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Abstract

Spreadsheets are heavily employed in ad-
ministration, financial forecasting, education,
and science because of their intuitive, flexible,
and direct approach to computation. They
represent examples for “active documents”
which are considered very worthwhile in the
field of Knowledge Management. But these
activity traits also lead to usability and main-
tenance problems, as spreadsheet-based ap-
plications grow evermore complex and long-
lived. We argue that these difficulties come
from a fundamental bias of spreadsheets to-
wards computational aspects of the concep-
tual models underlying the applications, i.e.,
a semantic bias. Concretely, we present the
software architecture of the SACHS project
geared towards a semantic enhancement of
MS Excel spreadsheets that aims at compen-
sating this semantic bias.

1 Introduction

In 1979 DAN BRICKLIN and BOB FRANKSTON co-
authored the famous first spreadsheet program: “Visi-
Calc” [BF79]. TERRY WINOGRAD considers the key
innovation of spreadsheet programs to be that they
virtualize ledger sheets. In particular, “spreadsheet
virtuality combines the reqular structure of the famil-
iar ledger sheet with an underlying structure of inter-
linked formula” [Win06, p. 230]. Ledger sheets have
been well used in financial accounting scenarios and
as spreadsheets they obtain the additional quality of
being computational: the spreadsheet user can manip-
ulate data directly or via the abstract level of formulas
in order to appropriate the data setting, to forecast de-
velopments, and to test financial scenarios.

The management qualities led to wide spread use
and reuse of spreadsheets (see |[AE06] and its refer-
ences for a discussion). But unfortunately, the inten-
sity with which they were used yielded more and more
complex documents intended to be shared among peo-
ple who needed to understand the same (or similar)
data sets. In turn, this very complexity now often re-
sults in errors on the data level and misinterpretation
or misapprehension of the underlying model.

The work reported here originates in the SACHS
project (Semantic Annotation for a Controlling Help
System) at the German Center for Artificial Intelli-
gence (DFKI), Bremen. It addresses the usability

problem that even though MS Excel spreadsheets have
the potential to serve well as an interface for a financial
controlling system, DFKI employees experience them
as too complex in practice — even longtime users can-
not interpret all data and are not certain about its
origin. A controlling system is a means for the orga-
nization to control finances, i.e., to understand prof-
its and losses and draw conclusions, thus a lack of
overview hampers the process: if users are not suf-
ficiently informed they cannot optimize the next data
to be gathered.

A key observation in our approach to solving these
usability problems is that spreadsheets are active doc-
uments, we take this to mean that they are documents
whose surface structure can adapt to the environment
and user input. “Activeness” in documents can only
be realized by making some of the relations between
the underlying objects explicit to the software layer
presenting the document. In the case of spreadsheets
these relations are given as the spreadsheet formulae.
In this paper we take a foundational stance and an-
alyze spreadsheets as “semantic documents”, where
the formula representation is only the computational
part of the semantic relations like how values were
obtained. In this sense the focus on the computa-
tional aspects constitutes a semantic bias in spread-
sheets. In particular, spreadsheets disregard other se-
mantic relations that are important for understanding
and relegate them to informal treatment, which we
claim accounts for a good part of the usability prob-
lems lamented above.

To compensate the diagnosed semantic bias we pro-
pose to augment the two existing semantic layers of
a spreadsheet — the surface structure and the formu-
lae by one that makes the intention of the spreadsheet
author explicit. In the SACHS project we encode the
intention as an accompanying OMDoc [Koh06| docu-
ment and can thereby provide multi-layered, semantic
help services.

2 Semantic Layers in Spreadsheets

Instead of developing the general theory, we will
expose the salient parts of our approach using
WINOGRAD’s example spreadsheet from |[Win06] (re-
represented in MS Excel in Figure|l) as a running ex-
ample. We will differentiate the three semantic layers
in turn and draw conclusions viewing this spreadsheet
as both an active and a semantic document.



A B c D E F
1 |Profit and Loss Statement
2
3 {in Millions) Actual Projected
4 1984 1985 1986 1987 1988
5
6 |Revenues 3,865 4992 5,803 6,022 6,481
7
8 |Expenses
9 Salaries 0,285 0,337 0,506 0,617 0,704
10 Utilities 0,178 0,303 0,384 0,419 0,551
1" Materials 1,004 1,782 2,046 2273 2119
12 Administration 0,281 0,288 0,315 0,368 0,415
13 Other 0,455 0,541 0,674 0,772 0,783
14
15 Total Expenses 2,203 3,251 3,925 4,449 4,573
16
17 |Profit (Loss) 1,662 1,741 1,878 1,673 1,908
18

Figure 1: A Simple Spreadsheet after [Win06)

2.1 Active and Semantic Documents

We call a document semantic, iff it contains an infras-
tructure that distinguishes between content and form.
Note that such an infrastructure can range from super-
ficial styling information in PowerPoint slide masters
or IMTEX document classes, over RDFa annotations in
web pages to formal logic specifications of program be-
haviors. The idea is that this infrastructure makes re-
lations between the objects described in the document
explicit, so that they can be acted upon by machines.
In particular, semantic documents can be interpreted
by “presentation engines” that operationalize the se-
mantic relations by allowing the reader to interact with
various aspects of the semantic properties. We call
the combination of a semantic document with a pre-
sentation engine that can adapt the surface structure
of the document to the environment and user input
an active document. Our definition is between the
concept of embedding semantic networks into hyper-
documents employed by GAINES and SHAW in [GS99]
and the rather visionary notion of documents that can
answer arbitrary questions about their content pro-
posed by HEINRICH and MAURER [HMO0]. Crucially
both presuppose some kind of content representation
in or near the document and a suitable “presentation
engine”.

For the purposes of this paper, we will neglect the
fact that most presentation engines also incorporate
editing facilities and concentrate on the interaction
with active documents for reading and exploration.
This view is similar to what [UCIT06| call “intelligent
documents”.

A paradigmatic example of an active document is
a MATHEMATICA notebook [Wol02], where equations
and mathematical objects can be inspected, visual-
ized, and manipulated by the user. Here, the seman-
tic document is written in the MATHEMATICA markup
language which includes a content markup scheme for
mathematical formulae and a high-level programming
language. The presentation engine is the MATHEMAT-
ICA front-end which presents interactive documents to
the user and calls the MATHEMATICA kernel for evalu-
ation of program fragments and computation of math-
ematical properties.

Spreadsheets are another paradigmatic class of ac-
tive documents. Here the semantic document contains

representations of the cell values or formulae together
with display information like cell color, font informa-
tion, and current viewport. The presentation engine is
a spreadsheet program like MS Excel, which presents
the semantic document to the user by giving it a grid
layout and recalculates values from formulae after each
update. But what is the underlying semantic model,
i.e. what is the “activeness” of spreadsheets based on?

2.2 The Surface/Data Layer

If we look at the example in Figure [I} we see that the
grid of cells can be roughly divided into three areas.
The darker, ochre area in the center contains values
of actual and past expenses and revenues, the lighter,
yellow box on the right contains values projected from
these. The white region that surrounds both boxes
supplies explanatory text or header information hat
helps users to interpret these numbers. Generally, non-
empty cells that do not contain input or computed
values usually contain text strings that give auxiliary
information on the cells that do; we call these cells
collectively the legend of the spreadsheet, since in this
respect they serve the same purpose as the legend of
a map.

Observe that row 17 displays the central values of
the spreadsheet: the profit/loss situation over time
(i.e., in the years 1984-1988 as indicated by the val-
ues in row 4). Moreover note that the meaning of
the values in row 17 is that they represent profits and
losses as a function 7 of time: remember that a func-
tion is a right-unique relation — i.e., a set of pairs of
input values and output values. In our example the
pair (1984,1.662) of values of the cells [B4] and [B17]
is one of the pairs of 7. We will call such a grid region a
functional block, and the function it corresponds to
its intended function. Empirically, all non-legend ,
semantically relevant cells of a spreadsheet can be as-
signed to a functional block, so we will speak of the
functional block and the intended function of a cell.

In the general case a functional block consists of
multiple rows and columns, then it represents a binary
(i.e., two-argument) function, i.e. its values depend on
two (main) parameters which are usually in the cells
of the column on the left and the row on top of the
block. We will call the cell ranges of arguments of
the function of a block its input row/column. In
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Figure 2: The Spreadsheet from Figure [1| with Formulae

our example the block with cells [B9:D13] ranges over
expense types (given in [49:A13]) and years (given in
[B4:D4]) and therefore represents a binary function.

Of course the actual values can also depend on more
parameters, but these are given lower salience by the
restriction to a two-dimensional grid. Alternatively,
an n-ary function is split up into a sequence of binary
functions and the spreadsheet grid contains blocks for
all of these. If a functional block has only one row or
column, then it represents a unary (i.e. one-argument)
function, and in the case where it only consists of a
single cell, it represents a constant (i.e., a function
without arguments.)

Our notion of a functional block is related to,
but different from ABRAHAM and ERWIG’s of a “ta-
ble” [AE04: [AE06), which also contains row and col-
umn header and footer blocks. Our functional blocks
roughly correspond to their “table core”, whereas we
would consider their header blocks as input blocks or
legend cells (but there may be non-header input blocks
in our model) and their footer blocks which contain ag-
gregation cells as separate functional blocks.

2.3 The Formula Layer

A spreadsheet cell ¢ may not only be associated with
a simple data item (or value) [¢], it may also be con-
nected with a formula [[c]], i.e., an expression built
up from constants, an extended set of arithmetic op-
erators, and references to other cells, which evaluates
to the cell value. Without loss of generality we assume
that cells with a constant value given by the spread-
sheet author carry the pseudo-formula input.

In our example, the value of 7w can be computed from
the yearly revenues in R:= [B6:F6] and the total ex-
penses in £:= [B15:F15] by a simple subtraction, the
total expenses can in turn be computed by summing
up the various particular expense types listed in cells
[A9:A13]. In Figure [2] we have exposed the respective
formulae in the example spreadsheet.

Note that the formulae of cells in a functional block
have to be “cp-similar” |BSRRO02|, i.e., they can be
transformed/copied into each other by adjusting the
respective rows and columns. We call a functional
block computed if all of its formulae are cp-similar.
In our example, the functional block P:= [B17:F17]
is computed: let v range over the columns B to F in
P. Note that the formulae [[y17]] = v6 — v15 in cells
[v17] are indeed cp-similar. Together, they make up

the function

F(P):= (6], [v15], W17y € {B, ..., F}}

We call F(P) the function induced by the (formulae
in) block P. But we also observe that not all func-
tional blocks in a spreadsheet are computed, for in-
stance the block [B9:D13] only has be pseudo-formula
input, since all the values are provided by the spread-
sheet author. We call such blocks data blocks and
note that the property of being a functional block only
depends on a functional correspondence (a conceptual
aspect of the data) and not on the existence of formu-
lae (a property of the spreadsheet).

With spreadsheet formulae, users can express data
dependencies on a generic level, so that the spread-
sheet program can do much computational work in
the background. By this virtualization of the tradi-
tional ledger sheet (see above), the user’s role is lifted
to a layman programmer and offers according poten-
tial. But ABRAHAM and ERWIG report an error rate
of up to 90% (!) in spreadsheets |[AE06|, which shows
that this potential comes with a substantial risk. They
analyze the source of many of these errors to be in a
mismatch between what the spreadsheet author wants
to express and the formulae he writes. They try to ad-
dress this situation by static analysis techniques (type
checking) of the formulae and supplying the author
with “spreadsheet templates”. To understand this mis-
match better, let us now turn to model the author
intends to convey.

2.4 The Intention Layer

Note that even though F(P) and 7 compute the same
values, they are completely different functions. = is
defined via the actual or projected profits or losses of
an organization, while F(P) is a finite, partial binary
arithmetic function. Even when we compose F(P)
with F(R) and F(€) and restrict them to the years
1984-86 yielding F:= F(P) o <f(R),f(£)>\|[B4:D4H,
the functions F and 7 are only extensionally equal
(they are equal as input/output relations) and still dif-
fer intensionally.

Surprisingly, only F is explicitly represented in the
spreadsheet of Figure [I| moreover, this explicit repre-
sentation is invisible to the user if she doesn’t look at
the formula box — thus, leaving the user to figure out
the ‘intention’ (the function 7) from the implicit infor-
mation given in the white part by herself. This is why
we speak of a semantic bias towards computational



aspects of spreadsheet program, as some layers of the
semantics are explicated but others are not.

Generally, we can assume that spreadsheet pro-
gram authors use spreadsheets to express and compute
(measurable) properties of situations; if we look a little
closer then we see that these are not properties of the
world as such, but of a high-level, abstract, or men-
tal model of the world, which we subsume under the
term intention of the spreadsheet. In our exam-
ple, the function 7 could be seen as a concept from the
intention, whereas the function F can be seen as its
implementation. In our simple example the intention
is easy to deduce from the text in the legend and basic
financial accounting knowledge.

But even here, some parts of the spreadsheet’s in-
tention remain unclear: e.g. for what company or de-
partment are the profits and losses computed or what
are the methods of projection for the years 1987/8.
Let us now take stock of what the cells in the spread-
sheet mean and what information we need infer from
this. As we already remarked above, the values of cells
[B17:D17] are (the scalar parts of) the actual prof-
its/losses of a company in the years 1984-1986. We
need information from cell [A3] for the unit of mea-
surement, from cells [B3:D3] that they are actual, and
from [A17] for the interpretation as a ‘profit/loss’. To
understand the full meaning of these cells, we also need
to know about profits and losses of companies — e.g.
that high profits of a company I am employed by or
that I own stock in are good for me, the fact that
the company is based in the USA and therefore calcu-
lates finances in US$, and that values that are actual
are computed from measured values. Finally, we need
to know that the profit/loss of an organization over a
time interval is defined as the difference between its
revenues and expenses over this interval. This knowl-
edge allows to compute the values of cells in P with
the respective formulae from the values of cells in RUE
(i.e., using the function F). The values of the cells in
& can be similarly computed from the values of the
cells [B9:D13]. Note that while the definition of prof-
its and losses above is general accounting knowledge,
this definition is probably particular to the particu-
lar company, as the applicable expenses vary with the
organization.

A similar account can be given for the projected
profits/losses in cells [E17:F17], only that the inter-
pretation of the cells wrt. the intention is even more
difficult — even though the situation is simple if taken
at face value. Cell [E17] is the projected profit in the
year 1987, which is computed from the revenue and
expenses in column E. But in contrast to the values
in the actual block [B6:D6] U [B9:D13], the values in
the projected block [E6:F6] U [E9:F13] are not mea-
sured, but projected from the actual values by some
financial forecasting method that is reflected in the re-
spective formulae. Note that the correspondence of
the formula need not be as direct as in the case of
the total expenses above. It might be that the fore-
casting method is defined abstractly, and the concrete
formula is derived from that making some simplify-
ing assumptions. Furthermore, we need to know what
assumptions the forecasting method makes, what pa-
rameter values are employed and why, how reliable it
is, etc. to fully understand the values. All of these

concerns are not addressed at all in the spreadsheet as
an active document. ABRAHAM and ERWIG describe
this as follows:

There is a high level of ambiguity asso-
ciated with spreadsheet template inference
since spreadsheets are the result of a map-
ping of higher-level abstract models in the
user’s mind to a simple two-dimensional grid
structure. Moreover, spreadsheets do not im-
pose any restrictions on how the users map
their mental models to the two-dimensional
grid (flexibility is one of the main reasons
for the popularity of spreadsheets). There-
fore the relationship between the model and

the spreadsheet is essentially many-to-many
[..] [AE06, p. 5]

3 Compensating the Semantic Bias

Our analysis of the example above has shown us that
large parts of the intention of a spreadsheet is left im-
plicit, even though it is crucial for a user’s comprehen-
sion. In particular, a user needs to know the following
for a spreadsheet:

e The ontologyﬂ i.e., background information
about relations between concepts and objects
from the intention. The objects in the intention
include the functions represented in the spread-
sheets e.g. m, their properties, e.g. the units of
their arguments and values, and thus of the values
in the cells.

e The provenance of data in a cell, i.e., how the
value of this data point was obtained, e.g. by
direct measurement, by computation from other
values via a spreadsheet formula, or by import
from another source; see [MGM™08]| for a general
discussion of provenance.

e The interpretation, i.e., a correspondence be-
tween functional blocks and concepts or objects
of the intention. We distinguish three parts here

— The functional interpretation, that spec-
ifies the intended function of the functional
block.

— The value interpretation, i.e. a bijective
function that specifies how to interpret the
values of the block cells as ontology objects.

— The formula interpretation that links the
formulae of a block to an object in the ontol-
ogy. This mapping must be a refinement in
the sense that the interpretations of proper
formulae compute the same value as the for-
mulae itself and the pseudo-formulae input
is mapped to a provenance object.

In some spreadsheets that are the digital equivalent
to “back-of-the-envelope calculations”, the interpreta-
tion, provenance, and ontology information is simple
to infer, so that the un-documented situation is quite

In this paper we use the word “ontology” in its gen-

eral, philosophical meaning as the study of the existence of
objects, their categories and relations amongst each other,
and not in the computer science usage, where it is restricted
to formal systems with tractable inference properties (de-
scription logics).
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Figure 3: An OMDoc Ontology and Interpretation for the Spreadsheet from Figure

tolerable. Indeed this shows the cognitive strength
of the table metaphor, in our example it is no prob-
lem for the human reader to interpret the legend item
“(in Millions)” as a specification of the value inter-
pretation of the cells [B6:F17] (but not of the years
Y:=[B4:D4)).

In many cases spreadsheets have developed into
mission-critical tools that are shared amongst whole
departments, because encapsulate important, non-
trivial, institutional knowledge. The intention of such
spreadsheets is much harder to infer, a fact that is wit-
nessed by the fact that companies spend considerable
energy to train employees in the usage (and intention)
of such spreadsheets.

In this situation, it would be natural to extend the
activity of spreadsheets to support the user’s compre-
hension of the spreadsheet intention. Thus, in light of
the discussion of Section we suggest to compensate
for the semantic bias diagnosed above by extending
the underlying semantic document of a spreadsheet.
Concretely, we propose to represent the intention (as
the provenance and ontology) and to tie the cells in
the spreadsheets to concepts in the intention (via an
interpretation function).

3.1 Fixing the Ontology

We have (at least) two possibilities to extend spread-
sheets with an ontology and provenance component:
we can either extend spreadsheets by ontology and
provenance facilities or we can extend them by inter-
pretation facilities that reference external representa-
tions of the intention. As we have seen above, the
intention contains quite a lot of information, and mak-
ing it explicit in a software framework means a large
investment. Therefore we contend that an external
representation of the intention is more sensible, since
it can leverage pre-existing tools and profit from inter-
operability.

We use the OMDoc format (Open Mathematical

Documents, see [KohOG]) to represent the intention

model. OMDoc is an XML-based format for rep-
resenting semi-formal, semantically structured docu-
ment collections. It allows to factorize knowledge
into “content dictionaries” that serve as constitutive
contexts for knowledge elements. OMDOC provides
a mathematically inspired infrastructure for knowl-
edge representation: document fragments are classi-
fied by their epistemic role as e.g. axioms, defini-
tions, assertions, and proofs and mathematical for-
mulae are represented in the OPENMATH [BCC104]
or MATHML |[ABC*03] formats. Furthermore, OM-
Doc provides a strong, logically sound module system
based on structured “theories” (content dictionaries
extended by concept inheritance and views) [RKO0S].
Finally, the language has been extended to deal with
units and measurable quantities [HKS06| as a prereq-
uisite for interacting with the physical world. We make
use of all of these features for modeling the intentions
of spreadsheets. In contrast to other ontology mod-
eling languages like OWL [MvHO04], the OMDoc for-
mat does not commit to a formal logical language, and
therefore lacks a native concept of inference but also
does not force the author to fully formalize the spread-
sheet intention and to work around the expressivity
limitations of the underlying logical system. Instead,
OMDoc allows to locally formalize elements — and
thus provide partial inference — with whatever formal
system is most suitable; in our application, we mainly
use an formal system for arithmetics as a counterpart
for spreadsheet formulae.

For the intention model in our example we divide the
background knowledge into theories that inherit func-
tionalities from each other via the imports relation.
At the very basis we would have a content dictionary
Revenues that defines the concept of the revenue of an
organization over a time interval. This theory defines



the concept of a binary revenue function p, such that
given an organization o and a natural number n the
value p(o,n) is the revenue (as a monetary quantity)
of o over the span of the year n (AD) in the Grego-
rian calendar. Note that we use this very naive notion
of revenues for didactic purposes only. For instance p
was chosen as a binary function to highlight that there
is no automatic agreement between functional corre-
spondences in the table and objects of the intention.
We would be perfectly free to analyze the concepts
more thoroughly, embarking into representing mone-
tary systems, theories of time, etc. For the purposes
of this paper, we assume that we can either appeal to
the intuition of the user or inherit these representa-
tions from a suitable foundational ontology.

In the same way we proceed with a content dictio-
nary Expenses, which imports from a content dictio-
nary Salaries. Finally, we build a content dictionary
Profits that imports from both. In the OMDoc doc-
ument pictured in Figure [3] we have summarized some
of the relevant content dictionaries and the concepts
they introduce.

3.2 Fixing the Provenance

We enrich our ontology with provenance information:
As we have required the formula interpretation to be
a refinement, we need to represent an abstract no-
tion of spreadsheet computation in the ontology. This
can be readily done making use of e.g. the CASL li-
braries [CoF04]. For modeling the provenance of user
inputs in spreadsheets, we can be extremely minimal-
istic, just establishing a stub content dictionary that
lifts the concept of “user input” to the ontology level.
But in our example we can already see what a more
elaborate provenance model could give us: We could
specify that the salary values in [B9:F9] are not only
user inputs, but really manually copied over from an-
other spreadsheet — the top spreadsheet “Salaries” in
Figure 3| To take advantage of this (see details in the
next section) we have to develop content dictionaries
for provenance, adapting and extending first formaliza-
tions reported on in [MGM™*08]. As this goes beyond
the scope of this paper, we leave this to future work.

3.3 Fixing the Interpretation
To interpret the cells in P for example, we need to

e fix the functional interpretation: Identify that P
and R form functional blocks with input row ).

In Section [2.2] we have already discussed the func-
tional interpretation of P: it is just the intended
function 7. Similarly, we link the revenues block
R with a unary function p(c,-), where ¢ is the
representation of our example company. Then we
have to express the semantic counterpart of the
spreadsheet formulae. In our OMDoOC format we
can simply represent this function as Ay.p(c,y) in
OPENMATH or MATHML.

e fix the value interpretation: In our example we
observe that the values in P are actually only
the scalar parts of measurable quantities, in this
case measured “in millions” (of US$ presumably)
according to the spreadsheet legend. Similarly,
the (string) values Salaries, Utilities, ...in
[A9:A13] have to be interpreted as objects in
the ontology. Thus in our example, we choose

i:={y — y(AD)} as the value interpretation of
block Y and j:= {x ~ 1052US$} for block P;
obviously both are bijective.

e fix the formula interpretation: our example the
formulae 6 — 15 in the functional block P
would be linked to the formula w(year) =
plyear) — €(year) in the FMP element of the
Profit/Year definition. Furthermore, we would
link R to a semantic provenance object “imported
from Salaries.xsl”.

In Figure[3]we show the functional interpretation map-
pings as red, dotted arrows and the formula interpreta-
tion as purple, dot-dash-arrows. The totality of cell in-
terpretations induces a set of content dictionaries that
is associated with a spreadsheet, we call these content
dictionary the intention model. Note that we can
see the intention model as a representation of the in-
tention of this spreadsheet.

We can think of the wvalue interpretations as
parser/generator pairs that mediate between the scalar
function represented by the formulae in the spread-
sheet and the intended function in the intention —
which is usually a function between measurable quan-
tities. In particular the functions F and 7 are re-
lated via the following commutative diagram, where
the function F is induced by the spreadsheet formulae
as discussed in Section [2.4] above.

y F P spreadsheet

J |57

year SN profit

ntention

We see that the three components of the interpreta-
tion fully specify the correspondence between func-
tional blocks in the spreadsheet and objects induced
by the intention model. To see the strength of this
construction let us return to our example and look at
the import of salaries from Salaries.xsl. There we
have a different value interpretation for the functional
block [F'6:F6]: this spreadsheet does not calculate in
millions, so we chose k: = {z — zUS$} and get the im-
port functions ko j~! = {zUS$ — 10~62US$} in the
intention and j7! ok = {z — 107%z} in the spread-
sheet.

In conclusion we observe that setting the ontology,
provenance, and the interpretation of a cell gives us a
full and explicit account of its intention, and we can
relegate all further semantic services to the intention
model. For instance we can verify (using inference in
the intention model) this part of the spreadsheet by
establishing the equality of 7! o F o j and p(c).

3.4 Semantic Services in SACHS

The SACHS system is a work-in-progress add-in for MS
Excel (written in Visual Basic for Applications) that
aims at providing semantic help facilities for spread-
sheets. Though it has been developed for the DFKI
controlling system, it works for any spreadsheet whose
intention has been encoded as an OMDoOC document,
e.g. our running example. We have designed SACHS as
invasive technology that extends well-used (and there-
fore well-known) software systems from within to over-
come usage hurdles — see |[Koh05b| for a discussion.
Following [BWKO00| we design the SACHS interface as a



A [ B | | D | E | F |
_1 |Profit and Loss Statement
2
3| {in Millions) Actual Projected
4 | 1984 1985 1986 1987 1988
5
E Revenues 3,865 SACHS Cell Intention and Computation for B17 {1
7
_8 |Expenses
9| Salaries 0,285 [17(1984) |
10| Utilities 0,178 1
A1 Materials 1,004
2] Administration 0,281 | Revenue/Org/Year | = | Expense/Year ‘
% Other 0455 o(1984)
E Total Expenses 2,203 3
16
I| Profit (Loss) 1,662 1,741 1878 1573 1,908

Figure 4: Theory Graph Example for the Spreadsheet from Figure

multi-view interface, where semantic services in SACHS
allow the user to explore the intention of a spread-
sheet. In the rest of the section we will present actual
and envisioned services and discuss their realization in
SACHS.

A very basic service that is missing in MS Excel is
an overall visualization of the formulae in the spread-
sheet together with the computed values. SACHS pro-
vides this as a multi-view interface — see Figure
For services that visualize the intention, the cells in
the spreadsheet must be interpreted, i.e., linked to
elements of the accompanying OMDOC document as
e.g. shown in Figure [3] Generally, all cells in a func-
tional block are linked to an OMDoc definition — the
definition of its intended function, while OMDoOC as-
sertions justify their formulae. This assignment is in-
ternally represented by an extra worksheet within the
spreadsheet we call the “SACHS interpretation”. This
is manually maintained by the spreadsheet author. In
the case of the DFKI controlling system, spreadsheets
are not hand-authored but generated from a control-
ling database, therefore the interpretation in the SACHS
system is mediated by a level of symbolic keywords
that insulate the setup against changes in the concrete
spreadsheet generation scheme.

Once the interpretation is established we can di-
rectly make use of the various elements of the OMDOoC
information for the respective objects (see the dashed
arrows in Figure |3). For instance, the Dublin Core
metadata element dc:subject of a definition can be
used as a SACHS label for the cell it interprets.

Moreover, MS Excel’s comment functionality is hi-
jacked to create SACHS comments that draw on the
respective dc:description element, which contains
a concise description of the object in question. In
contrast, the CMP element of the OMDOC definition
contains a detailed explanation using semantically
marked up representations of objects from the inten-
tion model. These can be mathematical formulae en-
coded as OPENMATH objects like the revenue function
p or technical terms like “difference” which we have
decorated in angle brackets in Figure [ The added
value of semantic annotation here is that the meaning
of both can be further explored: The frontend item
“SACHS explanations” allows this by providing “jump

points” from within the text to those cells that are as-
signed to the definitions of those symbols via the SACHS
interpretation sheet. Once jumped the user can look
up the available semantic information of that particu-
lar cell and so on.

A formula underlying a cell is mirrored in the for-
mula element FMP of the respective definition in the
semantic document (see Figure [3]) in the OPENMATH
format, this allows us to present it to the user in
math notation: Zle €;(1984) is more readable than
“=SUM(B9:B13)”.

From a semantic point of view, the possibility of
offering contextual views as the one in the blue pop-
up in Figure {4 is the most interesting and probably
helpful one. Such views allow a user to understand the
connections between spreadsheet cells and background
information. This view aggregates information about

e the intention of a cell in terms of the intended
function of its functional block, and the intended
arguments.

e how the cell value is computed from the values of
its arguments.

e and the intentions of the arguments.

All information points in the pop-up are hyperlinked
to their respective sources in the OMDOC document or
in the spreadsheet. In a future version of SACHS, these
hyperlinks could pre-instantiate the intention model
with the argument values and allow an exploration
from the view of the current cell — in our exam-
ple in Figure [4 the intention specialized to the year
1984. Note that our example here only shows the sit-
uation for a formula-computed cells. For other prove-
nances, the pop-up would visualize the provenance ob-
ject given by the formula interpretation. For instance,
for cell [B9] the provenance object is “imported from
Salaries.x1s[B5]”, so we can visualize the data from
that cell using the existing SACHS pop-up.

As OMDoc is organized by theories, the provision
of multi-level theory graphs as in the CPoint system
[Koh05al are nice-to-have services one can think of.

4 Conclusion and Outlook

We have analyzed the reasons for users’ difficulties
in understanding and appropriating complex spread-



sheets, as they are found e.g. in financial control-
ling systems. We claim that the ultimate cause is
that spreadsheets are weak as active documents, be-
cause their underlying semantic documents are biased
to computational aspects and fail to model the prove-
nance, interpretation, and ontological relations of the
objects and concepts operationalized by the system.
To remedy the situation we propose to explicitly model
the intention of a spreadsheet as an intention model
in a collection of OMDOC content dictionaries which
serve as an explicit knowledge base for the spreadsheet.
Finally, we present the work-in-progress SACHS system
that draws on such an intention model to offer various
semantic services that aid the user in understanding
and interacting with the spreadsheets.

In essence, our approach makes double use of the
following duality identified by FENSEL in [Fen0§]

e Ontologies define formal semantics for
information, consequently allowing in-
formation processing by a computer.

e Ontologies define real-world semantics,
which makes it possible to link machine
processable content with meaning for hu-
mans based on consensual terminologies.

In the analysis we look at the formal semantics of
spreadsheets and find a semantic bias that hampers
understanding since it fails to model consensual ter-
minologies and therefore leads to real-world usability
problems. In our proposed solution we extend the for-
mal semantics of spreadsheets to draw on explicitly
represented consensual terminologies.

While a semantic help system for a spreadsheet-
based controlling system was the original motivation
for our analysis, we feel that an explicit representa-
tion of the intention model of a spreadsheet has many
more applications: it can be used for verification of
the formulae, for change management along the lines
of IMWO07], and automated generation of user-adapted
spreadsheets.

Our approach seems to be related to “Class
Sheets” |EEO05| introduced by ENGELS and ERWIG.
Their class descriptions can also be counted as an ex-
ternal, structured intention model, which is referenced
by an interpretation mapping. We will have to study
the relation to our work more closely, but it seems
that their work suffers the same semantic bias towards
computational issues as the spreadsheets themselves.
But classes with extensive documentation or UML di-
agrams might go some ways towards generating a help
system like SACHS.

In the future we plan to extend the repertoire of
semantic services of the SACHS system. For instance,
we envision a dual service to the one in Figure [ which
could visualize where the value of a cell is used to get
an intuition for the relevance of a cell value.

At the moment, our approach presupposes that the
spreadsheet author documents the spreadsheet inten-
tion as an OMDOC document and also annotates the
spreadsheet with interpretation information. Both
tasks place a heavy burden on the author and cur-
rently restrict our approach to mission-critical or ex-
tremely complex spreadsheets. But we expect the bur-
den of specifying the ontology to decrease as more
and more OMDoOC content dictionaries for common

models (e.g. standard accounting techniques) ap-
pear. For the interpretations, we plan to adapt tech-
niques of header, unit, and template inference |AE04%
AFE06) to partially automate the annotation process
via suggestions.

But future extensions are not limited to spread-
sheets. Note that the semantic analysis in Section [2]is
largely independent of the computational information
that is at the heart of spreadsheets. The semantic in-
formation we are after only pertains to the use of data
grids as a user interface to complex functions. In the
future we plan to generalize the intention model archi-
tecture presented in Section [3]to the case of data grids
— e.g. tables of experimental results or raster data
from satellite images. Moreover, we want to develop
a native infrastructure for representing “data grids”
as a user interaction feature in OMDoOC: In accor-
dance with the format, the provenance and interpre-
tation functionality would allow to link grid presenta-
tions to their intention without leaving the language.
OMDoc-based systems could then pick up the seman-
tics and offer complex interactions based on them.
This would lead to much more general active docu-
ments. We could even turn the approach presented
in this paper around and generate SACHS spreadsheets
from OMDoc documents as active documents.

As a theoretical extension, we conjecture that the
interpretation mappings can actually be seen as logic
morphisms [RKO8|, which would allow us to re-use
much of the higher-level OMDoc functionalities based
on these.

Finally, we admit that we are still at the very be-
ginning of understanding the repercussions of viewing
spreadsheets as active and semantic documents. We
were quite surprised at the depth of meaning in even
our very simple example and are looking forward to
further spelunking.
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