 2021a for
an overview.

11 For defenses of counterlogical vacuism, see Goodman 2004; Kment 2014. For defenses of
counterlogical nonvacuism, see Cohen 1990; Mares 1997; Nolan 1997; Vander Laan 2004; Kim
and Maslen 2006; Krakauer 2012; Brogaard and Salerno 2013; Berto et al. 2018. Kocurek and
Jerzak (2021) defend an intermediate position, viz., counterlogicals are only nonvacuous on
counterconventional readings.

12 See, e.g., Boutilier 1992; Moses and Shoham 1993; Lamarre and Shoham 1994; Friedman and
Halpern 1997; van Ditmarsch 2005; Baltag and Smets 2006; van Benthem 2007.
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B4 Conclusion

One application of doxastic/epistemic hyperlogic is to the problem of
logical omniscience. It is well known that on the standard intensional
semantics, belief is closed under classical entailment: if 𝜙 ( 𝜓, then
B𝜙 ( B𝜓.13 Attempts to avoid this result generally often appeal to lim-
itations or defects in cognitive states, e.g., lack of computational resources,
awareness, or informational access. However, another (less discussed) way
logical omniscience can fail is via different views on logic. If Inej believes
intuitionistic logic is correct, then her beliefs will not generally be closed
under classical consequence even if she is a perfect reasoner.

Doxastic hyperlogic is well-equipped to handle such cases. While it
does not require that beliefs are closed under classical consequence, it does
validate a more modest closure principle: @�∎p𝜙 Ą 𝜓q,B�,B𝜙 )B𝜓. Re-
stricting to hypermodels where ▷𝑐 is factive and noncontingent (Table B3),
we can simplify this principle: @�p𝜙 ▷ 𝜓q,B�,B𝜙 )B𝜓. In other words,
beliefs are closed under whatever logic the agent adopts (if there is one,
assuming it’s reasonable). We obtain the “classical” picture only when we
assume B𝑐𝑙 holds.14

Of course, doxastic hyperlogic is not a complete solution to the problem
of logical omniscience. For one, it still assumes agents are perfect reasoners
within their own logic, and is thus not a good model of logical error. More-
over, beliefs are still assumed to be closed under universal consequence: if
𝜙 )𝜓, then B𝜙 )B𝜓. The moral, rather, is that there are several differ-
ent problems of logical omniscience that likely need to be addressed with
different tools. Appeals to computation, awareness, fragmentation, etc. are
better equipped for modeling logical error, whereas doxastic hyperlogic is
better equipped for modeling ideal yet nonclassical agents.

B4 Conclusion
This concludes the two-part series exploring the logic of hyperlogic. In
Part A of this series, we axiomatized a minimal logic of hyperlogic. In
Part B, we extended these results to stronger logics over a restricted class

13 For discussion of this problem, see Hintikka 1975; Stalnaker 1976a,b, 1984; Duc 1997; Alechina
et al. 2004; Berto 2010; Ripley 2012; Bjerring 2013; Jago 2007, 2014, 2015; Bjerring and Schwarz
2017; Yalcin 2018; Bjerring and Skipper 2019; Hawke et al. 2019; Skipper and Bjerring 2020;
Elga and Rayo 2021; Hoek 2022; Soysal 2022.

14 Sedlár (2015) likewise explores a doxastic logic where the belief operator is nonclassical,
though the base logic is classical. In some ways, Sedlár’s system is similar to doxastic
hyperlogic, although the latter is more flexible in the range of logics an agent’s beliefs may
be sensitive to. Thanks to an anonymous referee for noting this parallel.
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of models as well as to languages with hyperintensional operators. In this
final section, I wish to sketch a few possible directions for future research
that would be worth pursuing.

First, it is an open question how best to extend hyperlogic with first-
order quantifiers. We could have hyperconventions specify a domain of
individuals, but this might bring technical complications with tracking the
denotations of variables across shifts in hyperconvention. Another option
would be to have hypermodels directly specify a single domain across all
hyperconventions. This might be more manageable, though it builds in
substantive metaontological assumptions.

Second, there are many questions remaining for the model theory of
hyperlogic, especially concerning “finite” hypermodels. For example, it is
easy to see that any satisfiable ℒQH-formula is satisfiable in a convention-
finite model (i.e., one where 𝐷ℂ is finite): just reduce the hypermodel to
the denotations of the free terms in the formula. Yet, there are satisfiable
(quantified) ℒQH-formulas that not satisfiable in a hyperconvention-finite
model (i.e., one where 𝐷ℍ is finite). What about any satisfiable ℒH-formula,
though? Does H satisfy the finite model property?

Third, we made a number of choice points regarding the initial setup
of the hyperconvention semantics that could be revised. One is that we
required the “classical” hyperconventions to all interpret ◻ and ◇ as uni-
versal modals. It would be natural to weaken this requirement so that ◻
and ◇ only obey weaker normal modal logics. Another choice point con-
cerned whether to treat iterated “according to” operators as redundant. I
suspect there is more than one way to naturally generalize the semantics for
“according to” so that iteration matters.

Finally, the hyperconvention semantics only concerns claims about log-
ics for the propositional modal language. It does not have a way of capturing
metalogical claims concerning alternative logics for hyperlogic—specifically,
for the propositional quantifiers, hybrid operators, or counterfactuals (ex-
cept insofar as they also concern alternative logics for the connectives).
While Kocurek (2021b, §6) sketches a possible extension to such a language,
it is unclear what the resulting logic of this proposed solution is or whether
there might be more elegant solutions waiting to be explored.

B5 Appendix: Proofs of Relative Completeness
In this appendix, we give the proofs of various completeness theorems rel-
ative to restricted classes of models (Theorems B2.1, B2.3, B2.6 and B3.10).
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First, we state a helpful lemma, which follows straightforwardly from Corol-
lary A3.10 and Definition A3.13:

Lemma B5.1 (Canonical Operations). Let |�|1 , |λ|1 P Γ. Where 𝜙𝑖 P

r𝑋𝑖s� and 𝜓𝑖 P r𝑌𝑖sλ,△𝑐�
p𝑋q “ △𝑐λ

p𝑌q iff p△p𝜙q� “ △p𝜓qλq P Γ.

In each case, the proof of soundness is straightforward and left to the reader.
Completeness requires showing the canonical model is in the relevant class.
In some cases, we must revise the canonical model construction and/or the
Lindenbaum construction.

B5.1 Theorem B2.1

The proofs of completeness for F, Uq, At, and B are immediate since the
canonical hypermodel (Definition A3.15) is full (and thus, quantification
uniform, atomic, and boolean).

Uo: We need to make a slight revision to the definition of a canonical
hyperconvention. In particular, we need to revise the third clause to say
that 𝑐� interprets the connectives classically if the following is in Γ for some
�1 , . . . , �𝑛 and λ1 , . . . , λ𝑛 :

p� P �1q ^ pλ1 P �1q ^ pλ1 P �2q ^ pλ2 P �2q ^ ¨ ¨ ¨ ^ pλ𝑛 P �𝑛q ^ pλ𝑛 P 𝑐𝑙q

�

�1

λ1

�2

λ2

¨ ¨ ¨

¨ ¨ ¨

�𝑛

λ𝑛

𝑐𝑙
P P PP P P

So unlike Definition A3.13, 𝑐� can be classical even if @� 𝑐𝑙 R Γ, so long as
it satisfies this “zigzag” condition. Now, Lemma A3.16 needs to be restated
as the following:

Claim: If p� P �q, pλ P �q P Γ and 𝑐� is classical, then 𝑐λ is classical.

Proof : Suppose first that � satisfies the zigzag condition. Then the
zigzag can be extended to λ via �, and thus 𝑐λ is classical. Sup-
pose instead that � does not satisfy the zigzag condition. Then
𝑐�p¬qp𝑋q “ tΔ P 𝑊Γ | D𝜙 P r𝑋s� : @� ¬𝜙 P Δu. Suppose r𝑋s� “ H.
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Then 𝑐�p¬qp𝑋q “ H. But since 𝑐� is classical, 𝑐�p¬qp𝑋q “ 𝑋. So
𝑋 “ 𝑊 , even though p𝑝 ` „ 𝑝q P r𝑊s�,  . Hence, there is no 𝑋 where
r𝑋s� “ H. This can only happen if 𝑊Γ is finite. List the members
of 𝑊Γ as Δ1 , . . . ,Δ𝑛 . Since these are all distinct maximal consistent
sets, there must be some 𝛿1 , . . . , 𝛿𝑛 such that 𝛿𝑖 P Δ𝑗 iff 𝑖 “ 𝑗. Each
𝑋 Ď 𝑊Γ is then definable by a disjunction of these 𝛿𝑖s (if 𝑋 “ H,
then it’s definable by K). Now, let 𝑙Γ P Γ and for each 𝑋 Ď 𝑊Γ, let
𝛿𝑋 “ @𝑙Γ 𝛿𝑖1 ` ¨ ¨ ¨ ` @𝑙Γ 𝛿𝑖𝑘 , where the disjunction of 𝛿𝑖1 , . . . , 𝛿𝑖𝑘 de-
fines 𝑋. By Red and Dist@, pp𝛿𝑋q� “ p𝛿𝑋qλq P Γ for every 𝑋. By Unio,
pp☆ 𝛿𝑋q� “ p☆ 𝛿𝑋qλq P Γ. Thus, 𝑐�p☆q “ 𝑐λp☆q by Lemma B5.1, and
so 𝑐λ is classical. ∎

Using this claim in place of Lemma A3.16 in the inductive step for
the connectives in Lemma A3.17, the completeness proof goes through
as before. We just need to check that 𝐷ℂΓ is operationally uniform. Let
𝑐� , 𝑐λ P 𝐶�. By the above claim, 𝑐� is classical iff 𝑐λ is classical. If both
are classical, then we’re done. So suppose otherwise. I just prove the ☆-
case for illustration. If r𝑋s� “ H, then r𝑋sλ “ H (otherwise, if 𝜙 P r𝑋sλ,
then @λ 𝜙 P r𝑋s�). If r𝑋s� “ r𝑋sλ “ H, then 𝑐�p☆qp𝑋q “ 𝑐λp☆qp𝑋q “ H.
So suppose 𝜙 P r𝑋s� and 𝜓 P r𝑋sλ. Then @� 𝜙 P Δ iff @λ 𝜓 P Δ. By
Corollary A3.10 and Bool, @� 𝜙 “ @λ 𝜓 P Γ. By Unio, @�☆𝜙 “ @λ☆𝜓 P Γ.
Hence, 𝑐�p☆qp𝑋q “ 𝑐λp☆qp𝑋q by Lemma B5.1.

Si: Completeness is straightforward. To establish that H ` Sing “ H `

Self-Dual`, we just need to show that Sing is coderivable with Self-Dual@
in H. Self-Dual@ trivially follows from Dist@ and Sing. Here’s the other
direction:

�, 𝑖 , „ @� „ 𝑖 Elim@

�, 𝑖 , @� 𝑖 Self-Dual@
� , Ó 𝑖.@� 𝑖 GenÓ, VacÓ

, |�|1 Gen@, Ref, def. of |�|1.

AnF, AnUq: We revise the Lindenbaum construction, specifically the defini-
tion ofΓ𝑘`1. Let� ȷ λabbreviate pp𝑝`q� “ p𝑞`qλq^

Ž
␣

p△p𝑝`qq� ‰ p△p𝑞`qqλ
(

△
,

where 𝑝` and 𝑞` are unused at this point in the construction. Then we re-
vise the definition of Γ𝑘`1 so that Γ𝑘`1 “ Γ1

𝑘
Y t� ȷ λu if 𝜙𝑘 P Γ1

𝑘
where

𝜙𝑘 “ p� P �q ^ ¬pλ P �q ^ |λ|1. Suppose Γ𝑘`1 is inconsistent in this case.
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Then for some 𝛾1 , . . . , 𝛾𝑛 P Γ1
𝑘
, we have p𝛾, � P �, λ R �, |λ|1 , p𝑝

`q� “ p𝑞`qλ ,

△p𝑝`q� “ △p𝑞`qλ for each△. By RAn, p𝛾, � P �, λ R �, |λ|1 , p� P �q”pλ P �q.
Hence, Γ1

𝑘
is inconsistent,  .

It suffices to show that the canonical hypermodel is analytic. Suppose
𝑐� P 𝐶� and 𝑐� « 𝑐λ. So p� P �q P Γ and |λ|1 P Γ. Moreover, if pλ P �q R Γ, then
by the revised Lindenbaum construction, � ȷ λ P Γ, contrary to 𝑐� « 𝑐λ,  .
Hence, pλ P �q P Γ.

S5: We revise Definition A3.13 so that 𝑐p△q is always defined classically.
The only revision needed to the proofs is to verify the connective case in
the truth lemma (Lemma A3.17). This follows from the fact that |�|1 ,

@�△p𝜙q ”△p@� 𝜙q is pH ` Bool,q-derivable (by Bool,, Gen@, and Dist@
(for ,)).

B5.2 Theorem B2.3

For some of these proofs, we use the lemma below, which follows from
Definition A4.7 and D-witnessing.

Lemma B5.2 (Canonical Proposition Space). Let |�|1 , |λ|1 P Γ. Then
𝜋𝑐� Ď 𝜋𝑐λ iff p𝜋� Ď 𝜋λq P Γ, and |𝜋𝑐� | “ 1 iff |𝜋�|1 P Γ.

We omit the proofs for B, Uq, Uo, Si, and S5, which are routine.

At: Let 𝑐� P 𝐷ℍΓ and Δ P 𝑊Γ. First, observe that 𝜙 Ñ◻p@� 𝑝
` Ñ 𝜙q P Δ.

For by Atom, Bool, and Dist@, D𝑝p@� 𝑝 ^ @𝑞p◻p@� 𝑝 Ñ @𝑙Δ 𝑞q _ ◻p@� 𝑝 Ñ

¬@𝑙Δ 𝑞qqq P Δ. Since 𝑙Δ P Δ, we have D𝑝p@� 𝑝 ^ @𝑞p◻p@� 𝑝 Ñ 𝑞q _◻p@� 𝑝 Ñ

¬ 𝑞qqq P Δ. By D-witnessing, @� 𝑝
`^@𝑞p◻p@� 𝑝

`Ñ𝑞q_◻p@� 𝑝
`Ñ¬ 𝑞qq P Δ

for some 𝑝`. By Elim@, ClEx, and D-witnessing,◻p@� 𝑝
` Ñ𝜙q_◻p@� 𝑝

` Ñ

¬𝜙q P Δ. By S5, 𝜙 Ñ◻p@� 𝑝
` Ñ 𝜙q P Δ.

So suppose @� 𝑝
` P Δ1 and suppose 𝜙 P Δ. Thus, ◻p@� 𝑝

` Ñ 𝜙q P Δ.
By Corollary A3.10, 𝜙 P Δ1. Hence, Δ1 “ Δ. So 𝑝` P rtΔus�, i.e., tΔu P 𝜋𝑐� .

An: Since members of INom` “ t𝑙`1 , 𝑙`2 , 𝑙`3 , . . .u might not be allowed to
denote singletons (since conventions must be closed under «), the Henkin
construction needs to be revised so that INom` is replaced with IVar` “

t𝑖`1 , 𝑖`2 , 𝑖`3 , . . .u (though we don’t allow formulas in ℒQH` to bind members
of IVar`). We also need to make the following amendments to the definition
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of the canonical model:

𝐷ℂΓ “ t𝐶� | ¬ |�|1 P Γu Y t𝐶𝑙 | |𝑙|1 P Γu Y tt𝑐� | 𝑐� « 𝑐𝑖 u | |𝑖|1 P Γu

𝑉Γp�q “

#

t𝑐�u if |�|1 P Γ and � P IVar Y IVar`

𝐶� otherwise

The proof of the truth lemma (Lemma A3.17) remains intact (the only dif-
ference is the @�-case where � is 𝑖 and |𝑖|1 P Γ; in that case, Δ, 𝑐� , @𝑖 𝜙 iff
Δ, 𝑐𝑖 , 𝜙 iff @𝑖 𝜙 P Δ iff @� @𝑖 𝜙 P Δ.) Trivially, t𝑐� | 𝑐 « 𝑐𝑖 u is analytic. So
we need to show that 𝐶� is analytic if ¬ |�|1 P Γ, and that 𝐶𝑙 is analytic if
|𝑙|1 P Γ.

First, suppose ¬ |�|1 P Γ. Let 𝑐� P 𝐶� and let 𝑐λ ‰ 𝑐� be such that 𝑐� « 𝑐λ.
Since p� P �q, |λ|1 P Γ, it suffices to show that p� « λq P Γ; for then by
An, pλ P �q P Γ, and so 𝑐λ P 𝐶�. By Lemma B5.2, p𝜋� “ 𝜋λq P Γ since
𝜋𝑐� “ 𝜋𝑐λ . Moreover, if pp𝑝`q� “ p𝑞`q�q P Γ, then tΔ P 𝑊Γ | @� 𝑝

` P Δu “

tΔ P 𝑊Γ | @λ 𝑞` P Δu. Since 𝑐� « 𝑐λ, that means 𝑐�p☆qp𝑋q “ 𝑐λp☆qp𝑋q. So
by Lemma B5.1, pp☆ 𝑝`q� “ p☆ 𝑞`qλq P Γ. Therefore, pp𝑝`q� “ p𝑞`qλq Ą

pp☆ 𝑝`q� “ p☆ 𝑞`qλq P Γ. Since Γ witnesses Ds, @𝑝 @𝑞pp𝑝� “ 𝑞λq Ą pp☆ 𝑝q� “

p☆ 𝑞qλqq P Γ, i.e., p☆� “ ☆λq P Γ. Similarly, p◯� “ ◯λq P Γ. Hence,
p� « λq P Γ.

Next, suppose |𝑙|1 P Γ. Let 𝑐� « 𝑐𝑙 . By the reasoning above, p� « 𝑙q P Γ.
Since |�|1 , |𝑙|1 P Γ, it follows by ManyINom that p� “ 𝑙q P Γ. Hence, by
Lemma A4.9, 𝑐� “ 𝑐𝑙 , and thus 𝑐� P 𝐶𝑙 .

B5.3 Theorem B2.6

We omit the proofs for Cr and Di, which are routine.

ClΦ: We revise the Henkin construction. Let Prop˝ “ t𝑝˝
1 , 𝑝

˝
2 , 𝑝

˝
3 , . . .u be

new propositional variables, and let ℒQH`˝ be the result of expanding ℒQH`

with Prop˝ (again, not including formulas with quantifiers binding these
variables). Enumerate the members of Φ as 𝜒1 , 𝜒2 , 𝜒3 , . . . . Let Δ be the set
of all formulas of the form 𝑝˝

𝑘
“𝑙 𝜒𝑘 , where 𝑙 P INom` and 𝜒𝑘 P Φ. The

Henkin construction is the same except we redefine Γ1
𝑘

so that Γ1
𝑘

“ Γ𝑘 Yt𝜙𝑘u

if Γ𝑘 ,Δ, 𝜙𝑘 &QHYExΦ K (and “ Γ𝑘 otherwise). Clearly, if Γ𝑘YΔ is pQHYExΦq-
consistent, then so is Γ1

𝑘
YΔ. The proof that Γ𝑘`1 YΔ is consistent if Γ1

𝑘
YΔ is

consistent is essentially the same. Thus, we just need to show that Γ1 Y Δ is
pQH Y ExΦq-consistent. Suppose it’s not. Since 𝑙Γ occurs nowhere in Δ, we
can eliminate 𝑙Γ by the same reasoning as in Lemma A3.7. Thus, there are
some 𝛼1 , . . . , 𝛼𝑘 that are instances of ExΦ, some 𝛿1 , . . . , 𝛿𝑛 P Δ where 𝛿𝑖 is of
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the form 𝑞˝
𝑖

“𝑘𝑖 𝜓𝑖 for some 𝜓𝑖 P Φ and 𝑘𝑖 P INom`, and some 𝛾1 , . . . , 𝛾𝑚 P Γ

such that p𝛼, p𝛿 $ ¬
p𝛾 (throughout, I’ll use $ for provability in QH and $ExΦ

for provability in QH Y ExΦ). Now, it may be that 𝑞˝
𝑖

“ 𝑞˝
𝑗

for some 𝑖 and 𝑗.
So let 𝑞˝

𝑖
« 𝜓𝑖 be the conjunction all 𝛿 𝑗s such that 𝑞˝

𝑗
“ 𝑞˝

𝑖
—that is, 𝑞˝

𝑖
« 𝜓𝑖

has the form p𝑞˝
𝑖

“𝑘𝑖1
𝜓𝑖q ^ ¨ ¨ ¨ ^ p𝑞˝

𝑖
“𝑘𝑖 𝑗

𝜓𝑖q. (Given how Δ is defined
and how Φ is enumerated, it is never the case that 𝑞˝

𝑖
“ 𝑞˝

𝑗
but 𝜓𝑖 ‰ 𝜓 𝑗 ;

so this definition is well-defined.) Thus, p𝛼, 𝑞˝
1 « 𝜓1 , . . . , 𝑞

˝
𝑛 « 𝜓𝑛 $ ¬

p𝛾.
By Lemma A4.3, p𝛼, 𝑟1 « 𝜓1 , . . . , 𝑟𝑛 « 𝜓𝑛 $ ¬

p𝛾 where 𝑟1 , . . . , 𝑟𝑛 P Prop are
fresh. By RKD, VacD, and VDistD, p𝛼, D𝑟1p𝑟1 « 𝜓1q, . . . , D𝑟𝑛p𝑟𝑛 « 𝜓𝑛q $ ¬

p𝛾.
So by ExΦ, $ExΦ ¬

p𝛾,  .
The rest of the proof of the Henkin lemma (Lemma A4.5) goes through

as before. And since Γ𝑘 Y Δ is pQH Y ExΦq-consistent for each 𝑘, Γ` Y Δ

is pQH Y ExΦq-consistent, which by maximality means Δ Ď Γ`. Hence, Γ`

has the following property: for each 𝜒 P Φ, there is a 𝑝˝ such that for all
� P ITerm`, p𝑝˝ “� 𝜒q P Γ`.

To complete the proof, we revise the definition of 𝜋𝑐� (when @� 𝑐𝑙 R Γ)
and 𝐷ℙΓ:

𝜋𝑐� “ t𝑋 | D𝑝 P Prop` Y Prop˝ : 𝑝 P r𝑋s� u

𝐷ℙΓ “ t𝑃 P ℙ𝐷ℍΓ
| D𝑝 P Prop˚ Y Prop˝ @𝑐� P 𝐷ℍΓ : 𝑝 P r𝑃p𝑐�qs� u .

The rest of the proof goes through as before. So by Lemma A4.12, v𝜒𝑖w
ℳΓ ,𝑐� “

tΔ P 𝑊Γ | @� 𝜒𝑖 P Δu “ tΔ P 𝑊Γ | @� 𝑝
˝
𝑖

P Δu, so 𝑃𝑝˝
𝑖

can be our witness for
𝜒𝑖 P Φ. Hence, 𝐷ℙΓ is closed under Φ.

Cl`
Φ

: The proof is roughly the same as ClΦ, but we need to make some
revisions. Let Φ1 “ t𝜒r𝑞1

1{𝑞1 , . . . , 𝑞
1
𝑛{𝑞𝑛s | 𝑞1

1 , . . . , 𝑞
1
𝑛 P Prop˚ Y Prop˝ u. Enu-

merate the members of Φ1 as 𝜒1 , 𝜒2 , 𝜒3 , . . . in such a way that 𝑝1
𝑘

never
occurs in 𝜒1 , . . . , 𝜒𝑘 . Proceed with the Henkin construction in the same
manner as before, replacing Φ throughout with Φ1. To establish that Γ1 Y Δ

is pQH ` ExΦq-consistent, we use the same reasoning, except the last step
needs further justification, since 𝜓𝑖 may not be in Φ but rather of the
form 𝜓𝑖 “ 𝜒r𝑞1

1{𝑞1 , . . . , 𝑞
1
𝑛{𝑞𝑛s for some 𝜒 P Φ. However, since ExΦ is

now an axiom, that means if 𝜒 P Φ, then $ D𝑟p𝑟 « 𝜒q. So by Gen@,
$ @𝑞1 ¨ ¨ ¨ @𝑞𝑛 D𝑟p𝑟 « 𝜒q. Hence, by Elim@, $ D𝑟p𝑟 « 𝜓𝑖q.

Making the same revisions as before, the rest of the completeness proof
goes through. So we just need to show now that 𝐷ℙΓ is strongly closed
under Φ. Let ℳ “ x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑉y. Then 𝑉p𝑞𝑖q “ 𝑃𝑞1

𝑖
for some 𝑞1

𝑖
.

Hence, by Lemma A4.1, v𝜙w
ℳ

“ v𝜙r𝑞1
1{𝑞1 , . . . , 𝑞

1
𝑛{𝑞𝑛sw

ℳΓ . By how Γ was
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constructed, there is a 𝑝˝ such that for all �, 𝑝˝ “� 𝜙r𝑞1
1{𝑞1 , . . . , 𝑞

1
𝑛{𝑞𝑛s P Γ.

By Lemma A4.12, v𝜙r𝑞1
1{𝑞1 , . . . , 𝑞

1
𝑛{𝑞𝑛sw

ℳΓ “ v𝑝˝w
ℳΓ P 𝐷ℙΓ. Hence, 𝐷ℙΓ is

strongly closed under Φ.
To establish that QH`ExΦ “ QH`Elim@Φ, it suffices to show that ExΦ is

coderivable with Elim@Φ. Deriving ExΦ from Elim@Φ is straightforward by S5
and Dual@. For the other direction, it follows by induction (or completeness
over the class of all models) that if 𝜒 is free for 𝑝, and �1 , . . . , �𝑛 are the free
interpretation terms in 𝜙, then 𝑝 “ 𝜒, 𝑝 “�1 𝜒, . . . , 𝑝 “�𝑛 𝜒 , 𝜙 “ 𝜙r𝜒{𝑝s.
Hence:

@𝑝 𝜙, 𝑝 “ 𝜒, . . . , 𝑝 “�𝑛 𝜒 , 𝜙r𝜒{𝑝s above, Elim@

Ó 𝑖. @𝑝 𝜙, Ó 𝑖.p𝑝 “𝑖 𝜒 & ¨ ¨ ¨ & 𝑝 “�𝑛 𝜒q , Ó 𝑖.𝜙r𝜒{𝑝s GenÓ, IdleÓ, DistÓ

@𝑝 𝜙, Ó 𝑖.p𝑝 “𝑖 𝜒 & ¨ ¨ ¨ & 𝑝 “�𝑛 𝜒q , 𝜙r𝜒{𝑝s VacÓ

@𝑝 𝜙, D𝑝 Ó 𝑖.p𝑝 “𝑖 𝜒 & ¨ ¨ ¨ & 𝑝 “�𝑛 𝜒q , 𝜙r𝜒{𝑝s RKD, VDistD, VacD

@𝑝 𝜙, Ó 𝑖. D𝑝p𝑝 “𝑖 𝜒 & ¨ ¨ ¨ & 𝑝 “�𝑛 𝜒q , 𝜙r𝜒{𝑝s BFÓ

@𝑝 𝜙 , 𝜙r𝜒{𝑝s ExΦ, GenÓ.

DfΦ: I will only prove weak completeness here; it’s easy to check that if Φ
is finite, then strong completeness can be established via the same method.
Suppose 𝜙 is pQH ` Gen@Φq-consistent. Enumerate the members of Φ as
𝜒1 , 𝜒2 , 𝜒3 , . . . . Parallel to Γ1 , Γ2 , Γ3 , . . . , we construct a new sequence of sets
Δ1 ,Δ2 ,Δ3 , . . . . First, Γ1 “ t𝜙u Y

␣

𝑙`1 , |𝑙`1 |1
(

and Δ1 “ H. Next, define Γ𝑘`1
as in the proof of Lemma A4.5. Finally, define Δ𝑘`1 as follows:

Δ𝑘`1 “

$

’

&

’

%

Δ𝑘 Y t𝑞` “𝑙` 𝜒 | p𝑞` “𝑙`1
𝜒q P Δ𝑘u if (*) holds

Δ𝑘 Y t𝑝` “𝑙` 𝜒 | 𝑙` P INom` occurs in Γ𝑘`1 u if (**) holds
Δ𝑘 otherwise

(*) 𝜙𝑘 “ ¬@� 𝜓 and 𝑙` is the witness introduced in Γ𝑘`1
(**) 𝜙𝑘 “ D𝑝 𝜓, where 𝑝` is the witness introduced in Γ𝑘`1 and 𝜒 is the first

of Φ such that Γ𝑘`1 ,Δ𝑘 , t𝑝
` “𝑙` 𝜒 | 𝑙` P INom` occurs in Γ𝑘`1 u & K.

Finally, Γ` “
Ť

𝑘ě1 Γ𝑘 . We first show that for each 𝑘, Γ𝑘 Y Δ𝑘 is pQH `

Gen@Φq-consistent. Clearly this holds for 𝑘 “ 1. And clearly if Γ𝑘 Y Δ𝑘 is
pQH ` Gen@Φq-consistent, then so is Γ1

𝑘
YΔ𝑘 and Γ𝑘`1 YΔ𝑘 . So we just need

to show that if Γ𝑘`1 YΔ𝑘 is pQH ` Gen@Φq-consistent, then so is Γ𝑘`1 YΔ𝑘`1.
If 𝜙𝑘 “ D𝑝 𝜓, then Γ𝑘`1 Y Δ𝑘`1 is pQH ` Gen@Φq-consistent by construction
of Δ𝑘`1, assuming it’s defined. Here’s the proof that it is always defined,
i.e., there always is such a 𝜒 in this case. Suppose otherwise. That means
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for all 𝜒 P Φ, where 𝛾 B
Ź

Γ𝑘 , 𝛿 B
Ź

Δ𝑘 , and 𝑙`1 , . . . , 𝑙`𝑛 are the nominals
occurring in some formula of Γ𝑘`1, 𝛾, 𝛿 $ ¬p𝑝` “𝑙`1

𝜒^ ¨ ¨ ¨ ^ 𝑝` “𝑙`𝑛
𝜒q. By

Gen@Φ, 𝛾, 𝛿 $ @𝑝 ¬p𝑝` “𝑙`1
𝑝 ^ ¨ ¨ ¨ ^ 𝑝` “𝑙`𝑛

𝑝q. By Elim@, 𝛾, 𝛿 $ ¬p𝑝` “𝑙`1
𝑝` ^ ¨ ¨ ¨ ^ 𝑝` “𝑙`𝑛

𝑝`q. Hence, by S5, 𝛾, 𝛿 $ K,  .
Now suppose 𝜙𝑘 “ ¬@� 𝜓 and suppose for reductio that Γ𝑘`1 Y Δ𝑘`1

is pQH ` Gen@Φq-inconsistent. Then for some formula of the form 𝑞`

𝑖
“𝑙`

𝜒𝑖 , we have ¬@� 𝜓, 𝑙` P �, 𝛾, 𝛿, p𝑞`

1 “𝑙` 𝜒1q, . . . , p𝑞`
𝑛 “𝑙` 𝜒𝑛q $ @𝑙` 𝜓.

Repeating the reasoning in Lemma A3.7, 𝛾, 𝛿, Ó 𝑖.p𝑞`

1 “𝑖 𝜒1q, . . . , Ó 𝑖.p𝑞`
𝑛 “𝑖

𝜒𝑛q $ @� 𝜓. Since 𝑙`1 , |𝑙`1 |1 P Γ𝑘 : 𝛾, 𝛿, p𝑞`

1 “𝑙`1
𝜒1q, . . . , p𝑞`

𝑛 “𝑙`1
𝜒𝑛q $ @� 𝜓.

But p𝑞`

1 “𝑙`1
𝜒1q, . . . , p𝑞`

𝑛 “𝑙`1
𝜒𝑛q P Δ𝑘 . Thus, 𝛾, 𝛿 $ @� 𝜓. So Γ1

𝑘
Y Δ𝑘 is

already pQH`Gen@Φq-inconsistent,  . Hence, Γ𝑘`1 YΔ𝑘`1 is pQH`Gen@Φq-
consistent. Therefore, Γ` Y

Ť

𝑘 Δ𝑘 is pQH ` Gen@Φq-consistent, and so by
maximality, Δ𝑘 Ď Γ` for all 𝑘.

By construction, for each 𝑝` P Prop`, there is a 𝜒 P Φ such that p𝑝` “𝑙`

𝜒q P Γ` for all 𝑙` P INom`. From here, the completeness proof proceeds
as before. To complete the proof, we show 𝐷ℙΓ is definable in Φ. Where
𝑃 “ 𝑃𝑝` P 𝐷ℙΓ, let 𝜒 P Φ be such that 𝑝` “𝑙` 𝜒 P Γ` for all 𝑙` P INom`.
Then by Lemma A4.12, 𝑃𝑝`p𝑐�q “ v𝑝`w

𝑐� “ v𝜒w
𝑐� . Hence, 𝑃𝑝` “ v𝜒w.

ClΦDfΦ: We use the same construction as in DfΦ. We need to show (i) that
we can dispense with the Gen@Φ rule in the proof above, and (ii)𝐷ℙΓ is closed
underΦ. (To establish that QH Y HomΦ Y ExΦ = QH Y HomΦ Y Ex´

Φ
, simply

observe that t@𝑝pp𝑝 “ 𝜒q Ą p𝑝 “�𝑖 𝜒qq | 𝑖 ď 𝑛 u , E𝜒 , D𝑝&𝑛
𝑖“1p𝑝 “�𝑖 𝜒q.)

For (i), note that Gen@Φ was only used to establish that in the Henkin con-
struction, if 𝜙𝑘 “ D𝑝 𝜓 is added to Γ1

𝑘
and 𝑝` is the witness introduced into

Γ𝑘`1, then there is a𝜒 P Φ such thatΓ𝑘`1 ,Δ𝑘 , t𝑝
` “𝑙` 𝜒 | 𝑙` P INom` occurs in Γ𝑘`1 u &

K. For all 𝜒 P Φ, there is an 𝑙` such that p𝑝` “𝑙` 𝜒q R Γ𝑘`1. Then for all
𝜒 P Φ, there exist some 𝛾1 , . . . , 𝛾𝑛 P Γ𝑘`1, some 𝛿1 , . . . , 𝛿𝑚 P Δ𝑘 , some
𝛼1 , . . . , 𝛼𝑘 P HomΦ, and some 𝛽1 , . . . , 𝛽 𝑗 P Ex´

Φ
such that p𝛼, p𝛽, p𝛾, p𝛿, 𝑝` “𝑙`1

𝜒, . . . , 𝑝` “𝑙`𝑛
𝜒 $ K. Since @𝑝p𝑝 “ 𝜒 Ą 𝑝 “𝑙`

𝑖
𝜒q P HomΦ for each 𝑙`

𝑖
, we

can assume these are included in p𝛼. Hence, by Elim@, p𝛼, p𝛽, p𝛾, p𝛿, 𝑝` “ 𝜒 $ K.
So by Lemma A4.3, where 𝑟 is fresh, p𝛼, p𝛽, p𝛾, p𝛿, 𝑟 “ 𝜒 $ K. By IntroD, VDistD

and VacD, p𝛼, p𝛽, p𝛾, p𝛿, E𝜒 $ K. So, p𝛾, p𝛿 $HomΦYEx´

Φ

K,  . (Notice we did not
rely on Γ𝑘`1 being finite, so the same strategy establishes strong complete-
ness.) For (ii), let 𝜒 P Φ. By ExΦ, p𝑝` “ 𝜒q P Γ for some 𝑝` P Prop`. By
HomΦ and Elim@, p𝑝` “� 𝜒q P Γ for all � P ITerm`. Hence, 𝑝` P rv𝜒w

𝑐� s� for
all 𝑐�, i.e., v𝜒w P 𝐷ℙΓ.
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Cl`
Φ
DfΦ: Similar to ClΦDfΦ, except using ExΦ as an axiom to show that 𝐷ℙΓ

is strongly closed (as in the proof of completeness over Cl`
Φ

).

Cb: Let 𝑋1 P 𝜋𝑐�1
, . . . , 𝑋𝑛 P 𝜋𝑐�𝑛 where 𝑐�1 , . . . , 𝑐�𝑛 are distinct. Let

𝑝`

1 , . . . , 𝑝`
𝑛 P Prop` be such that 𝑝`

𝑖
P r𝑋𝑖s�𝑖

. Since 𝑐�1 , . . . , 𝑐�𝑛 are dis-
tinct, by the same reasoning as in Di, p�𝑖 ‰ � 𝑗q P Γ for 𝑖 ‰ 𝑗. By Split and
Bool, D𝑝

Ź𝑛
𝑖“1p𝑝 “�𝑖

𝑝`

𝑖
q P Γ. By witnessing Ds, there is a 𝑝` P Prop` such

that 𝑝` “�𝑖
𝑝`

𝑖
P Γ for 1 ď 𝑖 ď 𝑛. Hence, 𝑃𝑝`p𝑐�𝑖

q “ 𝑋𝑖 .
To establish that QH ` PII` ` Split “ QH ` PII`

1 ` Split, we just need to
show that PII` is pQH ` PII`

1 ` Splitq-derivable. By PII`

1 , it suffices to show
that @𝑝p𝑝 � “ 𝑝�q, |�|1 , |�|1 , p� ‰ �q , |𝜋�|1 is derivable using Split:

@𝑝p𝑝 � “ 𝑝�q , 𝑝 � “ 𝑝� Elim@

@𝑝p𝑝 � “ 𝑝�q , 𝑟 � “ 𝑟� Elim@

@𝑝p𝑝 � “ 𝑝�q, 𝑝 � “ 𝑞 � , 𝑝� “ 𝑟� , 𝑞 � “ 𝑟 � S5
@𝑝p𝑝 � “ 𝑝�q, D𝑝p𝑝 � “ 𝑞 � & 𝑝� “ 𝑟�q , 𝑞 � “ 𝑟 � RKD, VDistD, VacD

@𝑝p𝑝 � “ 𝑝�q, |�|1 , |�|1 , p� ‰ �q , 𝑞 � “ 𝑟 � Split
@𝑝p𝑝 � “ 𝑝�q, |�|1 , |�|1 , p� ‰ �q , |𝜋�|1 RK@, Vac@, Dist@.

CpSi: We must revise the definition of the canonical model so that 𝐷ℙΓ “

ℙ𝐷ℍΓ
. The only thing that needs to be redone is the @ inductive step of

Lemma A4.12. The argument that if ℳΓ ,Δ, 𝑐� , @𝑝 𝜙, then @� @𝑝 𝜙 P Δ is
the same. For the other direction, we first need the following intermediate
result:

Claim: For all 𝜙 and all λ P ITerm` such that |λ|1 P Γ, there is a
formula 𝜙Ò such that where 𝑝 are the free propositional variables in
𝜙:
(i) 𝜙Ò contains no interpretation binders Ó 𝑖

(ii) if � and � occur in 𝜙Ò and � isn’t �, then p� ‰ �q P Γ

(iii) for all Δ P 𝑊Γ, ℳΓ ,Δ, 𝑐λ , @𝑝p𝜙 “ 𝜙Òq

(iv) for all Δ P 𝑊Γ, @𝑝p𝜙 “ 𝜙Òq P Δ.

Proof : First, since Γ witnesses ¬@s, for each free �, there is an 𝑙`� P

INom` such that p𝑙`� P �q P Γ. By Sing and Intro“, p𝑙`� “ �q P Γ. Let
𝑙`� be the first in INom` with this property. By SubId, we can replace
each � that occurs free in 𝜙 with 𝑙`� . Call the result 𝜙1. Now proceed
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as follows:
(a) If Ó 𝑖 does not occur in the scope of any @� or any Ó 𝑗, replace

each free 𝑖 in its scope with 𝑙`
λ

. Then delete this Ó 𝑖.
(b) Repeat (a) on the result until there are no more Ó 𝑖s that do not

occur in the scope of any @� or any Ó 𝑗.
(c) For each subformula of the form @𝑙` 𝜓 that does not occur in

the scope of any @� operator, repeat (a) and (b) on𝜓 except with
𝑙` in place of 𝑙`

λ
. Continue until there are no more binders Ó 𝑖

left. Call the result 𝜙Ò.

It is now easy to verify that 𝜙Ò satisfies (i)–(iv). ∎

So suppose ℳΓ ,Δ, 𝑐� . @𝑝 𝜙. By the claim above, ℳΓ ,Δ, 𝑐� . @𝑝 𝜙Ò.
Thus, there is a 𝑃 P ℙ𝐷ℍΓ

such that pℳΓq
𝑝

𝑃
,Δ, 𝑐� . 𝜙Ò. Let 𝑙`1 , . . . , 𝑙`𝑛 be

the interpretation terms in 𝜙Ò. By ClEx and , E𝑝 (by IntroD), for each 𝑙`
𝑖

,
there is a 𝑝`

𝑖
such that 𝑝`

𝑖
P r𝑃p𝑐𝑙`

𝑖
qs𝑙`

𝑖
, i.e., Δ1 P 𝑃p𝑐𝑙`

𝑖
q iff @𝑖 𝑝

`

𝑖
P Δ1. Since

p𝑙`
𝑖

‰ 𝑙`
𝑗

q P Γ when 𝑖 ‰ 𝑗, it follows by Split that D𝑝&𝑛
𝑖“1p𝑝 “𝑙`

𝑖
𝑝`

𝑖
q P Γ.

By witnessing Ds, there is a 𝑝` such that &𝑛
𝑖“1p𝑝` “𝑙`

𝑖
𝑝`

𝑖
q P Γ. Thus, for

each 𝑖 and Δ1: @𝑙`
𝑖
𝑝` P Δ1 iff @𝑙`

𝑖
𝑝`

𝑖
P Δ1. Hence, Δ1 P 𝑃p𝑐𝑙`

𝑖
q iff @𝑖 𝑝

` P Δ1.
By Lemma A4.1, pℳΓq

𝑝

𝑃
,Δ, 𝑐� , 𝜙Ò iff ℳΓ ,Δ, 𝑐� , 𝜙Òr𝑝`{𝑝s. Hence,

ℳΓ ,Δ, 𝑐� . 𝜙Òr𝑝`{𝑝s. By IH, @� 𝜙Òr𝑝`{𝑝s R Δ. By Elim@, @𝑝 @� 𝜙Ò R Δ. By
the claim above, @𝑝 @� 𝜙 R Δ. By CBF@, @� @𝑝 𝜙 R Δ.

B5.4 Theorem B3.10

In each case, it suffices to show that 𝑓Γ satisfies the corresponding constraint
given the axiom. Moreover, 𝑓Γ is already defined to satisfy the relevant
constraint when r𝐴s “ H. So assume throughout that r𝐴s ‰ H.

Suc: Suppose xΔ1 , 𝑐λy P 𝑓Γp𝐴,Δ, 𝑐�q. Let 𝜙 P r𝐴s. By Lemma B3.6 and
Definition B3.7, if p𝜙�� pλ Ą 𝜓qq P Δ where 𝜓 P ℒH`

� , then @λ 𝜓 P Δ1. By
Id� and RK�� , p𝜙�� pλ Ą 𝜙qq P Δ. So @λ 𝜙 P Δ1. By Definition B3.5,
xΔ1 , 𝑐λy P 𝐴.

W: Let xΔ, 𝑐�y P 𝐴 and 𝜙 P r𝐴s (so @� 𝜙 P Δ). Suppose 𝜙�� p� Ą 𝜓q P Δ.
By MP� and Ded, 𝜙, 𝜙� p� Ą 𝜓q, � , 𝜓. By Gen@ and Ref, @� 𝜙, 𝜙��

p� Ą 𝜓q , @� 𝜓. Hence, @� 𝜓 P Δ. By Definition B3.7, xΔ, 𝑐�y P 𝑓Γp𝐴,Δ, 𝑐�q.
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B5 Appendix: Proofs of Relative Completeness

C: Suppose xΔ, 𝑐�y P 𝐴. Let 𝜙 P r𝐴s. Thus, @� 𝜙 P Δ. Reasoning as above,
we have @� 𝜙 , p𝜙�� p�Ą𝜓qq”@� 𝜓. So if p𝜙�� p�Ą𝜓qq P Δ, then @� 𝜓 P

Δ, meaning xΔ, 𝑐�y P 𝑓Γp𝐴,Δ, 𝑐�q. Moreover, let xΔ1 , 𝑐λy P 𝑓Γp𝐴,Δ, 𝑐�q. So
for all 𝜓 P ℒH`

� , if p𝜙�� pλ Ą 𝜓qq P Δ, then @λ 𝜓 P Δ1. Now, by Cen,
𝑖 , 𝜙 , p𝜙� 𝑖q. By GenÓ and VacÓ, 𝜙 , Ó 𝑖.p𝜙� 𝑖q. By Gen@ and DA@,
|�|1 ,@� 𝜙 , @�p𝜙� �q. Since |�|1 P Δ, that means p𝜙�� �q P Δ. By
RK�� , p𝜙�� pλ Ą �qq P Δ. So @λ � P Δ1. By Rigid and Corollary A3.10,
|�|1 P Δ1. By Intro“, p� “ λq P Δ1. By Lemma A3.14, 𝑐� “ 𝑐λ. We now show
Δ1 “ Δ. We’ll just show Δ Ď Δ1 to illustrate. Let 𝜓 P Δ. By Intro@, Elim@,
and Red, @� @𝑙Δ 𝜓 P Δ. Thus, 𝜙�� p� Ą @𝑙Δ 𝜓q P Δ. So @� @𝑙Δ 𝜓 P Δ1 since
xΔ1 , 𝑐�y P 𝑓Γp𝐴,Δ, 𝑐�q. So by Red, Rigid, Intro@, and Elim@, 𝜓 P Δ1.

Stal: Suppose xΔ1 , 𝑐λy , xΔ2 , 𝑐�y P 𝑓 p𝐴,Δ, 𝑐�q. Let 𝜙 P r𝐴s. Thus, for all
𝜓 P ℒH`

� :

p𝜙�� pλĄ 𝜓qq P Δ ñ @λ 𝜓 P Δ1

p𝜙�� p� Ą 𝜓qq P Δ ñ @� 𝜓 P Δ2.

Suppose p𝜙�� „ λq P Δ. Thus, p𝜙�� pλ Ą „ λqq P Δ by RK�� , and so,
@λ„ λ P Δ1,  . Hence, p𝜙�� „ λq R Δ. By CEM, p𝜙�� λq P Δ. By RK�� ,
p𝜙�� p�Ąλqq P Δ, and so, @� λ P Δ2. By Rigid and Intro“, pλ “ �q P Γ since
|λ|1 , |�|1 P Γ. By Lemma A3.14 then, 𝑐λ “ 𝑐�. Further, pλ “ �q P Δ1 XΔXΔ2
by Rigid.

We now show that Δ1 Ď Δ2 (the proof that Δ2 Ď Δ1 is symmetric).
Suppose𝜓 P Δ1. By Intro@ and Elim@, @𝑙Δ

¬𝜓 R Δ1. By Red, @λ@𝑙Δ
¬𝜓 R Δ1.

Since xΔ1 , 𝑐λy P 𝑓Γp𝐴,Δ, 𝑐�q, p𝜙�� pλ Ą @𝑙Δ
¬𝜓qq R Δ. By SubId, since

pλ “ �q P Δ, p𝜙�� p�Ą@𝑙Δ
¬𝜓qq R Δ. By CEM, p𝜙�� „p�Ą@𝑙Δ

¬𝜓qq P Δ.
Since p𝜙�� �q P Δ, we have p𝜙�� p� Ą „ @𝑙Δ

¬𝜓qq P Δ by RK�� . Since
xΔ2 , 𝑐�y P 𝑓Γp𝐴,Δ, 𝑐�q, we have ¬@𝑙Δ

¬𝜓 P Δ2 by Bool. So by Dist@, Intro@,
and Elim@, 𝜓 P Δ2.

Vac: Let 𝐴p𝑐�q “ H. Suppose for reductio 𝑓Γp𝐴,Δ, 𝑐�q ‰ H. Let xΔ1 , 𝑐λy P

𝑓Γp𝐴,Δ, 𝑐�q and let 𝜙 P r𝐴s. By Corollary A3.10 and Dist@, @� „◆𝜙 P Δ.
By Vac and Gen@, 𝜙�� pλĄ Kq P Δ. By Definition B3.7, @λK P Δ1,  .

NC, NEC, SIC: We just do NC, since NEC and SIC are similar. It’s left as an
exercise to the reader to show that the two versions of the relevant axiom
are coderivable. Let 𝜙 P r𝐴s and let xΔ1 , 𝑐λy P 𝑓Γp𝐴,Δ, 𝑐�q. So for all 𝜓, if
p𝜙�� pλ Ą 𝜓qq P Δ, then @λ 𝜓 P Δ1. By Rigid and Bool, @�∎� P Δ. By
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NC and RK�� , 𝜙�� pλĄ �q P Δ. Hence, @λ � P Δ1. By Rigid, Intro@, and
Elim@, p� “ λq P Δ1. Thus, 𝑐λ “ 𝑐�.

Ro: We revise the definition of a canonical hyperconvention as we did
for Theorem B2.2 so that 𝜋𝑐� “ t𝑋 | r𝑋s� ‰ Hu. Given this, let xΔ1 , 𝑐λy P

𝑓 p𝐴,Δ, 𝑐�q and let 𝛼 P r𝐴s. Thus, for all 𝜒, if 𝛼�� 𝜒 P Δ, then @λ 𝜒 P Δ1.
We will just show the ¬-case, i.e., that ¬𝑐� “ ¬𝑐λ , since the others are similar.

First, observe that 𝜋𝑐� “ 𝜋𝑐λ , since, e.g., if 𝜙 P r𝑋sλ, then @λ 𝜙 P r𝑋s� by
Red. So let 𝑋 P 𝜋𝑐λ and let 𝜙 P r𝑋sλ. By Ro and Gen@, @� Ó 𝑖.◻𝛼 Ó 𝑗.p¬𝜙 “

@𝑖 ¬@𝑗 𝜙q P Δ. By DA@, @�◻𝛼 Ó 𝑗.p¬𝜙 “ @� ¬@𝑗 𝜙q P Δ. Hence, @λ Ó 𝑗.p¬𝜙 “

@� ¬@𝑗 𝜙q P Δ1. By DA@, @λp¬𝜙 “ @� ¬@λ 𝜙q P Δ1. By Dist@ and
Red, p@λ ¬𝜙 “ @� ¬@λ 𝜙q P Δ1. By Lemma B5.1 (since @λ 𝜙 P r𝑋s�),
¬𝑐� 𝑋 “ ¬𝑐λ 𝑋.
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