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THE CATEGORY OF INNER MODELS

1. INTRODUCTION

Set Theory is the mathematics of infinity. The results and arguments of set
theory are characterized by enormous differences in size, as well as inter-
actions between entities of different sizes. In this article we shall study a
category of class-sized objects and its impact on small sets of real numbers.

The dialectical tension between the finite and the infinite is present in
the very foundations of set theory and mathematics. Properties of the infin-
ite are formulated as finite mathematical expressions, reasoning about the
infinite is conducted by finite mathematical proofs. Gödel’s incomplete-
ness theorems prove mathematically that one cannot completely describe
the infinite by finitary means: there are (number theoretic) statements in-
volving quantifications over infinite domains which are not decided by
the standard axioms of ZFC set theory; moreover, the undecidability phe-
nomenon cannot be avoided by extensions of the axiomatic system (Gödel
1931).

Research in axiomatic set theory has discovered the independence of
many principles of infinitary combinatorics. Cantor’s continuum hypo-
thesis 2ℵ0 = ℵ1, which proposes an answer to the first nontrivial question
about infinitary cardinal exponentiation was shown to be independent by
Gödel (1938) and Cohen (1963). There is a wealth of set theoretical axiom
systems which extend the usual axioms and which are (presumably) con-
sistent and realizable in first order structures. This is well-documented in
the standard textbooks (Jech 1978; Kanamori 1994), which we recommend
as a general reference for this article.

Most research in axiomatic set theory consists in constructing and ex-
amining transitive models of the axioms of ZFC. Since the consistency
results of axiomatic set theory are relative consistencies, new models of
set theory have to be constructed from given ones, usually as extensions
or submodels where the smaller model is a class-sized transitive submodel
of the bigger one. Class-sized transitive models of ZFC are called inner
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models of set theory. Gödel’s model L of constructible sets is the paradigm
of an inner model (Gödel 1938) (see also Devlin (1984)).

Set theory has made good use of situations in which there are many in-
ner models available. To assume the existence of many inner models seems
natural if one accepts the profound inaccessibility of the infinite. Never-
theless there is the desire to classify the spectrum of “possible worlds”
mathematically. It was noted many years ago and has become part of the
set theoretical folklore that some natural operations and properties of inner
models are related to large cardinal notions. Motivated by techniques from
large cardinal theory we shall explore some aspects of the family of inner
models from a category-theoretical perspective.

In Section 3 we shall consider the category of inner models with ele-
mentary embeddings as morphisms. In the presence of large cardinals this
category is nontrivial, i.e., there are morphisms which are not the identity.
The first ordinal moved by a nontrivial morphism is a large cardinal in an
inner model. We investigate situations in which this category exhibits some
structural richness (Section 2 and 4). Sets of real numbers may allow a rep-
resentation by a commutative subsystem (diagram) of the category of inner
models (Section 4). The existence of such normal forms (embedding nor-
mal forms with witnesses) for a set A ⊆ R implies the determinacy of the
infinitary game with winning set A and other regularity properties (Section
5). In Section 6, we consider an operation by which an embedding of an
inner model can act on another model to yield an “induced” embedding of
that model. This operation is useful for coding information into diagrams
of inner models. In Section 7 we give an indication how embedding normal
forms for projective sets of reals can be built, which can be used to prove
the famous theorem of Martin and Steel on projective determinacy (Martin
and Steel 1989). The preconditions for such constructions are given by
measurable cardinals and Woodin cardinals. We conclude this article with
an Appendix containing more details on the construction of the embedding
normal forms.

The principal message of this article is that notions of transcendental
size (in the present situation: parametrized families of proper classes)
are related to familiar mathematical structures and that there are natural
methods of transformation between the realms of inner models and of
descriptive set theory. It could be interesting and fruitful to relate tech-
nical results on the structure of the family of inner models to philosophical
questions about “possible worlds”. Can the spectrum of possible worlds be
employed to gain information about the “actual” world as is being sugges-
ted by the determinacy results of Section 5? A programmatic answer which
corresponds well to the present situation in the foundations of mathematics
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may be read from the concluding words of Felix Hausdorff’s work Das
Chaos in kosmischer Auslese (Hausdorff 1998, p. 209) which he published
under his pseudonym Paul Mongré:

Werden wir also den kosmocentrischen Aberglauben los wie früher den geocentrischen
und anthropocentrischen; erkennen wir, dass in das Chaos eine unzählbare Menge kosmi-
scher Welten eingesponnen ist, deren jede ihren Inhabern als einzige und ausschließlich
reale Welt erscheint und sie verleiten möchte, ihre qualitativen Merkmale und Beson-
derheiten dem transcendenten Weltkern beizulegen. Aber dieser Weltkern entzieht sich
jeder noch so losen Fessel und wahrt sich die Freiheit, auf unendlich vielfache Weise zur
kosmischen Erscheinung eingeschränkt zu werden; er gestattet das Nebeneinander aller
dieser Erscheinungen, die als specielle Möglichkeiten, als begrifflich irgendwie abgegrenz-
te Theilmengen in seiner Universalität enthalten sind – ja er ist nichts anderes als eben
dieses Nebeneinander und darum transcendent für die einzelne Erscheinung, die in sich
selbst ihr eigenes abgeschlossenes Immanenzgebiet hat.1

2. INNER MODELS OF ZERMELO FRAENKEL SET THEORY

A model of set theory is a rich structure in which the usual mathematical
arguments can be formulated. Such a structure can be thought of as a re-
lational algebraic structure equipped with an elementhood relation ∈ and
operations of set formation which satisfy certain laws. These laws are ex-
pressed by the axioms of Zermelo–Fraenkel set theory including the axiom
of choice (ZFC). We shall concentrate our attention on inner models, i.e.,
transitive class-sized models of set theory which can be regarded as stand-
ard models of the system ZFC. The detailed development and analysis of
the theory ZFC is quite involved. The following is a brief sketch how the
basic mathematical notions can be formalized set-theoretically. It mainly
serves to fix some notation.

Set theory studies the informal notion of a set as described by Cantor.
The class term {x | ϕ} denotes the collection of all objects x such that ϕ

holds, i.e., z ∈ {x |ϕ} :↔ ϕ( z
x
). Those z are called the elements of {x |ϕ}.

Basic operations on sets and classes can be defined with the help of
class terms:

• ∅ = {x | x �= x} is the empty set;
• {x, y} = {z | z = x ∨ z = y} is the unordered pair of x and y;
• (x, y) = {{x, x}, {x, y}} is the ordered pair of x and y.

The theory of relations and functions can be built upon the notion of
ordered pair as usual.

• ⋃
x = {z | ∃y ∈ x z ∈ y} is the union of (the elements in) x;

• P(x) = {y | y ⊆ x} is the powerset of x.
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The principal tools to study the infinite are induction and recursion
along the (transfinite) ordinal numbers, which were formalized by von
Neumann as follows (von Neumann 1923).

• A class A is transitive if it is an initial segment of the ∈-relation:
∀x ∈ A ∀y ∈ x y ∈ A;

• A is well-ordered by the ∈-relation if (a) (A,∈) is linearly ordered,
i.e., (A,∈) is transitive, non-reflexive and connected, and (b) (A,∈) is
well-founded, i.e., ∀x ⊆ A(x �= ∅ → ∃u ∈ x ∀v ∈ x v /∈ u).

• an ordinal is a set α which is transitive and well-ordered by the ∈-
relation.

The class Ord of all ordinals is itself transitive and well-ordered by the
∈-relation. Each ordinal α has an immediate successor α + 1 = α ∪ {α}.
Natural numbers are those ordinals which can be reached from 0 = ∅ by
the +1-operation: n is a natural number, if

n = ∅ ∨ ((∃m(n = m + 1)) ∧ ∀m ∈ n(m = ∅ ∨ ∃�(m = � + 1))).

The collection of all natural numbers will be denoted by ω.
A central question in set theory is which class terms {x | ϕ} can be

considered to be mathematical objects in the full sense, i.e., sets. Russell’s
antinomy shows that not all classes can be permitted to be sets. The ax-
iomatization of set theory by Zermelo and Fraenkel postulates that many
classes defined above are admissible as sets (Zermelo 1930). The Zermelo–
Fraenkel system is sufficiently rich to carry out the development of all
mathematical notions. It is based on the intuitive notion of a set and has
not lead to any contradictions so far.

We give a short list of the axioms using the notation of class terms.
Axioms (2.1) to (2.6) express that the ∈-relation is extensional (a set is ex-
actly determined by its elements) and well-founded and that set theoretical
universes are closed relative to the basic operations introduced above.

Set Theoretical Axioms

(2.1) Extensionality: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y).

(2.2) Foundation: ∀x(x �= ∅ → ∃y ∈ x∀z ∈ x(z /∈ y)).

(2.3) Pairing: ∀x∀y∃z(z = {x, y}).
(2.4) Union: ∀x∃z(z = ⋃

x).

(2.5) Powerset: ∀x∃z(z = P(x)).

(2.6) Infinity: ∃z(z = ω).
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The remaining two schemata of axioms express the closure of set the-
oretical universes under certain definitions by first-order formulae. The
separation schema could be deduced from the more powerful replace-
ment schema but we include separation as it is closest to the original
comprehension principle of naive set theory.

(2.7) Separation: for each first-order formula ϕ(u, �w) postulate:
∀ �w∀x∃z z = {u ∈ x | ϕ(u, �w)}.

(2.8) Replacement: for each first-order formula ϕ(u, v, �w) postulate:
∀ �w((∀u, v, v′(ϕ(u, v, �w) ∧ ϕ(u, v′, �w) → v = v′) →
∀x∃z z = {v | ∃u ∈ x ϕ(u, v, �w)}).

So the image of a set under a definable function is again a set. The only
other principle widely assumed in mathematical practice is the axiom of
choice. In set theory this is usually employed in the equivalent form of
Zermelo’s well-ordering principle (Zermelo 1904):

(2.9) Choice: ∀x∃α∃f (α is an ordinal ∧ f : x ↔ α).

The axiomatic system consisting of (2.1) to (2.8) is abbreviated as ZF,
and the full system (2.1) to (2.9) as ZFC (Zermelo–Fraenkel set theory with
choice). A model of set theory is a pair (M, E), where E is a binary relation
on the domain M which satisfies the axioms ZFC. Models of the form
(M,∈) where ∈ denotes the ∈-relation restricted to M are of particular
interest and are often obtained by the

MOSTOWSKI COLLAPSING LEMMA 2.1. Let (M, E) be a strongly
well-founded relation, i.e., (M, E) satisfies the extensionality axiom (2.1),
is well-founded, and {x | xEm} is a set for all m ∈ M. Then (M, E) is
isomorphic to a unique structure (N,∈) where N is a transitive class.

By Gödel’s incompleteness theorems we should not be able to construct
models of set theory from ordinary mathematical objects. We can only
expect to construct such models out of given models. This motivates the

DEFINITION 2.2. A class M is called an inner model of set theory if
(M,∈) it is a definable transitive model of the system ZFC which contains
all the ordinals.

Gödel has defined the inner model L of constructible sets (Gödel 1938,
see Devlin 1938). This model is the ⊆-smallest inner model since its defin-
ition is absolute for any other inner model of set theory: If M is an inner
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model, then the constructible universe LM constructed inside the model M

is the same as the original constructible universe: LM = L. This implies
⊆-minimality: L = LM ⊆ M.

There is always the trivial inner model V = {x | x = x}, which is the
universe of all sets. Gödel’s axiom of constructibility asserts that every set
in V belongs to the constructible sets: V = L. In this case, the family of
inner models is trivial and consists only of the model V itself. To assume
that the family of inner models is non-trivial corresponds to the idea that
the set theoretical universe should be rich and allow many possibilities like
the existence of non-constructible sets.

3. ELEMENTARY EMBEDDINGS AND THE CATEGORY OF INNER

MODELS

A universal theme in modern mathematics is the study of structure pre-
serving maps (homomorphisms, embeddings, isomorphisms, etc.) between
structures of the same type. The appropriate framework for this is the
language of categories.

In the context of models of set theory, a natural requirement for struc-
ture preserving maps is that they preserve the operations of set formation
as described in the Zermelo–Fraenkel axioms. So we consider definable
elementary embeddings π : M → N between inner models where for
every first-order ∈-formula ϕ(�u) and all �x ∈ M:

(M,∈) |= ϕ[�x] if and only if (N,∈) |= ϕ[π(�x)].

The map π can be extended to subclasses A of M: let A be definable
in M from parameters �p by a formula ϕ. Then one can define π(A) =⋃

x∈V π(A∩x); the class π(A) is definable in N from parameters π( �p) by
the formula ϕ.

Intuitively, the collection of all inner models with elementary maps
between them can be seen as a category. Because of the subtle difficulties
concerning the definability of such a category in ZFC we restrict the
complexity of the models and embeddings.

DEFINITION 3.1. Fix a sufficiently large natural number n < ω. The
Category of Inner Models consists of the following: objects are all in-
ner models which are �n-definable from parameters; morphisms are
all elementary maps between the objects which are �n-definable from
parameters.
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Figure 1. An elementary embedding.

Note that the family of classes which are �n-definable from parameters
can be described by a single �n+1-formula. Inner models can be charac-
terized as classes which are transitive, closed with respect to the finite set
of Gödel functions and almost universal (see Jech 1978, Chapter 2). An
embedding π : M → N is �1-elementary iff it is fully elementary (see
Kanamori 1994, p. 45). This indicates that the category of inner models
can be uniformly represented within the system ZFC by a concrete but
complicated formula which we shall not state explicitly.

The constant n is assumed to be big enough for the intended applic-
ations. The case n = 1 will cover most interesting situations and in
particular models which are naturally obtainable from V by iteration trees.
So we shall assume that n = 1, and for the remainder of this article “inner
model” and “elementary embedding of inner models” are to be understood
as objects and morphisms of the above category.2

The category of inner models has been applied before. Most notable is
the work on connections with left-distributive algebras which was initiated
by Laver (1992, 1997) and Dougherty (1997).

The formula defining the category of inner models can be evaluated
within every model M of set theory. The category of inner models within
M will in general be different from the category of inner models within V.
We say that an elementary embedding π : M → N is internal (in M) if π

is a morphism of the category of inner models as defined in M. We shall
encounter a subtle interplay between internal and non-internal embeddings
in the construction of iteration trees as described in the Appendix.

Let us introduce relations for comparing inner models. We define the
usual von Neumann-hierarchy (von Neumann (1925):

V0 = ∅,

Vα+1 = P(Vα),

Vλ =
⋃
α<λ

Vα, for limit ordinals λ.
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The hierarchy exhausts the set theoretical universe: V = ⋃
α∈Ord Vα. It

possesses certain absoluteness properties: if M is an inner model then for
all α ∈ Ord: (Vα)M = Vα∩M. Here (Vα)M denotes the term Vα as defined
in M; relativized notations like this will also be used in connection with
other class terms.

Figure 2. The von Neumann-Hierarchy.

For each ordinal α and inner models M and N we define the equival-
ence relation of agreement below α: M ∼α N ↔ Vα ∩ M = Vα ∩ N . In
many set theoretical arguments, parameters have to be considered and we
extend the relation of agreement to include finite sequences of parameters:
Let (M,∈, �p) be an inner model with a finite parameter sequence �p ∈ M

and let α ∈ Ord, α ≥ ω. Consider an appropriate language for the structure
(M,∈, �p, (z | z ∈ Vα ∩ M)) in which the sets z ∈ Vα ∩ M are taken as
constants. We may assume that the language is absolutely coded as a subset
of Vα and that for β ≥ α the theories cohere nicely:

Th(M,∈, �p, (z | z ∈ Vα ∩ M)) = Th(M,∈, �p, (z | z ∈ Vβ ∩ M)) ∩ Vα.

For each infinite ordinal α and pointed inner models (M, �p) and (N, �q) of
the same type define:

(M, �p) ∼α (N, �q)

: ↔ Th(M,∈, �p, (z | z ∈ Vα ∩ M)) = Th(N,∈, �q, (z | z ∈ Vα ∩ N)).

Of course, (M, �p) ∼α (N, �q) implies that M ∼α N .
By Tarski’s theorem on the undefinability of truth (Tarski 1935) the

definition of ∼α for pointed inner models can not be carried out within
ZFC. Without further details we can resolve this by restricting the “Th-
operator” to statements of limited quantifier-complexity. If models M and
N agree below some ordinal α then methods from M can be applied to N

as we shall see in Section 6.
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4. LIMIT CONSTRUCTIONS IN THE CATEGORY OF INNER MODELS

If π : M → N is an elementary map between inner models, there are
in general constants available in N which are not in the image of M.
In this sense, N is an extension of M by constants. We shall construct
iterated extensions of this kind. Sometimes an infinite sequence of such
extensions can be embedded into another inner model which is equivalent
to the well-foundedness of the direct limit. This criterion will be used to
decide whether a real number belongs to a given set A of reals.

Let us assume that there is a non-trivial elementary map π : V → M in
our category, i.e., π �= id. This assumption is equivalent to the existence of
a measurable cardinal (see Definition 7.1): let α be the critical point of π ,
i.e., α is the minimal ordinal such that π(α) > α. Then U = {x ⊆ α | α ∈
π(x)} is a non-trivial α-complete normal ultrafilter on P(α), hence α is
a measurable cardinal as defined by St. Ulam (1930). Conversely, if there
is a non-trivial α-complete normal ultrafilter U on P(α) then the Scott-
ultrapower of V by U is a non-trivial elementary map π as above (Scott
1961). There are many motivations to assume the existence of a measurable
cardinal. In the context of algebraic categories, “big” structures usually can
be embedded into proper substructures, and it seems reasonable to assume
that the universe of sets is big in a similar way.

We shall see that we can derive more maps and commutative diagrams
from π , and this will lead to combinatorial consequences. We assume that
π is internal in V, so we can use π to transport the definitions of π and of
M up to M: M |= π(π) : M → π(M). Since the notion of an elementary
map of inner models is sufficiently absolute, we obtain an elementary map
π(π) : M → π(M) into the inner model π(M). This process can be
iterated transfinitely.

4.1. A Well-founded Direct Limit

Define commutative systems (Mi)i<θ , (πij )i≤j<θ by recursion on the
length θ . Set M0 = V, π00 = id, M1 = M, π01 = π and π11 = id�M1. If θ

is a limit ordinal, we simply take the union of the uniquely defined systems
of smaller lengths.

For the successor step, assume that the system (Mi)i<θ , (πij )i≤j<θ is
defined and we have to construct (Mi)i≤θ , (πij )i≤j≤θ .

Case 1 θ = θ̄ + 1 is a successor ordinal. Then we continue by mapping
π up to Mθ̄ : Set Mθ = π0θ̄ (M1), πθ̄θ = π0θ̄ (π01), πiθ = πθ̄θ ◦ πiθ̄ , for
i < θ̄ , and πθθ = id�Mθ .
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Case 2 θ is a limit ordinal. In this case, the system (Mi)i≤θ , (πij )i≤j≤θ

is the direct limit of the system (Mi)i<θ , (πij )i≤j<θ . The limit can
be formed by a universal construction. We claim that it exists in the
category of inner models. By the Mostowski Collapsing Lemma 2.1
it suffices to see that the direct limit is strongly well-founded.

So assume for a contradiction that the direct limit is ill-founded. Note
that for i0 < θ the final segment (Mi)i0≤i<θ , (πij )i0≤i≤j<θ of the directed
system is definable in Mi0 in a uniform way as a maximal iteration whose
direct limit is ill-founded. Choose ξ0 ∈ Ord minimal such that ξ is the
first member of an ill-founded chain, i.e., there are 0 = j0 < j1 < . . . θ

and ξ1, ξ2, . . . ∈ Ord such that ∀n < ω ( πjnjn+1(ξn) > ξn+1 ). Then the
system (Mi)j1≤i<θ , (πij )j1≤i≤j<θ has an ill-founded chain starting with ξ1.
This chain is an element of V and an argument using the absoluteness of
well-foundedness shows that a possibly different ill-founded chain starting
with ξ1 is an element of Mj1 . The elementarity of π0j1 yields that Mj1

thinks π0j1(ξ0) is the minimal first member of an ill-founded chain. But
π0j1(ξ0) > ξ1, contradiction.

Figure 3. The well-foundedness argument for a linear iteration.

4.2. An Ill-founded Direct Limit

The embedding π : V → M can be continued differently by repetition:
define a commutative system (M̃i)i<ω with maps (π̃ij )i≤j<ω by recursion:
Set M̃0 = V, π̃00 = id, M̃1 = M, and π̃01 = π . If M̃n is defined, then
set π̃n,n+1 = π�M̃n and M̃n+1 = ⋃

(π̃n,n+1)
′′M̃n. The other maps of the

system are determined by commutativity.
If α is the critical point of π then for each n < ω : π̃n,n+1(α) >

α. This implies that the direct limit of the system (M̃i)i<ω, (π̃ij )i≤j<ω is
ill-founded.
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Figure 4. An ill-founded iteration.

4.3. Embedding Normal Forms

Combining the two iteration techniques described above one can build
treelike systems of inner models so that some branches through the tree
have well-founded limits whereas others have ill-founded limits. The
systems will be indexed by the tree ω<ω of finite sequences of natural
numbers. Since branches through ω<ω can be identified with real num-
bers, i.e., elements of R = ωω, we can associate with every real number a
well-founded or ill-founded limit through the tree of models.

DEFINITION 4.1. A commuting system (Ms, πst)s⊆t∈ω<ω of inner models
Mn and elementary maps πst : Ms → Mt is called an embedding normal
form (ENF) for a set A ⊆ R of reals if for every p ∈ R:

(4.1) We have p ∈ A if and only if the direct limit Mp =
limm≤n<ω(Mp�m, πp�m,p�n) is well-founded, and hence a trans-
itive inner model.

This connection between inner models and reals appears attractive but
it is not strong enough for the intended applications. One can prove under
the assumption of a measurable cardinal that every set of reals has an
embedding normal form (see Koepke (1998)). We strengthen the notion of
ENF by requiring that the ill-foundedness of branches is already witnessed
locally.

DEFINITION 4.2. A commuting system (Ms, πst )s⊆t∈ω<ω together with a
system (ws)s∈ω<ω , ws : R → Ord is called an embedding normal form with
witnesses (ENFW) for a set A ⊆ R of reals if

(4.2) (Ms, πst)s⊆t∈ω<ω is an embedding normal form for A,

(4.3) for every s ∈ ω<ω: ws ∈ Ms and R ⊆ Ms ,
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(4.4) for every s ⊆ t ∈ ω<ω, s �= t , and p ∈ R \ A, p ⊇ t we have
πst(ws)(p) > wt(p).

Witnesses exist if the models are sufficiently closed; a class X is κ-
closed if Xκ ⊆ X.

Figure 5. An ENFW tree.

THEOREM 4.3. If (Ms, πst )s⊆t∈ω<ω is an ENF for a set A ⊆ R in which
every model Ms is 2ℵ0 -closed then there is a system (ws)s∈ω<ω of witnesses
for (Ms, πst)s⊆t∈ω<ω .

Proof. For every p ∈ R \ A one can find a sequence (γ
p
s | s ∈ b) of

ordinals such that s ⊆ t ∈ p → πst(γ
p
s ) > γ

p
t . Then define for s ∈ T

functions ws : R → Ord by: ws(p) = γ
p
s , if s ∈ p ∈ R \ A, and

ws(p) = 0, else.
If s ⊆ t ∈ p and p ∈ R \ A then (πst (ws))(p) = πst (ws(p)) =

πst (γ
p
s ) > γ

p
t = wt(p). Q.E.D.

5. DETERMINACY FROM EMBEDDING NORMAL FORMS

Descriptive set theory studies sets arising from ordinary mathematical
practice: from a logical perspective these are pointsets, i.e., subsets of the
real numbers and of similar spaces, which are simply definable. In order of
increasing definition complexity one considers the following pointclasses:
open and closed subsets of Euclidean spaces; Borel sets; analytic sets,
which are the continuous images of Borel sets; co-analytic sets, which
are the complements of analytic sets; projective sets, which are obtainable
from Borel sets by taking continuous images and complements finitely
often. The principal aim of these studies is to extend results about the
regularity properties of simple sets to more complex pointclasses.



THE CATEGORY OF INNER MODELS 287

A key notion in modern descriptive set theory is that of determinacy.
The theory of infinite games considers games whose positions are finite
sequences partially ordered by inclusion. Two players called player I and
player II alternately try to lengthen a position by one move. Thereby, they
determine a maximal path through the tree of positions. Player I’s aim is
to get this path into a previously fixed winning set while player II tries to
prevent this. The winning set is determined if there is a winning strategy
for one of the players.

By a classical result of Gale and Stewart (1953), topologically simple
winning sets are determined. We shall show that winning sets representable
by an ENFW are also determined. This is done by introducing an auxiliary
game G∗ which is an extension of the original game G by “side moves”.
One can view the original game as the auxiliary game with “hidden” side
moves. The game G∗ is determined due to its simple topological nature.
The ENFW is then used to construct a winning strategy in G from a win-
ning strategy in G∗. In the crucial case of the construction one moves to
different models of the ENFW and employs the witnesses of the ENFW
as optimal side moves for player I in G∗. If player II can win against the
optimal moves, player II can also win the original game G where these
moves are “hidden”.

DEFINITION 5.1. A tree is a nonempty set of finite sequences, T ⊆ V<ω,
closed under the formation of initial segments. For t ∈ V<ω let |t| denote
the length of t . T is partially ordered by ⊆. A path through T is a sequence
p of length ≤ ω such that ∀n < ω(p�n ∈ T ); p is maximal if there
is no path through T properly extending p. A maximal path through T

is also called a play on T . A play p = (a0, a1, a2, a3, . . .) is sometimes
represented in the form

I a0 a2 . . .

II a1 a3 . . .

to indicate that player I makes the move a0, then player II answers a1,
player I makes the move a2, etc. Let [T ] denote the set of plays of T . A
game G(T, A) on T is given by a set A ⊆ [T ] of winning plays for player
I. We say that player I wins the play p in the game G(T, A) if p ∈ A;
player II wins if p ∈ [T ] \ A.

The obvious question is whether one of the players possesses a winning
strategy in this game. A strategy on T is a function σ : T → V such that

∀t ∈ T (t is not maximal in (T ,⊆) → t.σ (t) ∈ T ).
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A strategy σ : T → V is a winning strategy for player I in the game
G(T, A) if

∀p ∈ [T ] ((∀2n < |p| (p(2n) = σ (p�2n))) → p ∈ A).

Similarly, σ is a winning strategy for player II if

∀p ∈ [T ] ((∀2n + 1 < |p| (p(2n + 1) = σ (p�2n + 1))) → p ∈ [T ] \ A).

Player I and player II cannot both have winning strategies in G(T, A).
G(T, A) is determined if one of the players has a winning strategy in
G(T, A).

We are mainly interested in games on the real numbers. Here, T is
the tree ω<ω of finite sequences of natural numbers. We identify [T ] with
the set R = ωω of reals. A set A ⊆ R is called determined if G(A) =
G(ωω, A) is determined. Analytic (projective) determinacy is the statement
that every analytic (projective) set of reals is determined. The determinacy
of a pointclass has profound implications for its descriptive set theory (see
Moschovakis (1980)).

Consider a set A ⊆ R which has an ENFW. We modify the game
G(A) = G(ω<ω, A) to an auxiliary game G∗(A) by adding side moves
for player I and a system of rules such that if player I satisfies all the rules
then player I has also produced a winning play for the original game G(A).
Let T ∗ consist of all finite sequences of the form

((a0, f0), a1, (a2, f2), a3, . . . , (a2n, f2n)), or

((a0, f0), a1, (a2, f2), a3, . . . , (a2n, f2n), a2n+1)

such that the following three conditions hold:

(5.1) aj ∈ ω, for j < 2n + 2,

(5.2) f2j : R → θ , for j ≤ n,

for some fixed sufficiently large ordinal θ (we shall give an adequate lower
bound for θ in (5.5)), and:

(5.3) ∀x ∈ R \ A(x ⊇ (a0, . . . , a2i+2) → f2i(x) > f2i+2(x)), for all
i < n.

A play on T ∗ may be represented as

I a0, f0 a2, f2 . . .

II a1 a3 . . .

Since there is no infinite descent in the ordinals, the functions
f0, f2, . . . , f2n serve to push away the sequence (a0, a1, . . .) from R\A
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and into A. Player I wins the game G∗(A) if player I is able to satisfy the
rules (4.1) to (4.3) in an infinite play. So we define the winning set for
player I by:

A∗ = {p ∈ [T ∗] | p is infinite},
G∗(A) = G(T ∗, A∗).

LEMMA 5.2. G∗(A) is determined.
Proof. Call a position a winning position for player II if player II can

force a finite play starting from that position. Now assume that player II has
no winning strategy in G∗(A). Then the initial position ∅ is not a winning
position for player II. Whenever t ∈ T ∗ is of even length 2n and is not a
winning position for player II then there must be an extension t.σ (t) of t

which is not a winning position for player II. This function σ is basically
a strategy for player I and if player I follows σ in a play p in G∗(A), then
p is infinite. Hence player I has a winning strategy in G∗(A). Note that the
above is basically the Gale–Stewart argument for the determinacy of the
closed game G∗(A) where A∗ is closed in the natural topology on [T ∗].
Q.E.D.

Assume that player I has a winning strategy σ ∗ for the game G∗(A).
Player I is able to turn σ ∗ into a winning strategy for G(A) by “hiding”
the side-moves f0, f2, . . .. “Internally” he reacts to the moves a1, a3, . . .

of player II by playing a0, f0, a2, f2, . . . as given by σ ∗. Officially he only
plays the numbers a0, a2, . . . without the side moves f0, f2, . . .. Then the
play p = (a0, a1, a2, a3, . . .) is a win for player I; if not then p ∈ R \ A

and rule (4.3) implies f0(p) > f2(p) > f4(p) > . . ., contradicting the
well-foundedness of the ordinals. Therefore hiding the functions produced
by σ ∗ yields a winning strategy for player I in G(A).

If player I does not have a winning strategy in G∗(A) then by the de-
terminacy of the auxiliary game, player II must have a winning strategy
in G∗(A), call it σ ∗. We shall turn this into a winning strategy for player
II in the game G(A). The problem is that σ ∗ expects to see side moves
f0, f2, f4, . . . to calculate his response. To apply σ ∗, player II has to guess
or simulate these moves, and obviously he has to simulate them in an op-
timal way. These simulations will be provided by the witnesses (ws)s∈ω<ω

of an ENFW (Ms, πst )s⊆t∈ω<ω for A.
By condition (4.4) the witnesses are descending along the ENF and this

gives arbitrarily long sequences of functions satisfying the rule (5.3) in the
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definition of G∗(A). Player II will use the witnesses to simulate optimal
moves of player I. We set:

(5.4) σ (a0) = π∅,a0(σ
∗)(a0, wa0),

σ (a0a1a2) = π∅,a0a1a2(σ
∗)(a0, πa0,a0a1a2(wa0), a1, a2, wa0a1a2),

σ (s) = π∅,s(σ
∗)(s, πs�1,s(ws�1), πs�3,s(ws�3), . . . , ws),

for |s| odd.
Note that the sequence (πs�1,s(ws�1), πs�3,s(ws�3), . . . , ws) is a se-

quence of descending functions which lives in Ms . To view them as legal
side moves the constant θ in (5.2) must have been chosen sufficiently large,
e.g.,

(5.5) θ > supremum of the range of ws for every s ∈ ω<ω.

It is then possible to apply the mapped strategy π∅,s(σ
∗) inside Ms .

CLAIM 5.3. σ is a winning strategy for player II in G(A).
Proof. Let p = (a0, a1, a2, . . .) ∈ R be a play in G(A) where player II

follows σ . Assume for a contradiction that p ∈ A. Then the direct limit

(Mp, πp�m,p)m<ω = limm≤n<ω(Mp�m, πp�m,p�n)

is transitive by (4.1). p = (a0, a1, a2, . . .) satisfies the equations (5.4).
Applying the maps πp�m,p to the equations yields:

(5.6) a1 = π∅,p(σ ∗)(a0, πa0,p(wa0))

a3 = π∅,p(σ ∗)(a0, πa0,p(wa0), a1, a2, πa0a1a2,p(wa0a1a2)),

a2n+1 = π∅,p(σ ∗)(p�2n + 1, πp�1,p(wp�1), . . . , πp�2n+1,p(wp�2n+1)),

for n < ω. The sequence of functions on the right-hand side satisfies the
rule (5.3): if x ∈ R \ A and p�2n + 3 ⊆ x then

πp�2n+1,p(wp�2n+1)(x) = πp�2n+3,p(πp�2n+1,p�2n+3(wp�2n+1)(x))

> πp�2n+3,p(wp�2n+3(x))

= πp�2n+3,p(wp�2n+3)(x).

Therefore,

(5.7) I a0, πp�1,p(wp�1) a2, πp�3,p(wp�3) . . .

II a1 a3 . . .
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is a play in π∅,p(G∗(A)) in which player II follows the strategy π∅,p(σ ∗)
and in which the rule (5.3) is observed.

An absoluteness argument shows that a similar play must actually exist
inside the model Mp: Consider, in Mp, the set P of all finite sequences
of moves in π∅,p(G∗(A)) in which player II follows the strategy π∅,p(σ ∗).
(P ,⊇) is a partial order under reverse inclusion. (P ,⊇) is ill-founded in
V as witnessed by the play (5.7). By the absoluteness of well-foundedness
between V and the transitive model Mp , (P ,⊇) is ill-founded in Mp .
Hence, in Mp, there is an infinite play in π∅,p(G∗(A)) in which player
II follows the strategy π∅,p(σ ∗).

Since π∅,p: V → Mp is elementary, there is, in V, an infinite play in
G∗(A) in which player II follows the strategy σ ∗. But then σ ∗ is not a
winning strategy for player II since player II’s aim is to make plays in
G∗(A) finite. Contradiction. Q.E.D.

6. INDUCED EMBEDDINGS

We have seen in the preceding chapter that a set of reals having an em-
bedding normal form with witnesses possesses strong regularity properties
like determinacy. This motivates the construction of such normal forms
for as many sets of reals as possible. The existence of embedding normal
forms can be viewed as a certain richness of the category of inner models
with elementary embeddings.

An essential technique for building iteration trees and normal forms in
the proof of the Martin–Steel theorem is given by the following construc-
tion in which a given elementary embedding π : M → N induces an
elementary embedding π∗ : M∗ → N∗ of another inner model M∗ which
is in sufficient agreement with M.

Fix a non-trivial elementary embedding π : M → N of inner models
with α being the smallest ordinal moved by π . Let M∗ be an inner model
such that M ∼α+1 M∗. We want to define π∗ : M∗ → N∗ using π . This
can be done by applying the extender derived from π to the model M∗.
In the present presentation however we shall carry out the construction
as a category theoretic limit without explicit mention of extenders. We
represent M∗ as a direct limit of a system whose components are elements
of M∗ ∩ Vα+1. The system can then be lifted by applying π to each of its
components.

Take I = {i ∈ M∗ | i : α → M∗ is injective} as a class of indices for
a directed system. When we want to refer to the map i as opposed to the
index i we write σi instead of i. I is partially ordered by the relation i ≤ j

if and only if range(σi) ⊆ range(σj). For i ∈ I let Ei be the unique binary
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relation on α such that σi : (α, Ei) → (range(σi),∈) is an isomorphism.
For i ≤ j define σij = σ−1

j ◦ σi ; the map σij : (α, Ei) → (α, Ej) is a
structural embedding, and (M∗,∈), (σi)i∈I is the transitive direct limit of
the system S = (α, Ei, σij )i≤j∈I .

Note that for i ≤ j ∈ I the components Ei and σij are elements of
Vα+1 ∩ M∗ = Vα+1 ∩ M. We can thus apply π to the components: define
α∗ = π(α), E∗

i = π(Ei) and σ ∗
ij = π(σij ). By the elementarity of π , the

lifted system S∗ = (α∗, E∗
i , σ ∗

ij )i≤j∈I is a directed commutative system;
let (N∗, E∗), (σ ∗

i )i∈I be a direct limit of the system.
The systems S and S∗ are connected by the identity map, i.e., for

i ≤ j ∈ I : id�α◦σij = σ ∗
ij ◦ id�α. Hence the direct limits can be connected

uniquely by a map π∗ : M∗ → N∗ such that for each i ∈ I and ξ ∈ α:
π∗(σi(ξ)) = σ ∗

i (ξ ). Since all morphisms considered are injective and
structure preserving, we have π∗ : (M∗,∈) → (N∗, E∗) injectively. We
shall show that π∗ is indeed an elementary map, and we shall later discuss
conditions under which the image (N∗, E∗) is well-founded and can be
taken as a transitive ∈-model of the form (N∗, E∗) = (N∗,∈).

Figure 6. Inducing π∗ from π .

The limit of a directed system is isomorphic to the limit of any cofinal
subsystem. We can thin out the systems S and S∗ to cofinal subsystems
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which are �n-elementary for a given n: Let i ∈ I . By the Levy reflection
principle choose θ ∈ Ord such that range(σi) ⊆ Vθ∩M∗ and Vθ∩M∗ ≺�n

M∗. By the downward Löwenheim–Skolem theorem applied in M∗ there is
X ∈ M∗ such that X ≺�n

Vθ ∩M∗, range(σi) ⊆ X, and M∗ |= card(X) =
α. Choose j ∈ I such that range(σj) = X. This shows that the class of
indices j for which σj : (α, Ej ) → (M∗,∈) is �n-elementary is cofinal in
I . The identical map π�α = id�α : (α, Ej ) → (α∗, E∗

j ) is �ω-elementary
by the elementarity of π . Therefore the connecting map π∗ : (M∗,∈) →
(N∗, E∗) is at least �n-elementary. Since n ∈ ω is arbitrary, π∗ is fully
elementary.

Let us assume until further notice that the structure (N∗, E∗) is strongly
well-founded. By the Mostowski Collapsing Lemma 2.1, the structure is
isomorphic to a unique transitive ∈-structure. We can thus assume without
loss of generality that (N∗, E∗) is of the form (N∗,∈) where N∗ is transi-
tive. Then the map π∗ is called the embedding of M∗ induced by π . Since
N∗ satisfies the axioms of ZFC, N∗ is an inner model. We shall study the
relations between the original map π and the map π∗ induced by π .

Consider i ∈ I such that range(σi) is transitive. Then the map σi :
(α, Ei) → (range(σi),∈) is the Mostowski isomorphism of (α, Ei). By the
elementarity of π , π(σi) : (α∗, E∗

i ) → (range(π(σi)),∈) is the Mostowski
isomorphism of (α∗, E∗

i ). On the other hand, σ ∗
i : (α∗, E∗

i ) → (N∗,∈)

is the natural embedding of (α∗, E∗
i ) into the direct limit. We claim that

range(σ ∗
i ) is transitive: Let x ∈ y ∈ range(σ ∗

i ). Choose ξ < α∗ such that
y = σ ∗

i (ξ ). Choose j ≥ i and ζ < α∗ such that x = σ ∗
j (ζ ). x = σ ∗

j (ζ ) ∈
y = σ ∗

i (ξ ) implies that ζ E∗
j σ ∗

ij (ξ ). It suffices to show the following

6.1. There is ν < α∗ such that ζ = σ ∗
ij (ν); then x = σ ∗

j (ζ ) = σ ∗
j (σ ∗

ij (ν)) =
σ ∗

i (ν) ∈ range(σ ∗
i ).

Proof. By assumption, range(σi) is transitive. This implies that
range(σi) is an ∈-initial segment of range(σj). Then range(σij ) is an Ej -
initial segment of α. This can be expressed as: ∀γ < α∀δ < α∃η < α

(δ Ej σij (γ ) → δ = σij (η)). We apply the elementary map π to this fact:
∀γ < α∗∀δ < α∗∃η < α∗(δ E∗

j σ ∗
ij (γ ) → δ = σ ∗

ij (η)). Then the claim
follows with γ = ξ , δ = ζ , η = ν. Q.E.D.

Since range(σ ∗
i ) is transitive, σ ∗

i is the Mostowski collapse of (α∗, E∗
i ).

Since the Mostowski collapse is uniquely determined, we have:

6.2. σ ∗
i = π(σi).

6.3. π�(H≤α)M∗ = π∗�(H≤α)M∗
.
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Proof. Let x ∈ (H≤α)M∗
. Choose i ∈ I such that range(σi) is transitive

and σi(0) = x. Then by 6.2, we have that π(x) = π(σi(0)) = π(σi)(0) =
σ ∗

i (0) = π∗(σi(0)) = π∗(x). Q.E.D.

6.4. N ∼α∗ N∗.
Proof. The ordinal α is strongly inaccessible in M. Thus Vα ∩ M ∈

(H≤α)M∗
. Vα∗ ∩ N = π(Vα ∩ M) = π∗(Vα ∩ M∗) = Vα∗ ∩ N∗. Q.E.D.

The agreement of inner models below some level is crucial for many
constructions in the category of inner models. The large cardinal notions
considered in the next chapter mainly involve postulates on agreement.

We now discuss conditions under which the image structure (N∗, E∗)
is well-founded. The relation E∗ is set-like:

6.5. If z ∈ N∗, then {x ∈ N∗ | xE∗z} ∈ V.
Proof. Let xE∗z ∈ N∗. Choose i ∈ I and ζ < α∗ such that z = σ ∗

i (ζ ).
We may assume that 0 ∈ range(σi). Choose η ∈ Ord such that range(σi) ⊆
Vη. Choose k ∈ I , k ≥ i and ξ < α∗ such that x = σ ∗

k (ξ). Define j ∈ I

by j (γ ) = k(γ ) if k(γ ) ∈ Vη, and j (γ ) = 0 else. Then i ≤ j ≤ k. By
construction, the following formula holds:

∀γ < α∀δ < α (σk(γ ) ∈ σi(δ) → σk(γ ) = σj (γ )).

Applying the inverse of σk to this formula yields:

∀γ < α∀δ < α (γ Ek σik(δ) → γ = σjk(γ )).

We now apply π to get:

∀γ < α∗∀δ < α∗ (γ E∗
k σ ∗

ik(δ) → γ = σ ∗
jk(γ )).

And finally, we apply σ ∗
k , and have:

∀γ < α∗∀δ < α∗ (σ ∗
k (γ ) E∗ σ ∗

i (δ) → σ ∗
k (γ ) = σ ∗

j (γ )).

Since x = σ ∗
k (ξ) E∗ σ ∗

i (ζ ) we have x = σ ∗
k (ξ) = σ ∗

j (ξ). Hence

{x ∈ N∗ | xE∗z} ⊆ {σ ∗
j (ξ) | j ∈ I, range(σ ) ⊆ Vη, ξ < α∗},

which is a set. Q.E.D.

6.6. If M∗ is countably closed, (M∗)ω ⊆ M∗, then (N∗, E∗) is strongly
well-founded.
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Proof. By the previous claim we only have to check well-foundedness.
Assume E∗ is ill-founded. Then there are indices in ∈ I and ordinals ξn <

α∗ such that for n < ω: σ ∗
in+1

(ξn+1) E∗ σ ∗
in
(ξn). We may assume that i0 ≤

i1 ≤ . . .. Then for n < ω: ξn+1 E∗
in+1

σ ∗
inin+1

(ξn). This means that the direct
limit of the system E∗ = (α∗, E∗

im
, σ ∗

imin
)m≤n<ω is ill-founded.

Define the system E = (α, Eim, σimin)m≤n<ω. This system can be em-
bedded into (M∗,∈) and hence is well-founded. Since M∗ is countably
closed, E ∈ M∗. Since M ∼α+1 M∗, we have E ∈ M. E∗ = π(E),
and by the elementarity of π , E∗ is well-founded in N and hence in V.
Contradiction. Q.E.D.

The final claim shows that a given degree of closure is preserved by the
formation of induced embeddings.

6.7. Assume that in our situation M∗ is η-closed and (α∗)η ⊆ N where
η < α. Then N∗ is η-closed.

Proof. Consider an η-sequence (zδ)δ<η = (σ ∗
iδ
(ξδ))δ<η from N∗ with

indices iδ and ordinals ξδ < α∗. By the η-closure of M∗ we can choose
an index j ∈ I such that ∀δ < η iδ < j . Then (zδ)δ<η = (σ ∗

j (ζδ))δ<η

for appropriate ordinals ζδ < α∗. By assumption, (ζδ)δ<η ∈ N and so
(ζδ)δ<η ∈ N∩Vα∗ = N∗∩Vα∗ . Choose a surjective map f : α → M∩Vα ,
f ∈ M. Since M ∼α+1 M∗, f ∈ M∗. Define a map g : α → M∗, g ∈ M∗
by setting: g(ν) = (j (µδ))δ<η if f (ν) = (µδ)δ<η, and g(ν) = 0 else. By
eliminating repetitions in the values of g we can turn g into an injective
function k. Then k is an index in I . Choose ν < α∗ minimal such that
(ζδ)δ<η = π(f )(ν). Then (zδ)δ<η = (σ ∗

j (ζδ))δ<η = σ ∗
k (ν) ∈ N∗. Hence

N∗ is η-closed. Q.E.D.

7. LARGE CARDINALS AND THE CONSTRUCTION OF ENFS

The initial assumptions for the construction of systems of elementary em-
beddings of inner models are large cardinal axioms. It is now customary
to formulate large cardinal notions like measurable cardinals and strong
cardinals in terms of elementary embeddings of inner models.3 This has
proved to be a strong unifying principle in large cardinal theory (see the
survey article by Kanamori and Magidor (1978)). The strength of a large
cardinal assumption is expressed by the degree of agreement between the
sources and the targets of the postulated embeddings. We have seen in the
previous chapter that such agreement allows the construction of new em-
beddings out of given ones. All elementary embeddings to be considered
will be taken from the family of internal maps as defined in Section 4. So



296 PETER KOEPKE

the definition of this family is part of the definitions of the subsequent large
cardinal notions. There are, however, combinatorial equivalences which do
not depend on particular families of inner models and embeddings.

Since embeddings induced by π can move models different from the
model where π is defined one is able to build complicated branching
systems of models out of large cardinal assumptions. The constructions
require careful control of the agreement among models. In the proof of
the Martin–Steel theorem ENFWs for �1

n-sets are constructed by recur-
sion on n. Woodin cardinals provide the exact large cardinal strength for
the successor case of the recursion. We list some relevant large cardinal
notions in order of strength. Using 6.7 we require sufficient closure of
the image models so that the induced embeddings possess well-founded
image models (6.6) and witnesses (Theorem 4.3). One can prove that the
definitions are equivalent to the same formulations without closure require-
ments. A measurable cardinal – the weakest notion considered here – is
the obvious assumption for making the structure of the category of inner
models non-trivial.

DEFINITION 7.1. A cardinal α is measurable if there is an elementary
embedding π : V → M with critical point α into an α-closed inner model
M.

A measurable cardinal is strongly inaccessible hence the image model
M in this definition is certainly 2ℵ0-closed.

DEFINITION 7.2. A cardinal α is strong (Gaifman 1974) if for every x ∈
V there is an elementary embedding π : V → M with critical point α into
an α-closed inner model M such that x ∈ M.

DEFINITION 7.3. Let α < δ and �p be a finite sequence of parameters.
Then α is strong in �p up to δ if for all η < δ there is an elementary
embedding π : V → M with critical point α into an α-closed inner model
M such that (V, �p) ∼η (M, π( �p)).

DEFINITION 7.4. A cardinal δ is a Woodin cardinal (Shelah and Woodin
1990) if for all finite sequences �p of parameters there is α < δ which is
strong in �p up to δ.

The growth of strength from measurable to Woodin cardinals is for-
midable: below each strong cardinal there are cofinally many measurable
cardinals; if δ is a Woodin cardinal then Vδ |= “there are cofinally many
strong cardinals”. Woodin cardinals imply the existence of many element-
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ary embeddings with favourable preservation properties. We shall indicate
in the following how this can be used in the construction of ENFWs for
arbitrary projective sets.

The projective sets are obtained recursively from open sets in some
product space R

n by finitely many complementations and projections.
Provided there is a measurable cardinal one can construct ENFWs for
closed sets by the iteration methods of chapter 3. The recursion step re-
quires to show: if a set A ⊆ R

n+1 has a sufficiently closed ENF then the
complement R

n+1 \ A and the projection {a ∈ R
n | ∃b ∈ R (a, b) ∈ A}

both have sufficiently closed ENFs.
The main idea of the proof is already present in the simpler case of

complements. For simplicity we shall consider 1-dimensional sets, i.e.,
n = 0. So assume that the set A ⊆ R has an ENFW N = (Ns, πst )s⊆t∈ω<ω

together with witnesses (ws)s∈ω<ω . The aim is to construct an ENF M =
(Ms, σst )s⊆t∈ω<ω for R\A. Simultaneously one defines an auxiliary system
M∗ = (M∗

s , σ ∗
st )s⊆t∈ω<ω which reflects many properties of the given system

N and in particular the well-foundedness of branches.

Figure 7. Constructing an ENF M from N . The two highlighted branches constitute an
alternating chain.

We state the crucial properties of this diagram:

FACT 7.5. For all p ∈ R we have Np is well-founded if and only if M∗
p is

well-founded, where Np resp. M∗
p denote the direct limits of the branches

corresponding to the real p in N resp. M∗.
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FACT 7.6. The systems M and M∗ are complementary in the sense that
for all p ∈ R we have Mp is well-founded if and only if M∗

p is ill-founded.

Granting these two properties we have an embedding normal form
representation of the complement of A as required.

FACT 7.7. p ∈ R \ A if and only if Np is ill-founded if and only if M∗
p is

ill-founded if and only if Mp is well-founded.

In conclusion we see that under appropriate initial assumptions the cat-
egory of inner models and elementary embeddings exhibits rich structural
properties which can be used to analyse situations in descriptive set theory.

8. APPENDIX: MORE TECHNICAL DETAILS

For a reader who is keen on understanding the whole proof of the Martin–
Steel theorem we shall now sketch the crucial part of the construction in
terms of the category of inner models. For a complete argument along
these lines but formulated in the different language of extenders we refer
to Koepke (1998).

The fact 7.6 is obtained by constructing the branches (Mp�n)n<ω and
(M∗

p�n)n<ω through M and M∗ as complimentary branches of an alter-
nating chain. In our particular situation this amounts to the following three
requirements:

(8.1) M∅ = M∗
∅ = V.

(8.2) For every n < ω, the embedding σp�n,p�n+1 : Mp�n → Mp�n+1

is induced by a map which is internal in M∗
p�n.

(8.3) For every n < ω, the embedding σ ∗
p�n,p�n+1 : M∗

p�n → M∗
p�n+1

is induced by a map which is internal in Mp�n+1.

Schematically the two branches can be represented as in Figure 8 where
the broken arrows indicate that an internal map induces an elementary
embedding of another model.

An alternating chain can also be seen as linear construction

M∅, Mp�1, M∗
p�1, Mp�2, M∗

p�2, . . . .

At each stage of the construction an internal map is chosen and used to
induce an elementary map of an earlier model in the sequence; the resulting
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Figure 8. An alternating chain.

image is put as the next model on the sequence. This is a generalization of
the iteration process studied in Section 4. The generalization retains some
traces of the construction of a well-founded direct limit, and by a crucial
lemma of Martin and Steel (1989), the alternating chain has at least one
well-founded branch.

If we can find functions w∗
p�0, w∗

p�1, . . . in M∗
p�0, M∗

p�1, . . . which
behave like the witnesses wp�0, wp�1, . . . of the ENF for A we have:

If Np is ill-founded as witnessed by wp�0, wp�1, . . ., then M∗
p is illfounded

as witnessed by w∗
p�0, w∗

p�1, . . . and then Mp is well-founded by the above-
mentioned lemma of Martin and Steel.

The case when Np is well-founded is treated by a different argument.

The construction of the alternating chain requires a high degree of
agreement between structures on both branches since one uses the method
of induced embeddings. Let us state some properties needed in the
recursive construction of the alternating chain:

The construction takes place under the assumption of a sufficiently big
Woodin cardinal δ. In the course of the construction δ yields a sequence
κ∗

0 < κ0 < κ∗
1 < κ1 < . . . < δ of large cardinals such that:

(8.4) Np�n |= “Mp�n |= κ∗
n is strong in πp�0,p�n(wp�0),. . . ,

πp�n,p�n(wp�n) up to δ”,

(8.5) Np�n |= “Mp�n ∼κ∗n+1 M∗
p�n”, and

(8.6) Np�n |= “(Mp�n, πp�0,p�n(wp�0), . . . , πp�n,p�n(wp�n)) ∼κ∗n
(M∗

p�n, σ ∗
p�0,p�n(w

∗
p�0), . . . , σ ∗

p�n,p�n(w
∗
p�n))”.

Note that the facts about the alternating chain are stated in Np�n where
the witnessing parameters πp�0,p�n(wp�0), . . . , πp�n,p�n(wp�n) are living.
To continue we have to incorporate the witness wp�n+1 into the construc-
tion. So we lift properties (8.4) to (8.6) to Np�n+1 by the elementary
embedding πp�n,p�n+1, and get:
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(8.7) Np�n+1 |= “Mp�n |= κ∗
n is strong in πp�0,p�n+1(wp�0), . . . ,

πp�n,p�n+1(wp�n) up to δ”,

(8.8) Np�n+1 |= “Mp�n ∼κ∗n+1 M∗
p�n”, and

(8.9) Np�n+1 |= “(Mp�n, πp�0,p�n+1(wp�0),. . . ,πp�n,p�n+1(wp�n)) ∼κ∗n
(M∗

p�n, σ ∗
p�0,p�n(w

∗
p�0), . . . , σ ∗

p�n,p�n(w
∗
p�n))”.

We consider the initial part of the alternating chain to be given by a term
which can be interpreted in Np�n and in Np�n+1.

Within Np�n+1 there is a map internal in Mp�n with critical point κ∗
n

which can be applied to M∗
p�n to yield π∗

p�n,p�n+1 : M∗
p�n → M∗

p�n+1. The
internal map can be chosen strong enough so that there are κn > κ∗

n and
w∗

p�n+1 with the following properties:

(8.10) Np�n+1 |= “M∗
p�n+1 |= κn is strong in σ ∗

p�0,p�n+1(w
∗
p�0), . . . ,

σ ∗
p�n,p�n+1(w

∗
p�n)), w∗

p�n+1 up to δ”,

(8.11) Np�n+1 |= “M∗
p�n+1 ∼κn+1 Mp�n”, and

(8.12) Np�n+1 |= “(M∗
p�n+1, σ ∗

p�0,p�n+1(w
∗
p�0), . . . , σ ∗

p�n,p�n+1(w
∗
p�n)),

w∗
p�n+1)∼κn

(Mp�n, πp�0,p�n+1(wp�0), . . . , πp�n,p�n+1(wp�n), wp�n+1)”.

As above one can find an internal map in M∗
p�n+1 which induces a map

πp�n,p�n+1 : Mp�n → Mp�n+1 and a κ∗
n+1 > κn such that:

(8.13) Np�n+1 |= “Mp�n+1 |= κ∗
n+1 is strong in πp�0,p�n+1(wp�0),. . . ,

πp�n,p�n+1(wp�n), wp�n+1 up to δ”,

(8.14) Np�n+1 |= “Mp�n+1 ∼κ∗n+1+1 M∗
p�n+1”, and

(8.15) Np�n+1 |= “(Mp�n+1, πp�0,p�n+1(wp�0),. . . , πp�n,p�n+1(wp�n),
wp�n+1)

∼κ∗n+1
(M∗

p�n+1, σ ∗
p�0,p�n+1(w

∗
p�0),. . . , σ ∗

p�n,p�n+1(w
∗
p�n),

w∗
p�n+1)”.

This corresponds to the initial situation (8.4) to (8.6) and shows that the
construction can be continued. There are many subtle points to be arranged
to make this construction work of which we mention two: the constrution
has to be local, i.e., the definition of Mp�n and of M∗

p�n should only depend
on p�n and not on all of p; all structures should be sufficiently closed so
that the questions of well-foundedness of induced images and of existence
of witnesses is resolved.



THE CATEGORY OF INNER MODELS 301

NOTES

1 So let us cast aside the cosmocentric superstition just like we cast aside the geocentric
and anthropocentric superstition before; let us realize that there are myriads of cosmic
worlds spun into the chaos – each of them appearing to its inhabitants as the sole and
only real world and misleading them to assign its qualitative and particular characteristics
to the transcendental core of the world. But this core escapes every bond however loose
and keeps its freedom to be restricted to a cosmic appearance in infinitely varied ways. It
allows the coexistence of all these appearances which are contained in its universality as
particular possibilities and as conceptually defined subsets. Indeed it is nothing else than
just this coexistence and thus transcendent for a particular appearance which has a closed
realm of immanence in itself. (Translation P.K.)
2 Alternatively one could also work in a class theoretic system and study classes which
are inner models.
3 The notion of a “flipping property” allows to characterize not only embedding cardinals
but also combinatorial large cardinal notions. See Abramson et al. (1977), Barnabel (1989),
Di Prisco and Marek (1985) and Di Prisco and Zwicker (1980).
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