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Abstract Model-based learning (MBL) has an established position within science education. It
has been found to enhance conceptual understanding and provide a way for engaging students in
authentic scientific activity. Despite ample research, few studies have examined the cognitive
processes regarding learning scientific concepts within MBL. On the other hand, recent research
within cognitive science has examined the learning of so-called relational categories. Relational
categories are categories whose membership is determined on the basis of the common relational
structure. In this theoretical paper, I argue that viewing models as relational categories provides a
well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling
within MBL (using ready-made models, constructive modeling, and generative modeling) and
discern the related cognitive aspects brought forward by the reinterpretation of models as
relational categories. I will argue that relational knowledge is vital in learning novel models
and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchi-
cal knowledge of experts. Lastly, I will examine how the format of external representations may
affect the learning of models and the relevant relations. The nature of the learning mechanisms
underlying students’ mental representations of models is an interesting open question to be
examined. Furthermore, the ways in which the expert-like knowledge develops and how to best
support it is in need of more research. The discussion and conceptualization of models as
relational categories allows discerning students’ mental representations of models in terms of
evolving relational structures in greater detail than previously done.

Keywords Models .Modelling.Model-based learning.Concept learning.Cognitiveprocesses .

Relational categories . Inquiry

1 Introduction

Model-based learning (henceforth, MBL) has gained an established status in science education
during the last three decades. One of the most important goals of MBL is enhancing students’
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conceptual understanding and facilitating conceptual change (Campbell et al. 2015; Coll and
Lajium 2011). MBL also helps to engage students in epistemically Bauthentic^ scientific
activities (Gilbert 2004; Koponen 2007; Lehrer and Schauble 2015). Indeed, models and
modeling capture much of what is essential in constructing, communicating, and accepting
scientific knowledge (Frigg and Hartmann 2017; Giere 1988; Gilbert 2004; Koponen 2007).

Within science education and philosophy of science, models are often viewed as represen-
tations of some aspects of the world (Frigg and Hartmann 2017; Oh and Oh 2011). In addition,
models can be seen as representation of some aspects of theory or that theories are applied
through models1 (Bailer-Jones 2009, pp. 126–152, 209; Frigg and Hartmann 2017). In these
respects, models have an important role in exploring theories and constructing the meaning of
concepts of the theory (cf. Nersessian 2008, p. 46).

Regarding learning with models, two broad approaches towards using models can be distin-
guished: using ready-made models (e.g., analogies or visualizations) to introduce more complex
concepts and asking students to construct models (Amin et al. 2014; Gilbert and Justi 2016, p.
29–30). While in these approaches models are typically taken to be representations of some
aspects of the world, they differ with respect to the relation of models and theory and whether the
approach emphasizes the end product or the process of modeling (cf. Gilbert and Justi 2016, p.
29–30; Koponen 2007). As a result, the cognitive processes related to learning might differ.

From the point of view of learning and instruction, the key question is why models are
central for learning scientific concepts. Answers arguing for the centrality of models in science
and/or equating models with scientific knowledge are inadequate since they identify external
reasons for the importance of models instead of cognitive reasons based on the psychology of
learning. Some studies have examined the cognitive processes2 underlying MBL (see, Clement
1989; Perkins and Grotzer 2005; Kokkonen and Mäntylä 2017; Nersessian 1995), but only a
few have attempted to develop a cognitively justified approach to understanding concept
learning within MBL, despite concept learning being among the most important aims of MBL
(Louca and Zacharia 2012). Moreover, constructing, using, and learning from models is
affected by the modeling tool (and/or representational format) used. In other words, different
ways of representing information may affect what is learned from the representation, but this
aspect is not particularly well understood (Louca and Zacharia 2012).

Interestingly, recent research on concept learning within cognitive science has geared towards
learning of so-called relational categories, which are categories whose membership is determined
on the basis of a shared relational structure (Goldwater and Schalk 2016). Goldwater and Schalk
(2016) have proposed that this might provide an interesting interdisciplinary link between science
education research (especially conceptual change) and cognitive science. They proposed that the
fundamental link between them is that relational concepts are central in learning science, as
reasoning about such mundane topics as density, for example, requires quite sophisticated
relational knowledge let alone more complex concepts found in physics.

In this theoretical paper, I examine the role of models in concept learning from the
viewpoint of relational knowledge and argue that models can be conceptualized as relational
categories. By doing so, I also aim to shed light on the nature of knowledge and the cognitive
processes involved in modeling and learning with models. I will mainly focus on physics,

1 That is, theories are not about concrete phenomena (i.e., they do not represent) but models are models of
concrete phenomena and thereby facilitate access to the phenomena and tell us how the theory is to be applied in
a specific situation (Bailer-Jones 2009, p. 126–152, 209)
2 A cognitive process is here understood as a series of operations that access and use knowledge stored in the
memory (Machery 2009, p. 9).
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although the results are widely generalizable. In physics, concepts are embedded in laws and/
or models, which involve two or more concepts and some information about their interdepen-
dencies. Consequently, concept learning entails learning such models and the relevant
relations.

First, I discuss how concepts are understood in cognitive science. Second, I review the
different approaches towards models and modeling in science education and examine them in
the light of the proposed conceptualization of seeing models as relational categories. Third, I
discuss the role of different representational means in facilitating learning and point out the
implications for research and practice. The proposed conceptualization provides a cognitively
well-motivated basis for the science-based views of models often used in MBL. Also, by
approaching MBL and its benefits by viewing models as relational structures or complex
arrangements thereof opens up and interesting possibility for bridging research on MBL with
cognitive science.

2 Relational Concepts

2.1 Concepts and Categories

Within cognitive science, concepts have been described as constituents of thoughts, bodies of
knowledge, mental representations, and knowledge structures. Machery (2009, p. 12) has
proposed the following definition, which captures much of what psychologists mean by the
term concept:

A concept of x is a body of knowledge, stored in the long-term memory and that is used by default in the
process underlying most, if not all, higher cognitive competences when these processes result in
judgements about x.

Despite the overarching definition offered above, much of the psychological literature of
concepts focuses on categorization.3 In addition to categorization, concepts are considered to
act as components of thoughts acting as filters between us and the world (Goldstone and
Kersten 2003). In other words, we access the world via concepts, which provide diagnostic and
often informative parsing of the world. Concepts enable inductive generalizations—once an
entity is categorized as a dog we know that it probably barks and has four legs. Moreover, the
generative nature of creative thought is typically attributed to concepts: concepts can be
combined to form new ones that can be readily comprehensible on the basis of the parent
concepts (although certainly not always). This is typically connected to the systematicity of
conceptual thought. That is, there are some regularities in how concepts’ meanings form when
concepts are combined; shaped by some emergent properties and real-world plausibility
(Goldstone and Kersten 2003).

While the terms Bconcept^ and Bcategory^ are sometimes used synonymously, they are
distinguished here. A concept refers to the mental representations we have about the entities in
the world, whereas category means the groups of the entities themselves. The concept of Bdog^
means the mental representation(s) we have about dogs, while the category Bdog^ means the
entities in the world categorized as dogs (Goldstone and Kersten 2003).

3 Categorization is here understood as a judgment that an item belongs to a certain class (Machery 2009, p. 153).
Many cognitive acts can be understood as categorization: recognizing objects as triangles or systems as instances
of Newton’s second law (Goldstone and Kersten 2003).
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2.2 Relational Concepts

One focus of interest in psychological research on concepts is how the concepts are mentally
represented. The representational format of concepts has important implications on how the
concepts are learned. Cognitive psychology has largely focused in studying so-called feature-
based categories, which are represented by sets of features describing the average or particular
members (as in prototype or exemplar theories, respectively). For example, dogs are animals
that Bbark,^ Bhave fur,^ Bfour legs,^ and so forth. Feature-based theories of concepts might be
useful for education, as in the case of children learning the basic level biological categories
(Sakamoto and Love 2010). Their usefulness is, however, limited, as learning science requires
grasping complex combinations of concepts often couched in mathematical formalism
(Goldwater and Schalk 2016). However, recent research has explored a more abstract basis
for categorization, namely, relations.

The relational categories framework is based on the idea that our understanding of such
simple concepts such as father stems from the relation(s) fathers bear to their offspring (for
example, begetting) (Gentner 2005). In short, a relational category is a category whose
membership is determined by a common relational structure (in contrast to common features)
(Gentner and Kurtz 2005, p. 151). That is, fathers of different species are grouped together
despite lacking perceptual similarity. If we consider a more abstract case such as Bcentral force
system,^ it might be even more evident that relations form the basis of our understanding. In
the case of Earth and Moon, for example, we may say that the Moon is related to the Earth by
the virtue of revolving around it. We may also construct a physics model of the situation,
which can be represented by mathematical functions (Gentner 2005).

The relational categories can be further divided into role- and schema-governed categories
(Gentner 2005; Goldwater et al. 2011; Goldwater and Schalk 2016). In essence, schemas
denote whole relational systems, whereas role-governed categories share a common role
within such system (Earth occupies a role category in a schema category central force system).
In addition, relations can be divided into first- and higher-order relations. First-order relations
relate objects (i.e., feature-based categories), whereas second- and higher-order relations relate
relations (Gentner 1983). However, feature-based and relational categories can become con-
nected, as the different roles in a particular schema are typically filled with a member of a
feature-based category (Goldwater et al. 2011).

It has been argued that the different categories (featural and relational) are cognitively
different in that they entail different cognitive mechanisms to be learned, reasoned with, and
encoded (Goldwater and Schalk 2016). Moreover, relational knowledge is fundamental to
much of our higher cognitive competences as it plays a vital role in, for example, categoriza-
tion, analogies, explanation, concept learning, reasoning, and problem solving (Halford et al.
2010). One crucial property of relational representations underlying these competences is that
relations preserve structural mappings, which allows, for example, making transitive infer-
ences (Halford et al. 2010). Structurally consistent relational representations allow the infer-
ence BA is left of C^ from the premises BA is left of B^ and BB is left of C^. These kinds of
representations allow making connections between perceptually dissimilar items—hence, they
enable relative independence from similarity of content and abstraction (Halford et al. 2010).
Hence, relational representations allow us to make inferences that go beyond the information
given and also beyond experience.

Relational representation also underlies the ability for analogical reasoning, which has an
important role in, for example, concept learning and reasoning. For example, analogies enable
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us to gain insight of unfamiliar phenomena by virtue of comparison to previously known
examples. Famous examples include the water pipe analogy for electric circuits and the solar
system—atom analogy. While the benefits of using analogues in education have been known
for some time (Duit 1991), it also has a vital role in scientific innovation (Dunbar 1997;
Dunbar and Blanchette 2001; Nersessian 2008, pp. 131–135,196–197). One mechanism
through which analogies work is structural alignment: identifying the underlying relational
pattern in phenomena and matching it with the novel phenomena under study (Gentner 1983,
1989, 2005). A crucial thing to notice is that the entities involved in analogical mapping need
not to share resemblances—they are mapped by the virtue of their similar roles and relational
structure (Gentner 2005).

Relations also provide the cohering nature of knowledge via linking the category features—
that is, features are not arbitrary but are often causally connected (birds are able to fly because
they have wings) (Murphy and Medin 1985). Categories whose features are connected in the
light of prior knowledge are typically referred to as coherent categories. Learning of novel
categories is faster when they are coherent. Importantly, many categories are defined only by
systems of relations that link features without specifying them; it suffices that the category
members satisfy the relational structure (Rehder and Ross 2001). This kind of category
membership amounts to a more abstract basis for categorization; the category members can
be devoid of any perceptual similarities.

3 Models as Relational Categories

Models encompass many of the essential aspects of creating, communicating, and accepting
scientific knowledge (Frigg and Hartmann 2017; Giere 1988). Regarding the learning of
scientific concepts, the roles of models in constructing the meaning and content of concepts
are of central importance. Another central question is how the knowledge contained in the
models gets represented and learned. Towards this end, I bridge the cognitive view of concepts
with MBL by briefly discussing the nature of models and arguing that models can be seen as
relational categories.

Within science education and philosophy of science, models are commonly discussed as
being representations (Frigg and Hartmann 2017; Oh and Oh 2011). Here, this broad charac-
terization is adopted. More specifically, models are here understood as external representa-
tions. I use the term external here to distinguish models as used in science from mental models
and other internal (i.e., cognitive) representations. Sure enough, mental models can represent
scientific models or play a part in model construction4 (cf. Nersessian 2008).

Moreover, I will focus my attention on conceptual models represented via various repre-
sentational means (mathematics, diagrams, graphs, and so forth). Conceptual models in
physics are models which give interpretive descriptions of phenomena in terms of the abstract
concepts and ideas of physics typically employing mathematical formalism (Bailer-Jones
2009, pp. 1–4, 185–188). In physics, models encompass descriptions of the variables, and
relations between the variables. The variables, on the other hand, serve to represent objects,
states of a system and their developments, or interactions (e.g., forces) (see, e.g., Wells et al.

4 To be sure, internal representations (e.g., mental models or concepts) are not straightforwardly turned into
external models, as this is a complex process involving making use of various representational means, past
research, and (possibly) interacting with others.
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1995). Regarding the learning of such models, an important question is how models and the
information incorporated in them gets represented and learned. To this end, I argue that groups
of related models can be conceptualized as relational categories, in direct correspondence to
the section 2.2.

For example, a Bcentral force system^ can be thought as a category, which includes the
phenomena that satisfy the relevant relations (Gentner and Kurtz 2005). In addition, as Frigg
(2010; see also, Nersessian 2015) has noted, models can become objects of study in their own
right, and therefore, we could think of a category that consists of the models (instead of the
phenomena) that describe a central force system. One justification for these claims comes from
the semantic view of theories, which identifies theories as consisting of classes of structures (or
classes of models) (Lorenzano 2013). These classes are identified on basis of principles or
laws—that is, on the basis of relations (Lorenzano 2013; see also, Giere 1988, 1994). For
example, according to Giere (1988, p. 82), Newtonian models are constructed by combining
Newton’s laws with various force functions.

The semantic view, particularly Giere’s version of it, has been influential in science
education (Koponen 2007; Koponen and Tala 2014). Recently, in contrast to the semantic
view, models have been described as being autonomous from theories rather than constitutive
of them (Morrison and Morgan 1999; see also, Frigg and Hartmann 2017). In this view,
modeling proceeds, for example, via model template, which is Ban abstract conceptual idea
embedded into a mathematical form or method^ (Knuuttila and Loettgers 2014, p. 298). In this
respect, models of this kind do not fall into categories based on laws or principles associated
with a specific theory but are based on some more general templates that, nevertheless, are
relational by the virtue of being instantiations of some mathematical structure. These templates
then may make us sensitive to perceiving certain patterns across different empirical systems
(Knuuttila and Loettgers 2014).

In addition to the apparent differences regarding the relation between models and theory,
the above views have also differing, even conflicting, views about the underlying epistemic
aspects of modeling—for example, why and how are models able to represent the world. I,
however, am mostly concerned about the structure and representational means associated with
models. The differences between the above views are reflected in the different approaches
within MBL, which emphasize different aspects of models and modeling, partly depending on
the perceived goals of the different approaches (to be clarified in detail later). With respect to
learning, it is important to discern these differences as the learning processes and the practical
implications may differ.

Regarding the structure of models, there are various kinds of relations embedded in
models. While for example, Ohm’s law, U = RI, typically has a causal reading (voltage
causes current), Kirchhoff’s current law, ∑Ik = 0, may be best described as a constraining
equation. There are also various relational patterns, which refer to the ways in which the
variables are linked to each other (such as linear causality, common cause, feedback loops,
and cyclic causalities) (for examples, see Kokkonen and Mäntylä 2017; Perkins and Grotzer
2005; Rottman et al. 2012).

It should be noted, however, that viewing models as relational categories does not mean
seeing models as mere structures or relations. As pointed out in section 2.2, relational and
featural representations may become connected, as members of feature-based categories
typically fill the roles within a certain relational schema (Goldwater and Gentner 2015). This
is perhaps reflected in Frigg’s (2010) note of how scientists often think of models as if they
were physical things. Scientists might, for example, describe a central force system as
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consisting of two objects with size, shape, and other perceptual features in addition to the
relational information.

To be sure, there are differences in the categories typically discussed within cognitive
science compared to scientific models. While cognitive science has examined fairly simple
categories, models in science may include complex relations that span across multiple levels of
hierarchies. Moreover, models themselves may become connected forming coherent, hierar-
chical systems of knowledge (as explained in more detail later on) (see, also, Giere 1988, p.
82–86). However, it is precisely the nature of relational representations that underlies these
kinds of features associated with models. The relations provide coherence to the individual
models by connecting the variables together and to the conceptual structure via the interrela-
tions between the models.

4 Models in Science Education

Regarding the educational implications of seeing models as relational categories, it is impor-
tant to look at what role relational knowledge plays in learning complex scientific knowledge.
Insofar as models are at the core of learning this knowledge, it is important to examine the
different approaches towards learning about models and modeling within MBL. This is
because, in the different approaches, models play different roles and thus different aspects of
the knowledge are emphasized. Also, the learning goals (targeted knowledge and processes)
differ. Consequently, the cognitive processes and representations might differ.

4.1 Approaches Towards MBL

Within science education, models and modeling emerged as a novel area of investigation in the
1980’s (Amin et al. 2014, p. 64; Gilbert and Justi 2016, p. 29). MBL recognizes different
approaches of learning with models and modeling (for reviews see, e.g., Gilbert and Justi
2016; Oh and Oh 2011). For example, already in the 1980’s, two distinct traits emerged: use of
models as a way to introduce scientific ideas and modeling as a way to build knowledge and
understanding (Amin et al. 2014; Gilbert and Justi 2016, p. 29). Reflecting on the literature and
the discussion in the previous section, three broad groups arise as candidates for reinterpreta-
tion from the point of view of relational categories: Using ready-made models, constructive
modeling, and generative modeling.

In Busing ready-made models,^ models are often used to introduce, demonstrate, and
explain complex ideas, phenomena, and processes to students. Different visualizations, use
of analogies, concrete material models are familiar examples of this kind of model use
(Campbell et al. 2015; Coll et al. 2005; Justi and Gilbert 2003; Oh and Oh 2011). The goal
is explicitly learning a target model (Justi and Gilbert 2003). This category overlaps with
Blearning curricular models^ and Blearning to use models^ suggested by Gilbert and Justi
(2016, p. 61) and with Bexploratory modeling^ described by Oh and Oh (2011). One of the
common features in these approaches is using a model provided by the teacher and empha-
sizing that students are not involved in modeling per se (i.e., constructing a model).

While Busing ready-made models^ is an inherently teacher-centered approach, the goal of
Bconstructive modeling^ is to make students construct models often in inquiry-based contexts.
Thus, models are used to generate hypotheses and explanations, as well as design experiments
and gain understanding. Importantly, models are seen as parts of a larger explanatory
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framework, which provides the outline for the model construction—thus, models are seen as
subordinated by theories (Hestenes 1992; Windschitl et al. 2008). Also, models are typically
evaluated by experimentation and subsequently revised (see, e.g., Hestenes 1992).

Model construction is also the target of Bgenerative modeling,^ but in contrast to
Bconstructive modeling,^ it is acknowledged that in science, models are seldom straightfor-
wardly derived from any existing theory (Koponen and Tala 2014). In this kind of approach,
modeling can be viewed as an epistemic practice for gaining knowledge, and models as tools
for knowledge construction. Hence, models are given more autonomous status both in theory
formation and in inquiry in general (see, e.g., Koponen and Tala 2014; Lehrer and Schauble
2015; Passmore et al. 2009). This is an interesting viewpoint as it assigns models a central role
in the creative process of generating scientific knowledge (Koponen and Tala 2014).

It should be noted that using ready-made models and model construction approaches
embraces different learning goals (Justi and Gilbert 2002) and differs with respect to the
complexity of the reasoning targeted (Amin et al. 2014). While the goal of using ready-made
models might be enhancing conceptual understanding within a timeframe of a single lesson (or
less), model construction approaches often try to teach students also about science and/or how
to do science via interventions spanning multiple lessons or even years (Amin et al. 2014).

BConstructive modeling^ and Bgenerative modeling^ can be contrasted with Blearning the
reconstruction of a model^ and Blearning to construct a model de novo^, respectively (as
suggested by Gilbert and Justi 2016, p. 61). In Gilbert and Justi’s categorization, the distinction
is made based on whether the model to be constructed is known to the students beforehand or
not (Gilbert and Justi 2016, p. 61). However, the categorization here is partly motivated by the
relation between models and theory. While Bconstructive modeling^ sees models as subordi-
nated by theories (cf. Giere 1988), Bgenerative modeling^ sees them more as autonomous tools
for investigation (cf. Morrison and Morgan 1999). When interpreted from the point of view of
relational categories, these different roles of models also reflect different learning goals and
different aspects of conceptual knowledge associated with models. While in the former the
target is often expert-like knowledge structure (cf. Hestenes 1992), the latter emphasizes the
process of constructing and justifying knowledge (cf. Koponen and Tala 2014). In what
follows I discuss the three categories in more detail and give illustrative examples of them.
Moreover, I examine the cognitive aspects related to each in the light of the relational
categories framework.

4.2 Using Ready-Made Models

4.2.1 Ready-Made Models in Science Education

Using analogies provides a familiar example of using models to introduce or demonstrate a
complex idea, concept, or phenomenon. The assumption underlying learning with analogies is
that it helps students understand a novel domain by showing how it is similar to some already
known domain—or as Duit (1991, p. 651) put it: Bto make the unfamiliar familiar .̂ Further-
more, analogies are also seen as important Btools of discovery^ (Harrison and Treagust 1993,
p. 1291), as scientists frequently use analogies in developing their models (Coll et al. 2005).

Analogies are essentially seen as a way to enhance the learning and understanding of the
target domain. For example, Harrison and Treagust (1993; Treagust et al. 1996) taught
refraction by using an analogy between two wheels rolling from paper to carpet and light
traveling from glass to air. Clement (1993) on the other hand described the use of bridging
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analogies, which are structured intermediate analogies. Bridging analogies are used to create a
chain of structured analogies in order to scaffold students into grasping the validity of the
original analogy, which they might otherwise fail to see (Clement 1993).

In addition to analogies, different visualizations, concrete objects, and sufficiently
simplified teaching models are frequently employed. For example, Smith et al. (1997) used
a variety of models and simulations to engage students in explicit reasoning about weight and
density, which are known obstacles for students. They provided students with various con-
ceptual models, for example, the dots-per-box model, intended to offer them visual external
representations of physics concepts with shared relational structure (Smith et al. 1997). In a
related study, Wiser and Amin (2001) represented heating as the number of E’s entering an
object from a heat source and temperature as the number of E’s per molecule—thus explicating
the distinction between heat (the total number of E’s) and temperature (the E’s per molecule).

Frederiksen et al. (1999) introduced students to successive models at different levels of
abstractions in the context of electric circuits. They devised a series of models with
Bderivational linkages,^ which means that the models are related pairwise at lower and higher
levels of abstractions. For example, students are first introduced to a qualitative particle model
of electricity, which is developed into aggregate model based on simple flow equation
(Frederiksen et al. 1999). Consequently, this is succeeded by a fully fledged algebraic model.

4.2.2 Cognitive Aspects of Using Ready-Made Models

Importantly, in the above examples, grasping the relational structure of the models is key.
Dots-per-box, E’s-per-molecule, and rate of electrons are relational constructs and learning
them requires grasping this relational structure. Analogies should also be understood as
structural similarities. That is, analogies are not based on perceptual similarity but on relational
correspondence between the target and the source (Gentner 1983). For example, in Clement’s
(1993) examples, the table and the spring do not share perceptual similarities but both push up
on something, that is, exert an upward force. Simply put, the situations are structurally similar.
Research on how people understand relations and causality have been an important focus in
cognitive science. Much of this research has focused on analogies and analogical reasoning, as
it is an important process for acquiring relational concepts. Especially, recent research on
concept learning has also come to concern relational categories.

Within cognitive science, research on how people understand analogies led to the devel-
opment of the structural alignment framework according to which the underlying character-
istic of analogs is the alignment of the relational structure (Gentner and Markman 1997; see
also, Gentner 1983, 1989, 2005). That is, in the above example, spring maps to table and hand
maps to book and these are tied together by the relation push up on. Structural mapping does
not concern only on analogical reasoning but also it is seen as an important mechanism for
learning relational knowledge more generally.

Importantly, not all features or relations are transferred across the analogy; a relation
belonging to an interconnected system of relations is more likely to be imported (Gentner
1983). That is, relations that belong together are more likely to be mapped than separate ones.
But, in addition, the systematicity principle favors nested relational structures, structures
wherein lower-order relations are governed by higher-order ones (Gentner 1983; Gentner
and Markman 1997; Goldwater and Schalk 2016).

Research has also pointed out several potential pitfalls in using analogies (Clement
2013; Duit 1991). For example, students might not have sufficient knowledge about the

Models as Relational Categories 785



source domain in order to draw the intended inferences. The source may also be Btoo
far^ from the target for students to grasp the mapping between them (Clement 2013, p.
425). Moreover, students’ prior knowledge may interfere with the process and prevent
students from understanding the analogy. Students might, for example, transfer nones-
sential properties to the target domain (e.g., the appearance of the compared cases)
instead of the deep, relational features (Richland and Simms 2015). Harrison and
Treagust (1993) suggested that teachers should use analogies that are familiar, and that
shared as well as unshared attributes of the source and target should be explicitly
identified. The bridging analogies strategy discussed by Clement are intended to
provide students an initial, physical intuition and then gradually build the mapping
between the source and the target while retaining the relational structure (Clement
2013). In other words, the students were helped to create a physical intuition of the
source (which was not readily available) and then to transfer this into the target step by
step.

While in science education analogies are seen as a way to enhance learning of the
unfamiliar target domain, the structural alignment framework also emphasizes that analogical
comparison and analogical reasoning are essential in order Bto promote general causal
abstractions [emphasis added]^, which are fundamental for the transfer of knowledge across
domains (Goldwater and Gentner 2015, p. 138). It is argued that while other processes exist for
acquiring causal and/or relational knowledge in specific domains, transfer performance hinges
on acquiring abstract, general relational representations. It is proposed that analogical com-
parison across relationally similar cases enables this. It should be noted, however, that
comparison across cases is most beneficial when the source and target are accurately repre-
sented (Goldwater and Gentner 2015)—that is, abstracting the higher-order relations depends
on accurately representing the lower-order details. This might be related to how providing
students with Banchoring intuitions^ enriches students’ representations of the targets thereby
enhancing analogical transfer (Clement 2013).

Moreover, it has been suggested that science teaching enhances finding relational com-
monalities across domains and this is based on the ability to perceive the commonalities5

(Goldwater and Gentner 2015; Rottman et al. 2012). Thus, finding the relational commonal-
ities is not just about being more knowledgeable on some domain or across multiple domains
but also about possessing general causal patterns and being inclined to look for these patterns.
Therefore, acquiring the patterns and finding commonalities enhances understanding on each
domain and enables novel insight.

4.3 Constructive Modeling

4.3.1 Constructive Modeling in Science Education

The science education studies presented above exemplify the benefits of using models to
support the learning of abstract science ideas. Some have, however, pointed out that ap-
proaches similar to those presented above make use of ready-made models (Amin et al. 2014;
Jonassen et al. 2005; Justi and Gilbert 2002; Oh and Oh 2011). Jonassen et al. (2005) argued
that while, for example, intelligent tutoring systems and microworlds allow learners to interact

5 Rottman et al. (2012) suggested that science students had acquired more experience of comparing across
different domains. This multidisciplinary experience may then lead to extraction of general causal patterns.
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with them, they are used only for infer the propositions built in the systems and for confirming
hypotheses.6

In contrast, certain approaches take model construction as an explicit target for instruction
(Halloun 2007; Hestenes 1992; Passmore et al. 2009; Windschitl et al. 2008). Often, modeling
is embedded in inquiry activities, which relies on cyclical development and testing of models.
Typically, inquiry starts with a question or a problem posed in some phenomenological
context. Then a model is constructed in order to generate hypotheses and/or predictions about
experiments, whose purpose is to validate or test the model (Louca and Zacharia 2012). In
model-based inquiry approaches, the structure of scientific knowledge is emphasized so as to
underscore the models’ role as parts of larger, more comprehensive frameworks (i.e., theories)
(Windschitl et al. 2008; see also, Passmore et al. 2009). Indeed, Windschitl et al. (2008) noted
that too often naive discovery is employed wherein questions are often Barbitrary^ and
hypotheses Bpoorly informed quesses^ (p. 946).

In Hestenes’s and Halloun’s approaches, the focus is on learning a selected number of basic
models in order to acquire Bthe essential factual and procedural knowledge^ (Hestenes 1987;
see also, Halloun 2007). The structure of physics knowledge is then seen to comprise of these
families of models together with the theory and principles for relating the models and
constructing them from the theory (Halloun 1996; Hestenes 1992; Wells et al. 1995). Acquir-
ing and mastering the basic models is seen as essential in the development of scientific
understanding, as they help to develop a meaningful understanding of the concepts and lay
the ground for developing more complex models (Halloun 1996).7

The Bfamilies^ of such models constitute what Halloun (2007, p. 664) called a
Bmiddle-out theory structure^ much in the vein of Giere’s (1988, 1994) conception of
the structure of scientific theories. According to the model-based view of science,
scientific theories are equated with populations of models along with hypotheses
linking the models with the observable world. The population of models on the other
hand consists of related families of models, which are typically constructed (in New-
tonian mechanics) by combining Newton’s laws with various force functions (Giere
1988, p. 82). Therefore, the models are related to each other via sharing mutual
concepts and/or relations. For example, Coulomb’s law uses the concepts of force
and charge, whereas the concept of electric field relates force, charge, and Coulomb’s
law. Furthermore, certain models are derived from other, more general ones by adding a
specific force function (such as a damping force in the case of a simple linear
oscillator). This creates hierarchical relations between models (in contrast to the inter-
dependencies brought by mutual concepts and/or relations). In this way, models are
central for introducing structure for the whole knowledge system8 (Nousiainen and
Koponen 2010).

6 Of course, it can be argued that what differs between modeling and model use approaches is the intended scope
and the complexity as well as the scope of the targeted knowledge (cf. Amin et al. 2014).
7 Giere (1988, p. 75) notes that Kuhn (2012/1962, p. 186-190) was right to emphasize exemplars in the training
of scientists. Through exemplars, scientists learn to interpret mathematical symbolism and to identify cases to
which the exemplars fit (Giere 1988, p. 75; see also, Kuhn 2012/1962, p. 186–190).
8 Creation of new concepts and new relations (i.e., laws) can be supported through operationalization (i.e.,
making concept measureable through preexisting concepts) and subsequent experimentations. The results of the
experiments are presented through models, which then serve to introduce these new concepts and relations to the
preexisting structure.
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4.3.2 Cognitive Aspects of Constructive Modeling

In constructive modeling approaches, models are seen as parts of a larger framework, and this
underscores the structure, coherence, and interconnected nature of scientific knowledge. These
kinds of approaches have had good results with respect to both conceptual knowledge and
general problem solving (Taconis et al. 2001; Wells et al. 1995).

The hierarchical and interconnected nature of physics knowledge is reflected in the studies
of experts’ and novice’s representation of physics knowledge. Several studies have found that
experts categorize physics problems according to the underlying principles, whereas novices
are sensitive to the superficial surface features (such as the different objects present in the task)
(Chi et al. 1981; Savelsbergh et al. 2011; Snyder 2000). What is more, Snyder (2000) showed
that experts, intermediates, and novices all represented problems at multiple levels of abstrac-
tion, but that intermediates’ and experts’ representations were more principle-based than those
of novices who were sensitive to the concrete features of the problems. Also, only experts and
intermediates could represent the problems at a high level of abstraction based on physics
principles. Rather similarly, another study showed that experts, in contrast to novices, could
form more coherent, multi-level representations of physics problems (Savelsbergh et al. 2002).
Furthermore, and perhaps more importantly, while some novices possessed relevant abstract
knowledge, they did not connect to the concrete features of the problems (Savelsbergh et al.
2002).

The above problems are related to the fact that recognizing a phenomenon or a problem as
an instance of Newton’s second law, for example, is not straightforward. Typically, recognition
of the deep features of a problem requires a lot of elaborations (or Bconstruction rules^) in
order to build a meaningful physics representation (Savelsbergh et al. 2011). Indeed, Hestenes
(1987) argued that experts spend considerable amount of time in constructing problem
representations to which specific principles can then be applied. Which features of the problem
are relevant is a real insight issue, and without any scaffold students are likely to attend to
irrelevant things.

As argued above, the ability to form complex interconnections and abstract, hierarchical
representation is a hallmark of relational representations (Halford et al. 2010). More specifi-
cally, relations cohere individual concepts and categories such as central force systems, but
additionally, relations cohere entire conceptual systems (as exemplified by, for example,
experts’ representations of physics problems). In essence, specific instantiations of certain
physics laws (such as different force laws) cohere features within individual categories (that is,
instantiations of the same problem type) and relations among different categories or other
knowledge structures provide global coherence, that is characteristic of expert knowledge.

To the extent that relations and abstract general principles underlie the deep, coherent
structure of expert knowledge, the question is how such knowledge is formed. There is some
evidence that abstracting the principles through analogical comparison together with specific
instructional methods such as self-explanation, scaffolding, and studying worked examples
would be beneficial (Richey and Nokes-Malach 2015). Especially in mathematics education,
research has begun to examine the benefit of case comparisons, in which students are asked to
compare, for example, two different problem solution procedures (Alfieri et al. 2013).
Comparisons may lead to reduced, more abstract, and principle-based representation of the
common features of the cases, which might lead to better transfer performance (Alfieri et al.
2013). The implementation of such methods within MBL has not been examined, but it would
be an interesting path for future research. For example, how finding commonalities between
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novel cases and the basic models described by Halloun (1996) and Hestenes (1992) could help
develop the deep, structured knowledge?

It has also been suggested that teachers’ demonstration of the modeling of problem solving
processes or letting the students compare worked out solutions leads to learning of deep,
structured knowledge (Richey and Nokes-Malach 2015; Rittle-Johnson and Star 2007;
Savelsbergh et al. 2011). It may also be that the sufficiently simplified epistemology of, for
example, Hestenes’s and Halloun’s approaches as wells as their clear and comprehensive rules
that lead from the theoretical principles to model construction contribute to their effectiveness
by scaffolding the teachers and students alike. However, more research is needed about the
development of coherent knowledge systems and how interrelated concepts cohere or fail to
cohere across contexts (see, also, Goldwater and Schalk 2016).

4.4 Generative Modeling

4.4.1 Generative Modeling in Science Education

Hestenes’s approach, for example, emphasizes the mathematization of physics and the subor-
dination of models to theories (Koponen and Tala 2014). Such an approach Bclearly constitutes
an authentic way of modelling in physics^ when a well-developed theory is used as a
framework for making predictions (Koponen and Tala 2014, p. 1149; see also Koponen
2007). Moreover, as experiments are typically for validating the models, the relation between
them is that of Bverificatory justification^ (Koponen and Mäntylä 2006, p. 32). In certain
approaches, however, models have a more autonomous role with regard to the theory, in that
the theory has only a guiding role in how models are actually constructed (Koponen and Tala
2014). Models are primarily seen as purposeful representations created for making sense of the
world and as forms of explanations for questions arising in some social context. Hence, models
are seen as tools for thinking, reasoning, and creating scientific knowledge. Lehrer and
Schauble (2015) also argued for viewing modeling as a practice rather than merely a tool
for making predictions. This view highlights the role of models in knowledge generation, as
the models are subject to open-ended revision influenced not only by new phenomena but also
by, for example, new instrumentation.

In generative modeling, the modeling activities are embedded in dynamic simula-
tions, which in turn are framed in terms of difference or differential equations or, for
example, agent-based simulations (Koponen and Tala 2014). Importantly, attention
needs to be paid on how certain model-level relations and dependencies produce
observable behaviors—in particular, what kind of motion arises, for example, from
linear or nonlinear restoring forces and their combinations and how does damping
affect the phenomena (Koponen and Tala 2014). Simulations have a key role in
Brunning the models^ in the virtual world, as they allow us to explore the dynamical
behavior of the models as well as learn and gain knowledge from the models
(Koponen and Tala 2014).

In the elementary school context, Lehrer and Schauble (2015) have noted that inquiry and
external representations are intertwined as evolving external representations can act as re-
courses and facilitate different inferences and bring about novel questions (Lehrer and
Schauble 2015). Even simple models, such as scale models, are important in communicating
what is being modeled (Lehrer et al. 2001; Lehrer and Schauble 2015). As students become
more knowledgeable and competent in using different kinds of models and acquire a richer
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repertoire of representations, there is a shift towards more abstract models (Lehrer et al. 2001;
Lehrer and Schauble 2015).

Here, the choice and understanding of the external representational format is of central
importance. For example, the simulations are based on computational templates, which are
mathematical structures such as formulas (Koponen and Tala 2014).9 These structures are
familiar frameworks that are suitably decontextualized so that they can be flexibly transferred
and applied across contexts. The template determines which aspects of the target system can be
represented and thus strongly influences what can be learned from the model (Koponen and
Tala 2014). Hence, mathematics is not seen as mere computation but as a representational
means facilitating conceptual development. For example, children were able to differentiate
between weight and density—a difficult topic—after being introduced to the mathematical
concepts of volume, measure, and similarity (Lehrer et al. 2001; Lehrer and Schauble 2015;
see also, Amin et al. 2014). Hence, it would be Bpreferable to learn more about how these
forms of understanding [mathematics and physics] can mutually bootstrap each other^ (Lehrer
et al. 2001, p. 71).

Viewing models as somewhat autonomous tools for thinking expands the notion of models
and their role in science and science education. When allowing models a relative autonomy
from theories, we may ignore, for example, some causal factors in order to explore certain
others and in doing to render the models Bunrealistic.^ Indeed, within philosophy of science, it
has been argued that modeling often does not strive for realistic representations of its targets; it
suffices that they are representative (Morrison and Morgan 1999). Some argue that this is
precisely the aspect of modeling that makes models work and allows them to be conveniently
mathematically represented (Humphreys 2004, p. 84–86, 116–124; Knuuttila and Boon 2011;
Knuuttila 2011; Koponen 2007). Moreover, this is what allows us to learn from the models
(Knuuttila 2011; Knuuttila and Boon 2011). Interestingly, as a consequence, the abstractions
may make the results derived from the models intractable. That is, we may not know which
assumptions are responsible for the results and, furthermore, the results of a certain model may
depend partly on the chosen representations (Knuuttila 2011).

4.4.2 Cognitive Aspects of Generative Modeling

Seen from the relational categories framework, the important aspects in the above kind of
modeling are the roles of generic relational mental representations and external representa-
tional formats. As noted earlier, understanding of the generic causal relations is of central
importance in making connections across contexts—that is, noticing the similarities between
development economic pricing bubbles and melting of polar ice caps, for example (both are
Bpositive feedback systems^) (Goldwater and Gentner 2015; Nersessian 1995).

Within science education, students’ Brepertoire^ of different causal modeling styles has been
recognized as one major hurdle in acquiring science concepts and models and consequently in
using these model types in novel situations (Perkins and Grotzer 2005). That is, students might
find modeling with constraint equations familiar after being exposed to modeling dynamic
systems with Newton’s laws or electric circuits with Ohm’s law (Perkins and Grotzer 2005).
Similarly, Collins (2011) has identified various epistemic forms, which denote structures and
functional or causal relationships. For example, constraint equations are a specific type of

9 In this, they follow Humphreys (2004, p. 60–67) who introduces the concept of conceptual template on which
computational models are built.
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epistemic form. Epistemic forms are kinds of generic relational patterns that guide the inquiry
process and consequently concept formation as well (Collins 2011). Initially, however, students
are largely unaware of sophisticated modeling styles (and/or epistemic forms) and are inclined
towards linear and/or sequential causality (for example, A causes B, which causes C and so
forth) instead of more complex patterns such as constraint-based interactions (Kokkonen and
Nousiainen 2016; Kokkonen and Mäntylä 2017; Perkins and Grotzer 2005).

Goldwater and Gentner (2015) argued that while cognitive science has found several experi-
ences that lead people to infer causal structures, gaining abstract, generic knowledge about the
relations requires both exposure to particular causal phenomena and applying this knowledge
across domains. Perkins and Grotzer (2005) explicitly introduced students to different types of
causal models through discussion and application in different contexts (electricity, density, natural
selection and ecosystems). They concluded that students who were exposed to discussions about
different causalities outperformed the control group. Importantly, the discussions were framed in
the context of a particular science topic and did not involve presenting students with generic
accounts of causality. Evidence from the development of children’s models and representational
capabilities also suggests that they first need to acquire sufficient knowledge of the domain and
the target phenomena (for example through concrete models) and then progress to more
decontextualized, abstract models (Lehrer and Schauble 2015).

The notes on external representational formats and templates suggest that not only do
students need to possess abstract, general causal knowledge but they also need to have
sufficient representational capabilities in order to engage in advanced modeling practices.
Rather obviously, they need to have sufficient knowledge of computational methods and/or
sufficient mathematical proficiency in order to generate computational and/or mathematical
models. However, besides viewing mathematics as mere computation for deriving results,
there is evidence that suggests (along with the preceding discussion) that mathematical and
other means of external representations deeply interact with the relational reasoning processes.
As well as having some interesting cognitive implications, this underlines the epistemological
arguments offered above.

At the very least, different external representational formats (graphs, symbolic representations,
mathematical equations) can support or hinder relational reasoning and the acquirement of relational
knowledge. For example, the use of graphs instead of tables leads to better and more flexible
performance when interpreting data—but may also induce interpretive bias (Braithwaite and
Goldstone 2013). In the context of problem solving, students’ performance depends on the
representational format (Kohl and Finkelstein 2006) and their strategy choice (De Cock 2012).
Furthermore, students’ ability tomaster different representations also affects their learning of specific
concepts (Nieminen et al. 2012). On a more radical note, Zhang (1997) has argued in favor of
representational determinism according towhich the representational forms definewhat information
can be perceived andwhich cognitive processes and structures activated. In short, the representations
could determine which cognitive biases get activated and thus affect reasoning and learning.

5 Discussion

5.1 The Role of Generic Relational Knowledge

In the preceding sections, I offered three broad roles for models and modeling within science
education. The importance of generic relational knowledge arose as a common theme from the
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reinterpretation of the three roles. Across all three roles, one vital aspect of learning with and
about models is grasping the relational knowledge. Recent research suggests that sensitivity to
the relational patterns is an important factor in learning and this can be enhanced, for example,
through comparing and aligning different cases, which leads to abstracted relational knowl-
edge (Goldwater and Gentner 2015).

It seems that specific training on, for example, science enhances sensitivity for looking for
relational patterns (see, Goldwater and Gentner 2015). One interesting interpretation of this is that
people with certain background are more prepared for certain types of learning tasks even if the
tasks are not within their area of expertise. It has been suggested that people’s interpretive
knowledge strongly affects their ability to learn from different kinds of situations (Schwartz et al.
2005). Interpretive knowledge guides how people frame the problem and this has major implica-
tions for subsequent thinking and cognitive processing (Schwartz et al. 2005). This suggests that
learners’ knowledge of different kinds ofmodel systems, for example, affects how they are going to
frame a novel problem and what kind of conceptualizations and inferences they can make—as
suggested also by others (see, Perkins and Grotzer 2005). As suggested above, mathematics,
computationalmethods, and instrumentation are intertwinedwith concept formation andmodeling.
Therefore, they can also be interpreted as parts of what make up interpretive knowledge and affect
how people will frame novel problems. It would be an interesting line of research for the future to
investigate how, for example, mathematical proficiency, exactly affects concept formation and
learning and how it prepares people for future learning.

5.2 Difficulty of Relational Mapping

Some of the problems in learning relational knowledge may be attributed to the complexity of
the mapping process, which leads to high cognitive processing demand (Richland and Simms
2015). Indeed, while relational mapping is important, it is also highly demanding and requires
lot of cognitive capacity. For example, it simply takes more time to process relational matches
than featural (objects that share literal similarity) (Goldstone and Medin 1994). Likewise,
processing relations require a higher toll on the working memory, in accordance with the
cognitive load theory (Goldwater and Schalk 2016).

The relational complexity theory assesses the relational complexity of representations as the
number of entities that are related, and maintains that our working memory capacity limits our
processing to a quartenary relation in parallel (Halford et al. 2007; Halford et al. 2010). More
complex structures can be handled by processing them sequentially or by chunking (which
renders some of the relations inaccessible). In addition to the number of relations, the relational
structure itself might have an effect on the learnability. Category learning research suggests
that chain-like structures are easier to learn, as are those where relations operate on the same
object (Corral and Jones 2014).

5.3 Mechanisms of Change

Regarding the development of relational knowledge, research suggests that it is a slow and
gradual process. Despite grounding my arguments in category learning research, I argue that
learning models or physics concepts are not based on simple category assignment. Instead, it is
likely to involve various related mechanisms such as analogical mapping, theory revision, and
theory redescription (Halford et al. 2010). Theory revision is a process of changing the

792 T. Kokkonen



relevant relational structure. It can happen when learners evaluate their existing relational
knowledge against evidence and change it in response to error (Dixon and Kelley 2007).
Within cognitive science, the theory revision process has been demonstrated across a wide
variety of domains. There is evidence that the revision of the relational structure can happen,
for example, via refinement, that is, by stripping irrelevant information, or via elaboration,
which amounts to adding information to the representation (Corral and Jones 2014). Theory
redescription on the other hand capitalizes on successful performance in contrast to revision,
which happens in response to errors. Redescription means consolidating existing relations into
new (higher-order) representations via abstraction (Dixon and Kelley 2007).

Research within science education has examined a similar kind of mechanisms although
discussion between the disciplines (science education and cognitive science) has been limited.
For example, Kokkonen and Mäntylä (2017) proposed model change, refinement, and elaboration
as the possible change mechanisms related to student’s explanation models. Elaboration refers to
adding relations to the existing structure, while refinement means simplifying the structure via
conglomerating different models into one. Similarly, Clement and Steinberg (2002) described the
evolution of learner’s mental models as a small stepwise revision induced by discrepant events.

5.4 Mental Modeling

The notion of mental models has been very influential in educational research investigating the
learning of scientific concepts. While there is no consensus or rigorous definition about mental
models, they are typically considered to contain structural and/or causal information about the
target being modeled (Markman 1999, pp. 248–276; Nersessian 2013). Often, mental models
are used to describe the mental representations that people construct and use when they are
reasoning about the external world (Chi 2013; Vosniadou 1994). Hence, they serve as the
vehicles for making inferences about phenomena. Moreover, mental models enable us to make
predictions about the system and reason about, for example, unexpected events. Consequently,
relational representations are at the core of the notion of mental models, insofar as the mental
models involve using relational information.

Nersessian has extensively discussed the notion of mental modeling with regard to model-
based reasoning, conceptual change, and conceptual innovation in science (Nersessian 1995,
2008, 2013, 2015). Indeed, the generative modeling account (see, Koponen and Tala 2014)
described above takes its inspiration from Nersessian’s (1995) conception of the modeling
process. Also, many accounts of conceptual change rely on notions of mental models and
model-based reasoning (Chi 2013; Vosniadou 1994). Broadly speaking, model-based reason-
ing is reasoning in which inferences are made by means of constructing, evaluating, and
applying models. According to Nersessian, mental modeling is a central cognitive process
underlying model-based reasoning.

In Nersessian’s account, models are developed in an iterative cycle wherein models are
constructed, evaluated, and adapted. During this process, models become targets of investiga-
tion in their own right as they serve as Binterim interpretations of the target problem^
(Nersessian 2015). Mental models enable inferences through simulation processes and
interactions with external representations. Interestingly, Nersessian (2015, p. 459) suggested
that simulations can be Boff-loaded^ to external representations (e.g., computational models).
This reiterates the point that the choice of external representations and the ability to use them
strongly influence the outcomes of modeling and possibly also the concept learning process
(Lehrer and Schauble 2015). While the idea that our environment influences our cognitive

Models as Relational Categories 793



processes is trivial, the extent and way in which it does so is an interesting question for future
research especially within MBL, as modeling relies on constructing and reasoning with
external representations.

The above discussion suggests that the relation between internal and external representa-
tions and modeling is coupled and that the external representations serve as off-loading the
simulative reasoning thus supplementing the internal representations. This also implies that the
affordances that the different eternal representations (e.g., mathematics and simulations)
should be given more attention both in research and in teaching.

6 Conclusions

Models are central in learning the concepts of physics as they encompass the concepts themselves
and, importantly, the relations among them. The key question is how the learners mentally
represent the conceptual information incorporated in the models. Towards this end, I conceptu-
alizedmodels as relational categories, which are categories whosemembership is determined by a
common relational structure. This conceptualization has interesting implications for both teaching
and research. Specifically, it offers a cognitive basis for exploring the cognitive processes related
to learning concepts, which has been an understudied aspect of MBL.

Firstly, the relational categories framework underlines the importance of relational knowledge
in learning the concepts. For example, analogies are often used in science education in teaching
complex concepts to students. Analogies are based on the structural similarity of the target and the
source, which is seen as a way to enhance the learning of an unfamiliar target. Seen from the
viewpoint of relational categories, the key benefit of analogical comparison is promoting general
casual abstractions. These can, in turn, further enhance learning by affecting the sensitivity to
detect relational patterns in novel situations. Sensitivity for relational knowledge is important to
both learning specific models and transferring knowledge to novel contexts.

In pedagogical approaches that ask students to construct models, learning and using
relational knowledge is also vital. Construction of models and using models to generating
prediction and hypotheses requires grasping the underlying relational patterns of the target
phenomena. Also, in certain approaches, the goal is in learning expert-like knowledge
structure, which is coherent and involves representations on multiple levels of hierarchy.
Relational knowledge provides the cohering nature of experts’ knowledge, as it provides the
backbone for hierarchical principle-based knowledge structures. This is exemplified in many
studies about experts’ physics knowledge and here slightly reinterpreted from the point of view
of relational categories framework. In the future, important open questions concern the best
ways to support the formation of such knowledge.

Some recent pedagogical approaches emphasize the relative autonomy of models, i.e.,
models are not directly derived from any existing theory. Instead, relational and mathematical
structures are, for example, often transferred from other domains in order to generate knowl-
edge. Seen from the relational categories framework, the ability to detect relational patterns in
novel empirical phenomena is vital. This requires a developed repertoire of modeling styles,
for example, expertise from modeling with constraint equations. Furthermore, the chosen
representational format plays an important role, as it may deeply affect what kind of inferences
can be made and what is learned through constructing the models. This emphasizes, for
example, that mathematics should not be seen as mere computation but as part and parcel of
the concept formation process.
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In the preceding sections, MBL has been conceptualized as the development of relational
categories and interconnected, hierarchical systems of knowledge. In science education re-
search, models have previously been approached from the point of view of science—as
representations of phenomena. However, in this article, models are reinterpreted as relational
categories, which allows for novel conceptualization of the learning process associated
with models and modeling based on cognitive science. The discussion and conceptuali-
zation of models as relational categories allows discerning students’ mental representations
of models in terms of evolving relational structures in greater detail than previously done.
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