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Abstract

Background: While representation learning techniques have shown great promise in application to a number of
different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has
focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology
matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This
embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity
information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a
novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance.

Results: An ontology matching system derived using the proposed framework achieved an F-score of 94% on an
alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy
ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment
Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and
to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall
F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results.

Conclusions: Our proposed representation learning approach leverages terminological embeddings to capture
semantic similarity. Our results provide evidence that the approach produces embeddings that are especially well
tailored to the ontology matching task, demonstrating a novel pathway for the problem.

Keywords: Ontology matching, Semantic similarity, Sentence embeddings, Word embeddings, Denoising
autoencoder, Outlier detection

Background
Ontologies seek to alleviate the Tower of Babel effect
by providing standardized specifications of the intended
meanings of the terms used in given domains. Formally, an
ontology is “a representational artifact, comprising a tax-
onomy as proper part, whose representations are intended
to designate some combinations of universals, defined
classes and certain relations between them” [1]. Ideally,
in order to achieve a unique specification for each term,
ontologies would be built in such a way as to be non-
overlapping in their content. In many cases, however,
domains have been represented by multiple ontologies
and there thus arises the task of ontology matching, which
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consists in identifying correspondences among entities
(types, classes, relations) across ontologies with overlap-
ping content.
Different ontological representations draw on the dif-

ferent sets of natural language terms used by different
groups of human experts [2]. In this way, different and
sometimes incommensurable terminologies are used to
describe the same entities in reality. This issue, known as
the human idiosyncrasy problem [1], constitutes the main
challenge to discovering equivalence relations between
terms in different ontologies.
Ontological terms are typically common nouns or noun

phrases. According to whether they do or do not include
prepositional clauses [3], the latter may be either com-
posite (for example Neck of femur) or simple (for example
First tarsometatarsal joint or just Joint). Such grammati-
cal complexity of ontology terms needs to be taken into
account in identifying semantic similarity. But account
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must be taken also of the ontology’s axioms and defini-
tions, and also of the position of the terms in the ontol-
ogy graph formed when we view these terms as linked
together through the is_a (subtype), part_of and other
relations used by the ontology.
The primary challenge to identification of semantic sim-

ilarity lies in the difficulty we face in distinguishing true
cases of similarity from cases where terms are merely
“descriptively associated”1. As a concrete example, the
word “harness” is descriptively associated with the word
“horse” because a harness is often used on horses [4].
Yet the two expressions are not semantically similar. The
sorts of large ontologies that are the typical targets of
semantic similarity identification contain a huge number
of such descriptively associated term pairs. This difficulty
in distinguishing similarity from descriptive association is
a well-studied problem in both cognitive science [5] and
NLP [6].
Traditionally, feature engineering has been the predom-

inant way to approach the ontology matching problem
[7]. In machine learning, a feature is an individual mea-
surable property of a phenomenon in the domain being
observed [8]. Here we are interested in features of terms,
for instance the number of incoming edges when a term
is represented as the vertex of an ontology graph; or a
terms’s tf-idf value – which is a statistical measure of
the frequency of a term’s use in a corpus [9]. Feature
engineering consists in crafting features of the data that
can be used by machine learning algorithms in order to
achieve specific tasks. Unfortunately determining which
hand-crafted features will be valuable for a given task can
be highly time consuming. To make matters worse, as
Cheatham and Hitzler have recently shown, the perfor-
mance of ontology matching based on such engineered
features varies greatly with the domain described by the
ontologies [10].
As a complement to feature engineering, attempts have

been made to develop machine-learning strategies for
ontology matching based on binary classification [11].
This means a classifier is trained on a set of align-
ments between ontologies in which correct and incor-
rect mappings are identified with the goal of using
the trained classifier to predict whether an assertion
of semantic equivalence between two terms is or is
not true. In general, the number of true alignments
between two ontologies is several orders of magni-
tude smaller than the number of all possible mappings,
and this introduces a serious class imbalance prob-
lem [12]. This abundance of negative examples hinders
the learning process, as most data mining algorithms
assume balanced data sets and so the classifier runs the
risk of degenerating into a series of predictions to the
effect that every alignment comes to be marked as a
misalignment.

Both standard approaches thus fail: feature engineer-
ing because of the failure of generalization of the engi-
neered features, and supervised learning because of the
class imbalance problem. Our proposal is to address
these limitations through the exploitation of unsuper-
vised learning approaches for ontology matching drawing
on the recent rise of distributed neural representations
(DNRs), in which for example words and sentences are
embedded in a high-dimensional Euclidean space [13–17]
in order to provide a means of capturing lexical and
sentence meaning in an unsupervised manner. The way
this works is that the machine learns a mapping from
words to high-dimensional vectors which take account
of the contexts in which words appear in a plurality
of corpora. Vectors of words that appear in the same
sorts of context will then be closer together when mea-
sured by a similarity function. That the approach can
work without supervision stems from the fact that mean-
ing capture is merely a positive externality of context
identification, a task that is unrelated to the meaning
discovery task.
Traditionally, corpus driven approaches were based on

the distributional hypothesis, i.e. the assumption that
semantically similar or related words appear in simi-
lar contexts [18]. This meant that they tended to learn
embeddings that capture both similarity (horse, stallion)
and relatedness (horse, harness) reasonably well, but do
very well on neither [6, 19]. In an effort to correct
for these biases a number of pre-trained word vector
refining techniques were introduced [6, 20, 21]. These
techniques are however restricted to retrofitting single
words and do not easily generalize to the sorts of nom-
inal phrases that appear in ontologies. Wieting et al.
[22, 23] make one step towards addressing the task of
tailoring phrase vectors to the achievement of high per-
formance on the semantic similarity task by focusing on
the task of paraphrase detection. A paraphrase is a restate-
ment of a given phrase that use different words while
preserving meaning. Leveraging what are called univer-
sal compositional phrase vectors [24] for the purposes
of paraphrase detection provides training data for the
task of semantic similarity detection which extends the
approach from single words to phrases. Unfortunately,
the result still fails as regards the problem of distin-
guishing semantic similarity and descriptive association
on rare phrases [22] – constantly appearing on ontolo-
gies – which thus again harms performance in ontology
matching tasks.
In this work, we tackle the aforementioned challenges

and introduce a new framework for representation learn-
ing based ontology matching. Our ontology matching
algorithm is structured as follows: To represent the nouns
and noun-phrases in an ontology, we exploit the con-
text information that accompanies the corresponding
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expressions when they are used both inside and out-
side the ontology. More specifically, we create vectors
for ontology terms on the basis of information extracted
not only from natural language corpora but also from
terminological and lexical resources and we join this
with information captured both explicitly and implicitly
from the ontologies themselves. Thus we capture con-
texts in which words are used in definitions and in state-
ments of synonym relations. We also draw inferences
from the ontological resources themselves, for exam-
ple to derive statements of descriptive association – the
absence of a synonymous statement between two terms
with closely similar vectors is taken to imply that as
a statement of descriptive association obtains between
them. We then cast the problem of ontology matching
as an instance of the Stable Marriage problem [25] dis-
covering in that way terminological mappings in which
there is no pair of terms that would rather be matched
to each other than their current matched terms. In
order to compute the ordering of preferences for each
term, that the Stable Marriage problem requires, we use
the terminological representations’ pairwise distances.
We compute the aforementioned distances using the
cosine distance over the phrases representations learned
by the phrase retrofitting component. Finally, an out-
lier detection component sifts through the list of the
produced alignments so as to reduce the number of
misalignments.
Our main contributions in this paper are: (i)We demon-

strate that word embeddings can be successfully har-
nessed for ontology matching; a task that requires phrase
representations tailored to semantic similarity. This is
achieved by showing that knowledge extracted from
semantic lexicons and ontologies can be used to inscribe
semantic meaning on word vectors. (ii) We additionally
show that better results can be achieved on the discrim-
ination task between semantic similarity and descriptive
association, by casting the problem as an outlier detection.
To do so, we present a denoising autoencoder architec-
ture, which implicitly tries to discover a hidden repre-
sentation tailored to the semantic similarity task. To the
best of our knowledge, the overall architecture used for
the outlier detection as well as its training procedure is
applied for the first time to the problem of discriminating
among semantically similar and descriptively associated
terms. (iii) We use the biomedical domain as our applica-
tion, due to its importance, its ontological maturity, and
to the fact that it constitutes the domain with the larger
ontology alignment datasets owing to its high variability
in expressing terms. We compare our method to state-of-
the-art ontology matching systems and show significant
performance gains. Our results demonstrate the advan-
tages that representation learning bring to the problem
of ontology matching, shedding light on a new direction

for a problem studied for years in the setting of feature
engineering.

Problem formulation
Before we proceed with the formal definition of an onto-
logical entity alignment, we will introduce the needed
formalism. Let O, O′ denote two set of terms used in two
distinct ontologies and let R be a set of binary relations’
symbols. For instance,=, �=, is_a can be some of the R set’s
citizens. We introduce a set T = {(e, r, e′)|e ∈ O, e′ ∈
O′, r ∈ R} to denote a set of possible binary relations
between O and O′ [26]. Moreover, let f : T →[0, 1]⊂ R
be a function, called “confidence function”, that maps an
element of T to a real number v, such that 0 ≤ v ≤ 1. The
real number v corresponds to the degree of confidence
that exists a relation r between e and e′ [27].
We call a set T of possible relations to be “valid despite

integration inconsistency”, iff T is satisfiable. As an coun-
terexample, the set {(e,=, e′), (e, �=, e′)} corresponds to a
non-valid despite integration inconsistency set of rela-
tions. It should be noted that we slightly differentiated
from the notation used in Description Logics [28], where a
relation (Role) between two entities is denoted as: r(e, e′).
Moreover, it is important to highlight the role of the
phrase “despite integration inconsistency” in our defini-
tion. The ontology resulting from the integration of two
ontologies O and O′ via a set of alignments T may lead to
semantic inconsistencies [29, 30]. As the focus of ontology
alignment lays on the discovery of alignments between
two ontologies, we treat the procedure of inconsistency
check as a process that starts only after the end of the
ontology matching process2.
Based on the aforementioned notations and definitions,

we will proceed with the formal definition of what an
ontological entity alignment is. Let, T be a valid despite
integration inconsistency set of relations and f be a confi-
dence function defined over T. Let (e, r, e′) ∈ T , we define
an ontological entity correspondence between two entities
e ∈ O and e′ ∈ O′ as the four-element tuple:

corr(e, e′) = (e, r, e′, f (e, r, e′)) (1)

where r is a matching relation between e and e′
(e.g., equivalence, subsumption) and f (e, r, e′) ∈ [0, 1]
is the degree of confidence of the matching relation
between e and e′. According to the examples presented
in Fig. 1, (triangular bone,=, ulnar carpal bone, 1.00) and
(triangular bone, is_a, forelimb bone, 1.00) present one
equivalence as well as a subsumption entity correspon-
dence, accordingly. In this work, we focus on discover-
ing one-to-one equivalence correspondences between two
ontologies. In absence of further relations, the produced
set of relations by our algorithm will always correspond to
a valid despite integration inconsistency set.
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Fig. 1 Example of alignments between the NCI Thesaurus and the
Mouse Ontology (adapted from [56]). The dashed horizontal lines
correspond to equivalence matchings between the NCI Thesaurus
and the Mouse Anatomy ontology

System architecture overview
Our ontology matching system is composed of two neu-
ral network components that learn which term alignments
correspond to semantic similarity. The first component
discovers a large amount of true alignments between two
ontologies but is prone to errors. The second component
corrects these errors.We present below an overview of the
two components.
The first component, which we call phrase retrofitting

component, retrofits word vectors so that when they
are used to represent sentences, the produced sen-
tence embeddings will be tailored to semantic similar-
ity. To inscribe semantic similarity onto the sentence
embeddings, we construct an optimization criterion
which rewards matchings of semantically similar sen-
tence vectors and penalizes matchings of descriptively
associated ones. Thus the optimization problem adapts
word embeddings so that they are more appropriate
to the ontology matching task. Nonetheless, one of
the prime motivations of our work comes from the
observation that although supervision is used to tailor
phrase embeddings to the task of semantic similarity,
the problem of discriminating semantically similar vs
descriptively associated terms is not targeted directly.
This lack will lead to the presence of a significant num-
ber of misalignments, hindering the performance of the
algorithm.
For that reason, we further study the discrimination

problem in the setting of unsupervised outlier detection.
We use the set of sentence representations produced by
the phrase retrofitting component to train an denoising
autoencoder [31]. The denoising autoencoder (DAE) aims
at deriving a hidden representation that captures intrinsic
characteristics of the distribution of semantically simi-
lar terms. We force the DAE to leverage new sentence
representations by learning to reconstruct not only the
original sentence but also its paraphrases, thus boosting

the semantic similarity information that the new repre-
sentation brings. Since we are using paraphrases to do
so we bring in additional training data, doing essentially
data augmentation for the semantically similar part of
the problem. The DAE corresponds to our second com-
ponent which succeeds in discovering misalignments by
capturing intrinsic characteristics of semantically similar
terms.

Methods
We present a representation learning based ontology
matching algorithm that approaches the problem as fol-
lows: We use the ontologies to generate negative train-
ing examples that correspond to descriptively associated
examples, and additional knowledge sources to extract
paraphrases that will correspond to positive examples of
semantic similarity. We use these training data to refine
pre-trained word vectors so that they are better suited
for the semantic similarity task. This task is accom-
plished by the phrase retrofitting component. We repre-
sent each ontological term as the bag of words of its tex-
tual description3 which we complement with the refined
word embeddings.We construct sentence representations
of the terms’ textual description by averaging the phrase’s
aforementioned word vectors. We match the entities of
two different ontologies using the Stable Marriage algo-
rithm over the terminological embeddings’ pairwise dis-
tances. We compute the aforementioned distances using
the cosine distance. Finally, we iteratively pass through all
the produced alignments and we discard those that violate
a threshold which corresponds to an outlier condition.We
compute the outlier score using the cosine distance over
the features created by an outlier detection mechanism.

Preliminaries
We introduce some additional notation that we will use
throughout the paper. Let seni = {

wi
1,w

i
2, . . . ,wi

m
}
be

the phrasal description3 of a term i represented as a bag
of m word vectors. We compute the sentence represen-
tation of the entity i, which we denote si, by computing
the mean of the set seni, as per [24]. Let si, sj ∈ R

d be
two d-dimensional vectors that correspond to two sen-
tence vectors, we compute their cosine distance as follows:
dis(si, sj) = 1 − cos(si, sj). In the following, d will denote
the dimension of the pre-trained and retrofitted word
vectors. For x ∈ R, we denote the rectifier activation func-
tion as: τ(x) = max(x, 0), and the sigmoid function as:
σ(x) = 1

1+e−x .

Building sentence representations
In this section, we describe the neural network archi-
tecture that will produce sentence embeddings tailored
to semantic similarity. Quite recently several works
addressed the challenge of directly optimizing word
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vectors to produce sentence vectors by averaging the bag
of the word vectors [22, 32, 33]. The interplay between
semantical and physical intuition is that word vectors can
be thought as corresponding to the positions of equally
weighted masses, where the center of their masses pro-
vides information of the mean location of their semantic
distribution. Intuitively, the word vectors’ “center of the
mass” provide a means for measuring where the seman-
tic content primarily “concentrates”. Despite the fact that
vector addition is insensitive to word order [24], it has
been proven that this syntactic agnostic operation pro-
vides results that compete favorably with more sophisti-
cated syntax-aware composing operations [33]. We base
our phrase retrofitting architecture on an extension of
the Siamese CBOW model [32]. The fact that Siamese
CBOW provides a native mechanism for discriminating
between sentence pairs from different categories explains
our choice to build upon this architecture.
Siamese CBOW is a log linear model aiming at predict-

ing a sentence from its adjacent sentences; addressing the
research question whether directly optimizing word vec-
tors for the task of being averaged leads to better suited
word vectors for this task compared to word2vec [15]. Let
V = {v1, v2, . . . vN } be an indexed set of word vectors
of size N. The Siamese CBOW model transforms a pre-
trained vector set V into a new one, V ′ = {

v′
1, v′

2, . . . v′
N

}
,

based on two sets of positive, S+
i , and negative, S−

i ,
constraints for a given training sentence si. The super-
vised training criterion in Siamese CBOW rewards co-
appearing sentences while penalizing sentences that are
unlikely to appear together. Sentence representations are
computed by averaging the sentence’s constituent word
vectors. The reward is given by the pairwise sentence
cosine similarity over their learned vectors. Sentences
which are likely to appear together should have a high
cosine similarity over their learned representations. In the
initial paper of Siamese CBOW [32], the set S+

i corre-
sponded to sentences appearing next to a given si, whereas
S−
i corresponded to sentences that were not observed
next to si.
Since wewant to be able to differentiate between seman-

tically similar and descriptively associated sentences we
let the sets S+

i and S−
i to be sentences that are semantically

similar and descriptively associated to a given sentence si.
In the rest of the section we revise the main elements of
the Siamese CBOW architecture and describe the modi-
fications we performed in order to exploit it for learning
sentence embeddings that reflect semantic similarity. To
take advantage of the semantic similarity information
already captured in the initial word vectors, an important
characteristic as demonstrated in various word vectors
retrofitting techniques [20–22], we use knowledge distil-
lation [34] to penalize large changes in the learned word
vectors with regard to the pre-trained ones.

Our paraphrase retrofitting model retrofits a pre-
trained set of word vectors with the purpose of leveraging
a new set V ′, solving the following optimization problem:

min
V ′ κSLS(V ′) + κLDLKD(V ,V ′), (2)

where kS and kLD are hyperparameters controlling the
effect of LS(V ′) and LKD(V ,V ′) losses, accordingly. The
LS(V ′) term is defined as 1

N
∑N

i=1 LSi , where N denotes
the number of the training examples. The LSi term corre-
sponds to categorical cross-entropy loss defined as:

LSi = −
∑

sj∈
{
S+
i ∪ S−

i
}
p(si, sj) · log(pθ (si, sj)), (3)

where p(·) is the target probability the network should
produce, and pθ (·) is the prediction it estimates based
on parameters θ , using Eq. 5. The target distribution
simply is:

p(si, sj) =
{

1
|S+| , if sj ∈ S+

i
0, if sj ∈ S−

i .
(4)

For instance, if there are two positive and two negative
examples, the target distribution is (0.5, 0.5, 0, 0). For
a pair of sentences (si, sj), the probability pθ (si, sj) is con-
structed to reflect how likely it is for the sentences to be
semantically similar, based on the model parameter θ . The
probability pθ (si, sj) is computed on the training data set
based on the softmax function as follows:

pθ (si, sj) = e
(
cos

(
sθi ,s

θ
j

))1/T

∑
sk∈

{
S+
i ∪ S−

i
} e

(
cos

(
sθi ,s

θ
k
))1/T , (5)

where sθx denotes the embedding of sentence sx, based
on the model parameter θ . To encourage the network
to better discriminate between semantically similar and
descriptively associated terms, we extend the initial archi-
tecture by introducing the parameter T. The parameter
T, named temperature, is based on the recent work of
[34, 35]. Hinton et al. [34] suggest that setting T > 1
increases the weight of smaller logit (the inputs of the
softmax function) values, enabling the network to capture
information hidden in small logit values.
To construct the set S−, we sample a set of descrip-

tively associated terms from the ontologies to be matched.
Given a sentence si, we compute its cosine distance with
every term from the two ontologies to be matched, based
on the initial pre-trained word vectors. Thereafter, we
choose the n terms demonstrating the smaller cosine dis-
tance to be the negative examples. To account for that fact
that among these n terms there may be a possible align-
ment, we exclude the n∗ closest terms. Equivalently, given
the increasingly sorted sequence of the cosine distances,
we choose the terms in index positions starting from n∗
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up to n+ n∗. For computationally efficiency, we carry this
process out only once before the training procedure starts.
Hinton et al. [34] found that using the class proba-

bilities of an already trained network as “soft targets”
for another one network constitutes an efficient way of
communicating already discovered regularities to the lat-
ter network. We exploit, thus, knowledge distillation to
emit the original semantic information captured in the
pre-trained word vectors to the new ones leveraged by
Siamese CBOW. Therefore, we add the Knowledge Dis-
tillation loss LKD(V ,V ′) = 1

N
∑N

i=1 LKDi to the initial
Siamese CBOW’s loss. The LKDi term:

LKDi = −
∑

sj∈{S+ ∪ S−}
pθI (si, sj) · log(pθ (si, sj)), (6)

is defined as the categorical cross-entropy between the
probabilities obtained with the initial parameters (i.e. θI )
and the ones with parameters θ .
Based on the observations of Hinton et al. [34], these

“soft targets” act as an implicit reguralization, guiding the
Siamese CBOW’s solution closer to the initial word vec-
tors. We would like to highlight that we experimented
with various regularizers, such as the ones presented
in the works of [20, 21, 23, 36], however, we obtained
worse results than the ones reported in our experiments.
Figure 2 summarizes the overall architecture of our phrase
retrofitting model. The dashed rectangles in the Lookup
Layer correspond to the initial word vectors, which are
used to encourage the outputs of the Siamese CBOW
network to approximate the outputs produced with the
pre-trained ones in every epoch. The word embeddings
are averaged in the next layer to produce sentence repre-
sentations. The cosine similarities between the sentence
representations are calculated in the penultimate layer
and are used to feed a softmax function so as to produce
a final probability distribution. Specifically, we compute
the cosine similarity between the sentence representation
of the noun phrase and the sentence representations of
every positive and negative example of semantic similar-
ity. In the final layer, this probability distribution is used

to compute two different categorical cross entropy losses.
The left loss encourages the probability distribution val-
ues to approximate a target distribution, while the right
one penalizes large changes in the learned word vectors
with regard to the pre-trained ones. The double horizon-
tal lines in the Cosine Layer highlight that these rectangles
denote in fact the same probability distribution, computed
in the penultimate layer.

Outlier detection
The extension of the Siamese CBOW network retrofits
pre-trained word vectors to become better suited for con-
structing sentence embeddings that reflect semantic simi-
larity. Although we sample appropriate negative examples
(i.e., descriptively associated terms) from the ontologies to
be matched, we will never have all the negative examples
needed. Moreover, allowing a larger number, n, of nega-
tive examples increases the computation needed making
it inefficient. We depart from these problems by further
casting the problem of discriminating between semanti-
cally similar and related terms as an outlier detection.
To leverage an additional set of sentence representations
more robust to semantic similarity, we use the hidden
representation of a Denoising Autoencoder (DAE) [31].
The Siamese CBOW network learns to produce sen-

tence embeddings of ontological terms that are better
suited for the task of semantic similarity. We now use the
learned sentence vectors to train a DAE. We extend the
standard architecture of DAEs to reconstruct not only
the sentence representation fed as input but also para-
phrases of that sentence. Our idea is to improve the sen-
tence representations produced by the Siamese CBOW
and make them more robust to paraphrase detection. At
the same time, this constitutes an efficient data augmenta-
tion technique; very important in problems with relatively
small training data sets.
We train the autoencoder once the training of the

Siamese CBOW network has been completed. Even if
layer-wise training techniques [37] are outweighed nowa-
days by end-to-end training, we decide to adopt this

Negative Example (1) 

Lookup

Average

Cosine
Layer

Prediction

Noun Phrase Paraphrase of Noun Phrase Negative Example (n) 

Knowledge 

Soft
max

Distillation

Soft
max

Fig. 2 Phrase Retrofitting architecture based on a Siamese CBOW network [32] and Knowledge Distillation [34]. The input projection layer is omitted
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strategy for two reasons. Firstly, we aim to capture with
the DAE intrinsic characteristics of the distribution of
the semantically similar terms. DAEs have been proven
to really capture characteristics of the data distribution,
namely the derivative of the log-density with respect to
the input [38]. However, training the DAE on a dataset
that does not reflect the true distribution of semantically
similar terms introduces surely a barrier to our attempt.
Therefore, we leverage in advance sentence representa-
tions, through the Siamese CBOW network, more robust
to semantic similarity; an action that allows the DAE to act
on a dataset with significantly less noise and less bias. Sec-
ondly, combining the extended Siamese CBOW architec-
ture together with the DAE and training them end-to-end
significantly increases the number of the training param-
eters. This increase is a clear impediment to a problem
lacking an oversupply of training data.
Let x, y ∈ R

d be two d-dimensional vectors, represent-
ing the sentence vectors of two paraphrases. Our target is
not only to reconstruct the sentence representation from
a corrupted version of it, but also to reconstruct a para-
phrase of the sentence representation based on the partial
destroyed one. The corruption process that we followed
in our experiments is the following: for each input x, a
fixed number of vd (0 < v < 1) components are cho-
sen at random, and their value is forced to 0, while the
others are left untouched. The corrupted input x̃ is then
mapped, as with the basic autoencoder, to a hidden rep-
resentation h = τ(Wx̃ + b) from which we reconstruct
a z = σ(W ′h + b′). The dimension dh of the hidden
representation h ∈ R

dh is treated as a hyperparameter.
Similar to the work in [31], the parameters are trained to
minimize, over the training set, an average reconstruction

error. However, we aim not only to reconstruct the initial
sentence but also its paraphrases. For that reason, we use
the following reconstruction loss: L(x, z) + L(y, z) =

= −
d∑

k=1
[xk log zk + (1 − xk) log(1 − zk)]

−
d∑

k=1
[yk log zk + (1 − yk) log(1 − zk)] .

(7)

The xk , zk , yk correspond to the Cartesian coordinates
of vectors x, z and y, respectively. The overall process is
depicted in Fig. 3. In this figure, the Lookup and Average
layers are similar to the ones depicted in Fig. 2. A sentence
representation x is corrupted to x̃. The autoencoder maps
it to h (i.e., the hidden code) and attempts to reconstruct
both x and the paraphrase embedding y.

Ontology matching
The two components that we have presented were build
in such a way so that they learn sentence representations
which try to disentagle semantic similarity and descrip-
tive association. We will now use these representations
to solve the ontology matching problem (Fig. 4). To align
the entities from two different ontologies, we use the
extension of the Stable Marriage Assignment problem to
unequal sets [25, 39]. This extension of the stable marriage
algorithm computes 1−1 mappings based on a preference
m × n matrix, where m and n is the number of entities in
ontologies O and O′, respectively. In our setting, a match-
ing is not stable if: (i) there is an element ei ∈ O which
prefers some given element ej ∈ O′ over the element to
which ei is already matched, and (ii) ej also prefers ei over

Fig. 3 Autoencoder Architecture
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Fig. 4 Overall proposed ontology matching architecture

the element to which ej is already matched. These prop-
erties of a stable matching impose that it does not exist
any match (ei, ej) by which both ei and ej would be indi-
vidually matched to more similar entities compared to the
entities to which they are currently matched. This leads
to a significant reduction in the number of misalignments
due to descriptive association, provided that the learned
representations do reflect the semantic similarity.
The steps of our ontology matching algorithm are the

following: We represent each ontological term as the bag
of words of its textual description, which we complement
with the refined word vectors produced by the phrase
retrofitting component. In the next step, we construct
phrase embeddings of the terms’ textual description3 by
averaging the phrase’s word vectors. We cast the problem
of ontology matching as an instance of the Stable Mar-
riage problem using the entities’ semantic distances. We
compute these distances using the cosine distance over
the sentences vectors. We iteratively pass through all the
produced alignments and we discard those with a cosine
distance greater than a certain threshold, t1. These actions
summarize the work of the first component. Note that the
violation of the triangle inequality by the cosine distance is
not an impediment to the Stable Marriage algorithm [25].
In the next step, we create an additional set of phrase

vectors by passing the previously constructed phrase
vectors through the DAE architecture. Based on this

new embedding’s set, we iteratively pass through all the
alignments produced in the previous step and we dis-
card those that report a threshold violation. Specifically,
we discard those that exhibit a cosine distance, com-
puted over the vectors produced by the DAE, greater
than a threshold t2. This corresponds to the final step of
the outlier detection process as well as of our ontology
matching algorithm.

Results and discussion
In this section, we present the experiments we per-
formed on biomedical evaluation benchmarks com-
ing from the Ontology Alignment Evaluation Initiative
(OAEI), which organizes annual campaigns for evaluating
ontology matching systems. We have chosen the biomed-
ical domain for our evaluation benchmarks owing to its
ontological maturity and to the fact that its language use
variability is exceptionally high [40]. At the same time,
the biomedical domain is characterized by rare words and
its natural language content is increasing at an extremely
high speed, making hard even for people to manage its
rich content [41]. To make matters worse, as it is diffi-
cult to learn good word vectors for rare words from only
a few examples [42], their generalization on their ontol-
ogy matching task is questionable. This is a real challenge
for domains, such as the biomedical, the industrial, etc, in
which existence of words with rare senses is typical. The
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existence of rare words makes the presence of the phrase
retroffiting component crucial to the performance of our
ontology alignment framework.

Biomedical ontologies
We give a brief overview of the four ontologies used in
our ontology mapping experiments. Two of them (the
Foundational Model of Anatomy and the Adult Mouse
anatomical ontologies) are pure anatomical ontologies,
while the other two (SNOMED CT and NCI Thesaurus)
are broader biomedical ontologies of which anatomy con-
sists a subdomain that they describe [3]. Although more
recent versions of these resources are available, we refer to
the versions that appear in the Ontology Alignment Eval-
uation Initiative throughout this work in order to facilitate
comparisons across the ontology matching systems.
Foundational Model of Anatomy (FMA): is an evolv-

ing ontology that has been under development at the
University of Washington since 1994 [43, 44]. Its objective
is to conceptualize the phenotypic structure of the human
body in a machine readable form.
Adult Mouse Anatomical Dictionary (MA): is a struc-

tured controlled vocabulary describing the anatomical
structure of the adult mouse [45].
NCI Thesaurus (NCI) provides standard vocabularies

for cancer [46] and its anatomy subdomain describes nat-
urally occurring human biological structures, fluids and
substances.
SNOMED Clinical Terms (SNOMED): is a systemat-

ically organized machine readable collection of medical
terms providing codes, terms, synonyms and definitions
used in clinical documentation and reporting [47].

Semantic lexicons
We provide below some details regarding the procedure
we followed in order to construct pairs of semantically
similar phrases. Let (word11,word

1
2, . . . ,word1m), be a term

represented as a sequence of m words. The strategy
that we have followed in order to create the para-
phrases is the following: We considered all the contigu-
ous subsequences of this term. Namely, we considered
all the possible contiguous subsequences of the form:
(word1i ,word1(i+1), . . . ,word

1
j ), ∀i, j ∈ N : 0 ≤ i ≤ j ≤ m.

Based on these contiguous subsequences, we queried the
semantic lexicons for paraphrases. Below we give a brief
summary of the semantic lexicons that we used in our
experiments:
ConceptNet 5: a large semantic graph that describes

general human knowledge and how it is expressed in nat-
ural language [48]. The scope of ConceptNet includes
words and common phrases in any written human lan-
guage.
BabelNet: a large, wide-coverage multilingual semantic

network [49, 50]. BabelNet integrates both lexicographic

and encyclopedic knowledge from WordNet and
Wikipedia.
WikiSynonyms: a semantic lexicon which is built by

exploiting the Wikipedia redirects to discover terms that
are mostly synonymous [51].
Apart from the synonymy relations found in these

semantic lexicons, we have exploited the fact that in
some of the considered ontologies, a type may have
one preferred name and some additional paraphrases [3],
expressed through multiple rdfs:label relations.

Training
We tuned the hyperparameters on a set of 1000 align-
ments which we generated by subsampling the SNOMED-
NCI ontology matching task4. We chose the vocabulary of
the 1000 alignments so that it is disjoint to the vocabu-
lary that we used in the alignment experiments, described
in the evaluation benchmarks, in order to be sure that
there is no information leakage from training to testing.
We tuned to maximize the F1 measure. We trained with
the following hyperparameters: word vector has size (d)
200 and is shared across everywhere. We initialized the
word vectors from word vectors pre-trained on a com-
bination of PubMed and PMC texts with texts extracted
from a recent English Wikipedia dump [52]. All the ini-
tial out-of-vocabulary word vectors are sampled from a
normal distribution (μ = 0, σ 2 = 0.01). The resulted
hyperparameters controlling the effect of retrofitting kS
and knowledge distillation kLD were 106 and 103, accord-
ingly. The resulted size of the DAE hidden representation
(dh) is 32 and v is set to 0.4. We used T = 2 accord-
ing to a grid search, which also aligns with the authors’
recommendations [34]. For the initial sampling of descrip-
tively associated terms, we used: n∗ = 2 and n = 7. The
best resulted values for the thresholds were the following:
t1 = t2 = 0.2. The phrase retrofitting model was trained
over 15 epochs using the Adam optimizer [53] with a
learning rate of 0.01 and gradient clipping at 1. The DAE
was trained over 15 epochs using the Adadelta optimizer
[54] with hyperparameters ε = 1e − 8 and ρ = 0.95.

Evaluation benchmarks
We provide some details regarding the respective size of
each ontology matching task on Table 1.
The reference alignment of the MA - NCI matching

scenario is based on the work of Bodenreider et al. [55].

Table 1 Respective sizes of the ontology matching tasks

Ontology Matching between: #Matchings

Ontology I #Types Ontology II #Types

MA 2744 NCI 3304 1489

FMA 3696 NCI 6488 2504

FMA 10157 SNOMED 13412 7774
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To represent each ontological term for this task, we used
the unique rdfs:label that accompanies every type in the
ontologies. The alignment scenarios between FMA - NCI
and FMA - SNOMED are based on a small fragment of
the aforementioned ontologies. The reference alignments
of these alignment scenarios are based on the UMLS
Metathesaurus [56], which currently consists the most
comprehensive effort for integrating independently devel-
oped medical thesauri and ontologies. To represent each
ontological term for these tasks, we exploited the textual
information appearing on the rdf:about tag that accom-
panies every type in the ontologies. We did not use the
rdf:about tag on the MA - NCI matching scenario, since
their rdf:about tags provide a language agnostic unique
identifier with no direct usable linguistic information. We
would like to note that since the Stable Marriage algo-
rithm provides one-to-one correspondences, we have only
focused on discovering one-to-one matchings. In addi-
tion, a textual preprocessing that we performed led a
small number of terms to degenerate into a single com-
mon phrase. This preprocessing includes case-folding,
tokenization, removal of English stopwords and words
coappearing in the vast majority of the terms (for example
the word “structure” in SNOMED). Thereafter, we present
on Table 1 the number of one-to-one types’ equivalences
remained after the preprocessing step.
Last but not least, it is of significant importance to

highlight that the reference alignments based on UMLS
Metathesaurus will lead to an important number of log-
ical inconsistencies [57, 58]. As our method does not
apply reasoning, whether it produces or not incoherence-
causing matchings is a completely random process. In
our evaluation, we have chosen to also take into account
incoherence-causing mappings. However, various con-
cerns can be raised about the fairness of comparing
against ontology matching systems that make use of auto-
mated alignment repair techniques [58, 59]. For instance,
the state-of-the-art systems AML [60, 61], LogMap and
LogMapBio [62], which are are briefly described in the
next section, do employ automated alignment repair tech-
niques. Our approach to use the original and incoherent
mapping penalizes these systems that perform additional
incoherence checks.
Nonetheless, our choice to include inconsistence map-

pings can be justified in the following way. First, it is
a direct consequence of the fact that we approach the
problem of Ontology Matching from the viewpoint of
discovering semantically similar terms. A great number
of these inconsistent mappings do correspond to seman-
tically similar terms. Second, we believe that ontology
matching can also be used as a curation process dur-
ing the ontological (re)design phase so as to alleviate the
possibility of inappropriate terms’ usage. The fact that
two distinct truly semantically similar terms from two

different ontologies lead to logical inconsistencies during
the integration phase can raise an issue for modifying the
source ontology [57]. Third, although ontologies consti-
tute a careful attempt to ascribe the intended meaning of
a vocabulary used in a target domain, they are error prone
as every human artifact. Incoherence check lays on the
assumption that both of the ontologies that are going to be
matched are indeed error-free representational artifacts.
We decide not to make this assumption.
Therefore, we have chosen to treat even the systems that

employ automated alignment repair techniques error-
prone. For that reason, we considered appropriate to
report the performance of the aforementioned systems
on the complete reference alignment in the next section.
Nevertheless, we refer the reader to the [58] for details
on the performance of these systems on incoherence free
subsets of the reference alignment set. Under the assump-
tion that the ontologies to bematched are error-free, it can
be observed that the automated alignment repair mecha-
nisms of these systems are extremely efficient; a fact that
demonstrates the maturity and the robustness of these
methods.

Experimental results
Table 2 shows the performance of our algorithm com-
pared to the six top performing systems on the evaluation
benchmarks, according to the results published in OAEI
Anatomy track (MA - NCI) and in the Large BioMed
track (FMA-NCI, FMA-SNOMED)5. To check for the
statistical significance of the results, we used the proce-
dure described in [63]. The systems presented in Table 2
starting from the top of the table up to and including
LogMapBio fall into the category of feature engineer-
ing6. CroMatcher [64], AML [60, 61] and XMap [65]
perform ontology matching based on heuristic methods
that rely on aggregation functions. FCA_Map [66, 67]
uses Formal Concept Analysis [68] to derive terminologi-
cal hierarchical structures that are represented as lattices.
The matching is performed by aligning the constructed
lattices taking into account the lexical and structural infor-
mation that they incorporate. LogMap and LogMapBio
[62] use logic-based reasoning over the extracted features
and cast the ontology matching to a satisfiability problem.
Some of the systems compute many-to-many alignments
between ontologies. For a fair comparison of our system
with them, we have also restricted these systems in dis-
covering one-to-one alignments. We excluded the results
of XMap for the Large BioMed track, because it uses syn-
onyms extracted by the UMLS Metathesaurus. Systems
that use the UMLS Metathesaurus as background knowl-
edge will have a notable advantage since the Large BioMed
track’s reference alignments are based on it.
We describe in the following the procedure that we fol-

lowed in order to evaluate the performance of the various
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Table 2 Performance of ontology matching systems across the different matching tasks.

System
MA - NCI FMA-NCI FMA-SNOMED

P R F1 P R F1 P R F1

AML 0.943 0.94 0.941 0.908 0.94 0.924 0.938 0.784 0.854

CroMatcher 0.942 0.912 0.927 - - - - - -

XMap 0.924 0.877 0.9 - - - - - -

FCA_Map 0.922 0.841 0.880 0.89 0.947 0.918 0.918 0.857 0.886

LogMap 0.906 0.850 0.878 0.894 0.930 0.912 0.933 0.721 0.814

LogMapBio 0.875 0.900 0.887 0.88 0.938 0.908 0.93 0.727 0.816

Wieting 0.804 0.879 0.839 0.840 0.857 0.849 0.867 0.851 0.859

Wieting+DAE(O) 0.952 0.871 0.909 0.909 0.851 0.879 0.929 0.832 0.878

SCBOW 0.847 0.917 0.881 0.899 0.895 0.897 0.843 0.866 0.855

SCBOW+DAE(O) 0.968 0.913 0.94 0.976 0.892 0.932 0.931 0.856 0.892

Note: Bold and underlined numbers indicate the best F1-score and the best precision on each matching task, respectively

ontology matching systems. Since the incoherence-
causing mappings were also taken into consideration, all
the mappings marked as “?” in the reference alignment
were considered as positive. To evaluate the discovery of
one-to-one matchings, we clustered all the m-to-n match-
ings and we counted only once when any of the considered
systems discovers any of the m-to-n matchings. Specif-
ically, let T = {(e,=, e′)|e ∈ O, e′ ∈ O′} be a set of
clustered m-to-n matchings. Once an ontology match-
ing system discovers for the first time a (e,=, e′) ∈ T ,
we increase the number of the discovered alignments.
However, whenever the same ontology matching system
discovers an additional (e∗,=, e′∗) ∈ T , where (e,=, e′) �=
(e∗,=, e′∗), we did not take this discovered matching into
account. Finally, to evaluate the performance of AML,
CroMatcher, XMap, FCA_MAP, LogMap, and LogMap-
Bio, we used the alignments provided by OAEI 20165
and applied the procedure described above to get their
resulted performance.
To explore the performance details of our algorithm,

we report in Table 2 its performance results with and
without outlier detection. Moreover, we included exper-
iments in which instead of training word embeddings
based on our extension of the Siamese CBOW, we have
used the optimization criterion presented in [23] to pro-
duce an alternative set of word vectors. As before, we
present experiments on which we exclude our outlier
detection mechanism and experiments on which we allow
it7. We present these experiments under the listings:
SCBOW, SCBOW+DAE(O), Wieting, Wieting+DAE(O),
accordingly.
SCBOW+DAE(O) is the top performing algorithm in

two of the three ontology mappings tasks (FMA-NCI,
FMA-SNOMED); in these two its F1 score is significantly
better than that of all the other algorithms. In MA-NCA
its F1 score is similar to AML, the best system there,

but the performance difference is statistically significant.
At the same time, SCBOW+DAE(O) achieves the high-
est precision on two out of three ontology matching tasks.
In terms of recall, SCBOW+DAE(O) demonstrates lower
performance in the ontology matching tasks. However, we
would like to note that we have not used any semantic
lexicons specific to the biomedical domains compared to
the other systems. For instance, AML uses three sources
of biomedical background knowledge to extract syn-
onyms. Specifically, it exploits the Uber Anatomy Ontol-
ogy (Uberon), the Human Disease Ontology (DOID),
and the Medical Subject Headings (MeSH). Hence, our
reported recall can be explained due to the lower coverage
of biomedical terminology in the semantic lexicons that
we have used. Our motivation for relying only on domain-
agnostic semantic lexicons8 stems from the fact that our
intention is to create an ontology matching algorithm
applicable to many domains. The success of these general
semantic lexicons for such a rich in terminology domain,
provides additional evidence that the proposed method-
ology may also generalize to other domains. However,
further experimentation is needed to verify the adequacy
and appropriateness of these semantic lexicons to other
domains. It is among our future directions to test the
applicability of our proposed algorithm to other domains.
Comparing the recall9 of SCBOW and SCBOW+

DAE(O), we see that the incorporation of the DAE pro-
duces sentence embeddings that are tailored to the seman-
tic similarity task. The small precision of SCBOW, in all
experiments, indicates a semantic similarity and descrip-
tive association coalescence. Considering both the preci-
sion and the recall metric, we can observe that the outlier
detection mechanism identifies misalignments while pre-
serving most of the true alignments. This fact provides
empirical support on the necessity of the outlier detec-
tion. To validate the importance of our phrase retrofitting
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component, we further analyze the behavior of align-
ing ontologies based on the word embedding produced
by running the procedure described in [23] (listed as
Wieting). As we can see SCBOW achieves statistically
significant higher recall than Wieting in all our experi-
ments and in two of the three cases statistically significant
greater precision. This behavior indicates the superior-
ity of SCBOW in injecting semantic similarity to word
embeddings as well as to produce word vectors tailored
to the ontology matching task. We further extended the
Wieting experiment by applying our outlier detection
mechanism trained on the word vectors produced by the
procedure described in [23]. It can be seen that this exten-
sion leads to the same effects as the ones summarized
in the SCBOW - SCBOW+DAE(O) comparison. These
results give evidence that our DAE-based outlier detection
component constitutes a mechanism applicable to various
sentence embeddings’ producing architectures.

Ablation study
In this section, an ablation study is carried out to inves-
tigate the necessity of each of the described components,
as well as their effect on the ontology matching perfor-
mance. Figure 5 shows a feature ablation study of our
method; in Table 3 we give the descriptions of the exper-
iments. We conducted experiments on which the phrase
retrofitting component was not used, hence the ontology
matching task was only performed based on the pre-
trained word vectors. Moreover, we have experimented on
performing the ontology matching task with the features
generated by the DAE. Our prime motivation was to test
whether the features produced by the DAE could be used
to compute the cosine distances needed for estimating the
preferencematrix used by the StableMarriage’s algorithm.
Hence, we differentiate in this subsection and we allow

the DAE features to be used for Matching and/or Outlier
Detection.
To begin with, it can be observed that all the per-

formance metrics’ figures undergo the same qualitative
behavior. This result demonstrates that our algorithm
exhibits a consistent behavior under the ablation study
across all the experiments, which constitutes an impor-
tant factor for inducing conclusions from experiments.
The experiment W2V gives the results of executing the
algorithm without the phrase retrofitting process, just by
providing the pre-trained word vectors [52]. The perfor-
mance of W2V in terms of Precision/Recall is system-
atically lower compared to all cases in which the initial
word2vec vectors are retrofitted. These results support
the importance of the phrase retrofitting process (experi-
ments of which are presented under the listing SCBOW in
Fig. 5), which succeeds in tailoring the word embeddings
to the ontology matching task. The pre-trained word vec-
tors, even though they were trained on PubMed and PMC
texts, retain small precision and recall. This fact indicates
a semantic similarity and descriptive association coales-
cence and sheds light on the importance of the retrofitting
procedure.
Training the DAE on the pre-trained word vectors -

DAE(O) - adds a significant performance gain on preci-
sion, which witnesses the effectiveness of the architecture
for outlier detection. However, DAE(O)’s precision is
almost the same as the one presented in the SCBOW
experiment. Only when the phrase retrofitting component
is combined with the DAE for outlier detection -
SCBOW+DAE(O) - we manage to surpass the aforemen-
tioned precision value and achieve our best F1-score.
Finally, our experiments on aligning ontologies by only
using the DAE features demonstrate that these features
are inadequate for this task. One prime explanation of

Fig. 5 Feature ablation study of our proposed approach across all the experimental ontology matching tasks
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Table 3 Ablation study experiment’s listings

Experiment’s code: Phrase retrofitting
DAE features:

Matching Outlier detection

W2V - - -

DAE(O) - - �
DAE(M) - � -

DAE(MO) - � �
SCBOW � - -

SCBOW+DAE(O) � - �
SCBOW+DAE(M) � � -

SCBOW+DAE(MO) � � �

this behavior is that DAE features are only exposed to
synonymy information. At the same time, the dimension-
ality reduction of DAE features may lead them to lose a
lot of valuable information captured in them for discrim-
inating between semantically similar and descriptively
associated terms. Note also that the preference matrix
required by the Stable Marriage solution requires each
term of an ontology O to be compared across all the pos-
sible terms of another ontologyO′. Thereafter, the vectors
based on which the preference matrix will be computed
need to capture the needed information adequate for dis-
criminating between semantically similar and descriptive
associated terms.

Error analysis
Recent studies provide evidence that different sentence
representations objectives yield different intended rep-
resentation preferable for different intended applications
[33]. Moreover, our results reported in Table 2 on
aligning ontologies with word vectors trained based on
the method presented in [23] provide further evidence
in the same direction. In Table 4, we demonstrate a
sample of misalignments produced by aligning ontologies

using the Stable Marriage’s solution based on a prefer-
ence matrix computed either on SCBOW or Word2Vec
vectors. It can be seen that the SCBOW misalignments
demonstrate even a better spatial consistency compared
to the Wor2Vec misalignments. This result combined
with high F1-score reported in the SCBOW results in
Table 5 show that ontological knowledge can be an
important ally in the task of harnessing terminological
embeddings tailored to semantic similarity.Moreover, this
error analysis provides additional support for the signif-
icance of retrofitting general-purpose word embeddings
before being applied in a domain-specific setting. It can
be observed that general-purpose word vectors capture
both similarity and relatedness reasonably well, but nei-
ther perfectly as it has been already observed in various
works [6, 19].

Runtime analysis
In this section, we report the runtimes of our ontology
matching algorithm for the different matching scenar-
ios. Since our method – SCBOW+DAE(O) – consists
of three major steps, we present in Table 5 the time
devoted to each of them as well as their sum. In brief,
the steps of our algorithm are the following: the training
of the phrase retrofitting component (Step 1), the solu-
tion to the stable marriage assignment problem (Step 2),
and finally the training of the DAE-based outlier detec-
tion mechanism (Step 3). All the reported experiments
were performed on a desktop computer with an Intel®
Core™ i7-6800K (3.60GHz) processor with 32GB RAM
and two NVIDIA® GeForce® GTX™ 1080 (8GB) graphic
cards. The implementation was done in Python using
Theano [69, 70].
As it can be seen on Table 5, the majority of the

time is allotted to the training of the phrase retrofitting
framework. In addition, it can be observed that the
training overhead of the outlier detection mechanism is

Table 4 Sample misalignments produced by aligning ontologies using either SCBOW or Word2Vec vectors

Terminology to be matched Matching based on SCBOW Matching based on Word2Vec

MA-NCI

gastrointestinal tract digestive system respiratory tract

tarsal joint carpal tarsal bone metacarpo phalangeal joint

thyroid gland epithelial tissue thyroid gland medulla prostate gland epithelium

FMA-NCI

cardiac muscle tissue heart muscle muscle tissue

set of carpal bones carpus bone sacral bone

white matter of telencephalon brain white matter white matter

FMA-SNOMED

zone of ligament of ankle joint accessory ligament of ankle joint entire ligament of elbow joint

muscle of anterior compartment of leg compartment of lower leg entire interosseus muscle of hand

dartos muscle dartos layer of scrotum tendon of psoas muscle
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Table 5 Runtimes of the steps in the proposed algorithm

Matching task
Running time (seconds)

Step 1 Step 2 Step 3 Total

MA - NCI 337 34 36 407

FMA - NCI 490 82 40 612

FMA - SNOMED 609 490 41 1140

significantly smaller compared to the other steps. How-
ever, one important tendency can be observed in the
FMA - SNOMEDmatching scenario. Specifically, the run-
time of the second step has considerably increased and is
comparable to the runtime of the first step. This can be
explained by the worst-case time complexity of the McVi-
tie and Wilson’s algorithm [39], that has been used, which
is O

(
n2

)
. Moreover, the computation of the preference

matrix required for defining the stable marriage assign-
ment problem’s instance has worst-case time complexity
�

(
n2 log n

)
. At the same time, the space complexity of the

second step is O
(
n2

)
, since it requires the storage of the

preference matrices. On the contrary, various techniques
[71, 72] and frameworks [69, 70, 73, 74] have been pro-
posed and implemented for distributing the training and
inference task of DNRs. Although our implementation
exploits these highly optimized frameworks for DNRs, the
choice of using the McVitie and Wilson’s algorithm intro-
duces a significant performance barrier for aligning larger
ontologies than the ones considered in our experiments.
However, it was recently shown that a relationship exists
between the class of computing greedy weighted match-
ing problems and the stable marriage problems [75]. The
authors exploit this strong relationship to design scalable
parallel implementations for solving large instances of the
stable marriage problems. It is among our future work to
test the effectiveness of those implementations as well as
to experiment with different graph matching algorithms
that will offer better time and space complexity.

Importance of the ontology extracted synonyms
As described in “Semantic lexicons” section, apart from
the synonymy information extracted from ConceptNet
5, BabelNet, and WikiSynonyms, we have exploited the
fact that, in some of the considered ontologies, a type

may have one preferred name and some additional para-
phrases expressed through multiple rdfs:label relations. In
this section, we provide an additional set of experiments
that aims to measure the importance of these extracted
synonyms. This extracted synonymy information consti-
tutes the 0.008%, 0.26%, 0.65% of the training data used in
the MA - NCI, FMA - NCI, FMA - SNOMED matching
scenarios, respectively. The high variance in their contri-
bution to the training data provide us a means for partially
evaluating the correlation between the relative change in
the training data and the F1-score.
In Table 6, we compare the performance of SCBOW

and SCBOW+DAE(O) trained with only the available
information from the semantic lexicons, with that pre-
sented in Table 2 where all the the synonymy information
was available. It can be observed that the additional syn-
onymy information affects positively both SCBOW and
SCBOW+DAE(O). To better illustrate this correlation, we
present in Fig. 6 how the relative change in the training
data is reflected to the relative difference in the perfor-
mance of our algorithm. It transpires that the F1-score’s
relative change monotonically increases with the relative
difference in the available data. This behavior constitutes
a consistency check for our proposed method, since it
aligns with our intuition that increasing the synonymy
information leads to producing terminological embed-
dings more robust to semantic similarity. Regarding the
additional benefit that this additional synonymy informa-
tion brings, a maximum gain of 0.07 in the F1-score is
observed across all the matching scenarios. This fact pro-
vides supplementary empirical support on the adequacy
of the used general semantic lexicons as a means of pro-
viding the semantic similarity training data needed by our
method. Although this additional synonymy information
is important for comparing favorably with the state-of-
the-art systems, it does not constitute a catalytic factor for
the method’s success.
Nonetheless, further experimentation is needed to ver-

ify the adequacy of these general semantic lexicons as
well as to investigate the correlation between the train-
ing data size and the proposed method’s performance. We
leave for future work the further experimentation with
supplementary matching scenarios, different training data
sizes and synonymy information sources.

Table 6 Proposed algorithm’s performance in relation to the used synonymy information sources

System Training data
MA - NCI FMA - NCI FMA - SNOMED

P R F1 P R F1 P R F1

SCBOW SL 0.845 0.911 0.877 0.897 0.840 0.868 0.795 0.773 0.784

SCBOW SL + AS 0.847 0.917 0.881 0.899 0.895 0.897 0.843 0.866 0.855

SCBOW + DAE(O) SL 0.946 0.905 0.925 0.972 0.830 0.895 0.912 0.759 0.829

SCBOW + DAE(O) SL + AS 0.968 0.913 0.94 0.976 0.892 0.932 0.931 0.856 0.892

Note: SL: synonyms only from ConceptNet 5, BabelNet, and WikiSynonyms; AS: additional synonyms found in the ontologies to be matched
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Fig. 6 Correlation between the relative change in training data’s size
and F1-score

Threshold sensitivity analysis
In this section, we perform a sensitivity analysis for the
thresholds t1 and t2. These thresholds constitute a means
for quantifying if two terms are semantically similar or
descriptively associated. It is worth noting that the tun-
ing of these thresholds can be decoupled. Equivalently, the
t1 threshold can be tuned to optimize the performance of
SCBOW, and based on the resulted value the tuning of t2
can be performed so as to optimize the performance of the
outlier detection mechanism. Figure 7 shows a threshold
sensitivity analysis of our method. For exploring the effect
of t1, we present on the left sub-figure of Fig. 7 the perfor-
mance of SCBOW for all the different matching scenarios
when varying the value of threshold t1 between 0 and 1.0.
Similarly, the right sub-figure of Fig. 7 shows the perfor-
mance of SCBOW+DAE(O) when t1 is set to 0.2 and the
value of t2 varies in [0, 1.0].
To begin with, it can be seen that both of the threshold

sensitivity analysis’ figures undergo analogous qualitative
behavior across the different ontology matching tasks.
At the same time, it is observed that the performance
(F1-score) monotonically increases when the value of t1
varies between 0 and approximately 0.2. In the t1 sub-
figure, the performance monotonically decreases with

t1 ∈ [0.2, 0.6] and reaches an asymptotic value at about
0.6. In the case of t2, although the performance decreases
when the value of t2 exceeds 0.2, the rate of the decrease is
significantly lower compared to the rate of decrease of t1.
It can be seen that although further tuning and exper-

imentation with the values of t1, t2 can give better
results for each ontology matching task, the values that
resulted from the hyperparameter tuning (described in
“Training” section) are significantly close to the opti-
mal ones. Moreover, it can be concluded that t1 values
greater than 0.2 have a greater negative impact on the
performance compared to the performance drop when t2
exceeds 0.2. Finally, it should be highlighted that apart
from the hyperparameter tuning, no additional direct
supervision based on the ground truth alignments is used
by our method when we align the ontologies of the con-
sidered matching scenarios.

Implications & limitations
Traditionally, ontology matching approaches have been
based on feature engineering in order to obtain different
measures of similarity [27]. This plethora of multiple and
complementary similarity metrics has introduced various
challenges including choosing the most appropriate set of
similarity metrics for each task, tuning the various cut-off
thresholds used on these metrics, etc. [76]. As a solu-
tion to these challenges, various sophisticated solutions
have been proposed such as automating the configuration
selection process by applyingmachine learning algorithms
on a set of features extracted from the ontologies [76].
Unlike in our approach, only one similarity distance is
used; the cosine distance upon the learned features of the
phrase retrofitting and the DAE framework. Therefore,
there is a drastic decrease in the used similarity metrics
and thresholds.
At the same time, it was an open question whether

ontology’s structural information is really required for
performing ontology matching. Our proposed algorithm
manages to compare favorably against state-of-the-art
systems without using any kind of structural information.

Fig. 7 Sensitivity analysis of the proposed algorithm’s performance with different threshold values
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Our results support that a great ontology matching per-
formance can be achieved even in the absence of any
graph-theoretic information. However, we avoid to con-
clude that structural information is not necessary. We
leave for future work the investigation of how the ontol-
ogy’s structural information can be exploited in the frame
of DNRs. Similarly, our method relies on word vectors
pre-trained on large external corpora and on synonymy
information provided by semantic lexicons also including
the ontologies to be matched. Consequently, we can make
the conclusion that external corpora and semantic lexi-
cons provide sufficient information to perform ontology
matching by only exploiting the ontologies’ terms.
Nonetheless, our approach has also certain shortcom-

ings. To begin with, our proposed algorithm is restricted
on discovering one-to-one correspondences between two
ontologies. At the same time, the use of the McVitie
and Wilson’s algorithm in our current implementation
introduces a significant performance barrier for aligning
lager ontologies than the ones considered in our experi-
ments. Although our experimental results demonstrated
that high precision can be achieved without using the
OWL’s reasoning capabilities, our recall remains lower
compared to the state-of-the-art systems across all the
ontology matching tasks. Taking into account the results
presented in “Importance of the ontology extracted syn-
onyms” section, it may be concluded that more synonymy
information is required to be extracted from supple-
mentary semantic lexicons so as to increase this per-
formance metric. This observation introduces another
one weakness of our algorithm; that of closely depend-
ing on available external corpora and semantic lexicons.
All the aforementioned open questions and shortcomings
demonstrate various interesting and important directions
for our future work and investigation.

Related work
Representation Learning for Ontology Matching:
Ontology matching is a rich research field where multi-
ple and complementary approaches have been proposed
[7, 77]. The vast majority of the proposed approaches,
applied on the matching scenarios used in this paper,
perform ontology matching by exploiting various ter-
minological and structural features extracted from the
ontologies to be matched. In parallel, they make use of
various external semantic lexicons such as Uberon, DOID,
Mesh, BioPortal ontologies and Wordnet as a means for
incorporating background knowledge useful for discover-
ing semantically similar terms. CroMatcher [64], AML
[60, 61] and XMap [65] extract various sophisticated
features and use a variety of the aforementioned exter-
nal domain-specific semantic vocabularies to perform
ontology matching. Moreover, LogMap, AML and XMap
exploit complete and incomplete reasoning techniques

so as to repair incoherent mappings [78]. Unlike the
aforementioned approaches, FCA_Map [66, 67] uses For-
mal Concept Analysis [68] to derive terminological hier-
archical structures that are represented as lattices. The
matching is performed by aligning the constructed lattices
taking into account the lexical and structural informa-
tion that they incorporate. PhenomeNet [79] exploits an
axiom-based approach for aligning ontologies that make
use of the PATO ontology and Entity-Quality definition
patterns [80, 81]; complementing in that way some of the
shortcomings of feature-based methods.
Representation learning has so far limited impact on

ontology matching. To the best of our knowledge, only
two approaches, [82–84], have explored so far the use
of unsupervised deep learning techniques. Both of these
approaches use a combination of the class ID, labels,
comments, etc. to describe an ontological entity in their
algorithms. Zhang et al. [82] are the first ones that investi-
gated the use of word vectors for the problem of ontology
matching. They align ontologies based on word2vec [14]
vectors trained on Wikipedia. They were the first that
reported that the general-purpose word vectors were not
good candidates for the task of ontology matching. Xiang
et al. [83, 84] proposed an entity representation learning
algorithm based on Stacked Auto-Encoders [37, 85]. How-
ever, training such powerful models with so small training
sets is problematic. We overcome both of the aforemen-
tioned problems by using a transfer learning approach,
known to reduce learning sample complexity [86], which
retrofits pre-trained word vectors to a given ontological
domain.
Sentence Representations from Labeled Data: To

constrain the analysis, we compare neural language mod-
els that derive sentence representations of short texts
optimized for semantic similarity based on pre-trained
word vectors. Nevertheless, we consider in our compari-
son the initial Siamese CBOW model [32]. Likewise, we
do not focus on innovative supervised sentence mod-
els based on neural networks architectures with more
than three layers including [87, 88] and many others.
The most similar approach to our extension on Siamese
CBOW is the work of Wieting et al. [22]. Wieting et
al. address the problem of paraphrase detection where
explicit semantic knowledge is also leveraged. Unlike in
our approach, a margin-based loss function is used, and
negative examples should be sampled at every step intro-
ducing an additional computational cost. Themost crucial
difference is that this model was not explicitly constructed
for alleviating the coalescence of semantically similar and
descriptively associated terms. Finally, the initial Siamese
CBOWmodel was conceived for learning distributed rep-
resentations of sentences from unlabeled data. To take
advantage of the semantic similarity information already
captured in the initial word embeddings, an important
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characteristic as demonstrated in various word vectors
retrofitting techniques [20–22], we extended the initial
model with an knowledge distillation reguralizer. Finally,
we further extended the initial softmax setting, with a
tempered softmax, with the purpose of enabling the net-
work to capture information hidden in small logit values.
Autoencoders for Outlier Detection:Neural networks

applications to the problem of outlier detection have been
studied for a long time [89, 90]. Autoencoders seem to
be a recent and a very prominent approach to the prob-
lem. As has been pointed out in [91], they can be seen as
a generalization of the class of linear schemes [92]. Usu-
ally, the reconstruction error is used as the outlier score
[91]. Recently, Denoising Autoencoders (DAEs) have been
used for outlier detection in various applications, such as
acoustic novelty detection [93], network’s intrusion detec-
tion [91], anomalous activities’ discovery in video [94].
To the best of our knowledge, this is the first time that
the problem of semantic similarity is seen from the view-
point of outlier detection based on DAEs. Unlike the other
approaches, we want to detect outliers in pairs of input. To
achieve that we use the cosine distance over the two pro-
duced hidden representations as an outlier score, instead
of using the reconstruction error which is customary in
the literature. Our motivation is that intrinsic character-
istics of the distribution of semantically similar terms are
captured in the hidden representation and their cosine
distance could serve as an adequate outlier score. Unlike
the majority of the aforementioned work, we do not train
end-to-end the DAE but we follow a layer-wise training
scheme based on sentence representations produced by
our extension of Siamese CBOW. Our impetus is to let the
DAE to act on a dataset with significant less noise and bias.

Conclusions
In this paper, we address the problem of ontology match-
ing from a representation learning perspective. We pro-
pose the refinement of pre-trained word vectors so that
when they are used to represent ontological terms, the
produced terminological embeddings will be tailored to
the ontology matching task. The retrofitted word vectors
are learned so that they incorporate domain knowledge
encoded in ontologies and semantic lexicons. We cast
the problem of ontology matching as an instance of the
Stable Marriage problem using the terminological vec-
tors’ distances to compute the preference matrix. We
compute the aforementioned distances using the cosine
distance over the terminological vectors learned by our
proposed phrase retrofitting process. Finally, an outlier
detection component, based on a denoising autoencoder,
sifts through the list of the produced alignments so as
to reduce the number of misalignments. Our experi-
mental results demonstrate significant performance gains
over the state-of-the-art and indicate a new pathway for

ontology matching; a problem which has been tradition-
ally studied under the setting of feature engineering.

Endnotes
1 This term is known in the NLP community as “con-

ceptually associated”. We have chosen to depart from
the standard terminology for reasons summarized in
[95, p. 7].

2We provide further justification for this choice in
“Evaluation benchmarks” section.

3We provide further details on the textual informa-
tion used in our experiments in “Evaluation bench-
marks” section.

4 available on OAEI’s 2016 Large BioMed Track.
5 http://oaei.ontologymatching.org/2016/
6 For a detailed overview and comparison of the systems

refer to [96].
7We have also performed hyperparameter tuning in

the SNOMED-NCI matching task, which gave the same
hypeparameters as the ones reported in [23].

8 except for the synonymy information found in some
ontologies and is expressed through multiple labels
(rdfs:label) for a given type.

9All the experiments are statistically significant with a
p-value ≤0.05.
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