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Abstract We consider collective quantification in natural language. For many years
the common strategy in formalizing collective quantification has been to define the
meanings of collective determiners, quantifying over collections, using certain type-
shifting operations. These type-shifting operations, i.e., lifts, define the collective
interpretations of determiners systematically from the standard meanings of quantifi-
ers. All the lifts considered in the literature turn out to be definable in second-order
logic. We argue that second-order definable quantifiers are probably not expressive
enough to formalize all collective quantification in natural language.

Keywords Collective quantification · Lindström quantifiers · Second-order
generalized quantifiers · Type-shifting · Definability · Computational complexity

1 Introduction

Recently, there has been some interest in measuring the complexity of semantic con-
structions of natural language. These studies have been motivated by certain math-
ematical questions (see e.g. Hella et al. 1997) as well as cognitive considerations
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(see e.g. Szymanik 2007). As the complexity of the semantics of a language heav-
ily depends on the expressive power of its quantifiers, most of the studies have
focused on quantification. In particular, Mostowski and Wojtyniak (2004), followed by
Sevenster (2006), study computational complexity of natural language quantifiers. In
all of these studies only distributive readings of natural language determiners have been
considered. In contrast—as the properties of plural objects are becoming more and
more important in many areas (e.g. in game-theoretical investigations, where groups
of agents are acting)—this paper is devoted to the collective readings of quantifiers.

Already Bertrand Russell (1903) noticed that natural language contains quantifi-
cation not only over objects, but also over collections of objects. The notion of a
collective reading is a semantic one—as opposed to the grammatical notion of plural-
ity—and it applies to the meanings of certain occurrences of plural noun phrases. The
phenomenon is illustrated by the following sentences:

(1) Tikitu and Samson lifted the poker table together.
(2) Most of the card combinations do not contain a picture card.
(3) Most groups of students have never played Hold’em together.

The question arises how should we model collective quantification in formal seman-
tics. Many authors have proposed different mathematical accounts of collectivity in
language (see Lønning 1997, for an overview and references).

In Link (1983) one finds the idea of replacing the domain of discourse, which con-
sists of entities, with the structure of a complete join semilattice. The idea is to enrich
the structure of models to account for cumulative references. The main advantage
of this algebraic perspective is that it unifies the view on collective predication and
predication involving mass nouns.

van der Does (1992) noticed that all that can be modeled with the algebraic models
can be done as well within type theory. This alternative tradition, starting with the
works of Bartsch (1973) and Bennett (1974), uses extensional type theory with the
basic types: e (entities) and t (truth values), and compound types: αβ (functions map-
ping type α objects into type β objects). Together with the idea of type-shifting, intro-
duced in the seminal paper of Partee and Rooth (1983), and then formally developed
by van Benthem (1995), it gives a new approach to modeling collectivity in natural
language. The strategy, introduced by Scha (1981) and later advocated and developed
by van der Does (1992, 1993) and Winter (2001), is to lift first-order generalized
quantifiers to a second-order setting. In the type theoretical terms the trick is to shift
determiners of type ((et)((et)t)), related to the distributive readings of quantifiers,
into determiners of type ((et)(((et)t)t)) which can be used to formalize collective
readings of quantifiers.

In the next section we illustrate the idea of lifting first-order quantifiers by a few
examples. Then we introduce both first-order and second-order generalized quantifi-
ers, and show that the type theoretic approach can be redefined in terms of second-
order generalized quantifiers. The idea of type-shifting turns out to be very closely
related to the notion of definability which is central in generalized quantifier theory.
We show that the type-shifting operations considered in the literature (i.e. lifts) are
definable in second-order logic. This observation allows us to point out the restric-
tions of the type-shifting strategy used in the literature. In particular, we show that the
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collective meaning of the determiner most can not be uniformly defined by any lift
definable in second-order logic, unless the counting hierarchy collapses in computa-
tional complexity theory.

2 Lifting First-order Determiners

Let us consider the following example sentences involving collective quantification.

(4) Five people lifted the table.
(5) Some students played poker together.
(6) All combinations of cards are losing in some situations.

The distributive reading of the sentence (4) claims that the total number of students
who lifted the table on their own is exactly five. This statement can be formalized in
elementary logic by the formula (7):

(7) ∃=5x[People(x) ∧ Lift(x)].
The collective interpretation of (4) claims that there was a collection of exactly five
students who jointly lifted the table. This can be formalized by lifting the formula
(7) to the second-order formula (8), where the predicate “Lift” has been lifted from
individuals to sets:

(8) ∃X[Card(X) = 5 ∧X ⊆ People ∧ Lift(X)].
In the similar way, by lifting the corresponding first-order determiners, we can express
the collective readings of sentences (5)–(6) as follows:

(9) ∃X[X ⊆ Students ∧ Play(X)].
(10) ∀X[X ⊆ Cards → Lose(X)].

All the examples above can be described in terms of the uniform procedure of
turning a determiner of type ((et)((et)t)) into a determiner of type ((et)(((et)t)t)) by
means of the type-shifting operator called existential modifier, (·)EM . Fix a universe
of discourse U and take any X ⊆ U , and Y ⊆ P(U). Define the existential lift QEM

of a quantifier Q in the following way:

QEM(X, Y ) is true ⇐⇒ ∃Z ⊆ X[Q(X,Z) ∧ Z ∈ Y ].

In the literature, lifts have been defined also for distributive and so-called neutral
readings of sentences. For example, Ben-Avi and Winter (2003) define the follow-
ing lift—called dfit—abbreviating determiner fitting, to overcome some problems
related to the monotonicity properties of the previous lifts considered in the litera-
ture. The dfit operator turns a determiner of type ((et)((et)t)) to a determiner of type
(((et)t)(((et)t)t)), i.e., for all X, Y ⊆ P(U) we have that

Qdfit(X, Y ) is true
⇐⇒

Q[∪X,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧ Q(∪X,W)].
For us the most important observation is that all the lifts proposed in the literature (see
Winter 2001, for an overview) are definable by the means of second-order logic.
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3 Generalized Quantifiers

3.1 Lindström Quantifiers

Let us first recall the definition of a first-order generalized quantifier formulated by
Lindström (1966). Let s = (�1, . . . , �r ) be a tuple of positive integers. A first-order
generalized (Lindström) quantifier of type s is a class Q of structures of vocabulary
τs = {P1, . . . , Pr }, such that Pi is �i-ary for 1 ≤ i ≤ r , and Q is closed under
isomorphisms.

To illustrate the notion let us look at some well-known examples of first-order
generalized quantifiers.

∀ = {(M,P ) | P = M}.
∃ = {(M,P ) | P ⊆ M and P �= ∅}.

even = {(M,P ) | P ⊆ M and card(P ) is even}.
most = {(M,P, S) | P, S ⊆ M and card(P ∩ S) > card(P \ S)}.
some = {(M,P, S) | P, S ⊆ M and P ∩ S �= ∅}.

The first two examples are the standard first-order universal and existential quan-
tifiers, both of type (1). The other examples are also familiar from natural language
semantics. Their aim is to capture the truth-conditions of sentences of the form: “There
is an even number ofAs”, “MostAs areBs” and “SomeA isB”. Divisibility quantifier
even is of type (1), whereas the quantifiers most and some are of type (1, 1).

First-order generalized quantifiers enable us to enrich the expressive power of first-
order logic in a very controlled and minimal way. We define the extension, FO(Q), of
first-order logic by a quantifier Q of type s = (�1, . . . , �r ) in the following way:

• The formula formation rules of FO are extended by the rule:
if for 1 ≤ i ≤ r, ϕi(xi) is a formula and xi is an �i-tuple of pairwise distinct
variables, then Qx1, . . . , xr (ϕ1(x1), . . . , ϕr (xr )) is a formula.

• The satisfaction relation of FO is extended by the rule:

M |� Qx1, . . . , xr (ϕ1(x1), . . . , ϕr (xr )) iff (M, ϕM

1 , . . . , ϕ
M
r ) ∈ Q,

where ϕM

i = {a ∈ M�i | M |� ϕi(a)}.

First-order generalized quantifiers have been used extensively in formal-semantics
of natural language to model distributive determiners (see Westerståhl and Peters
2006). However, they are not adequate in formalizing collective quantification. In
the next section we present an intuitive and natural extension of Lindström quanti-
fiers, second-order generalized quantifiers. They turn out to be a natural concept for
interpreting the meanings of collective determiners in natural language.
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3.2 Second-order Generalized Quantifiers

Second-order generalized quantifiers were first defined and applied in the context of
descriptive complexity theory by Burtschick and Vollmer (1998). The general notion
of a second-order generalized quantifier was later formulated by Andersson (2002).
The following definition is a straightforward generalization from the first-order case.
However, note that the types of second-order generalized quantifiers are more com-
plicated than the types of first-order generalized quantifiers, since predicate variables
can have different arities. Let t = (s1, . . . , sw), where si = (�i1, . . . , �

i
ri
), be a tuple

of tuples of positive integers. A second order structure of type t is a structure of the

form (M,P1, . . . , Pw), where Pi ⊆ P(M�i1)× · · · ×P(M�iri ). Below, we write f [A]
for the image of A under the function f .

A second-order generalized quantifier Q of type t is a class of structures of type t
such that Q is closed under isomorphisms: if (M,P1, . . . , Pw) ∈ Q and f : M → N is
a bijection such that Si = {(f [A1], . . . , f [Ari ]) | (A1, . . . , Ari ) ∈ Pi}, for 1 ≤ i ≤ w,
then (N, S1, . . . , Sw) ∈ Q.

In the following, second-order quantifiers are denoted Q, whereas first-order quan-
tifiers are denoted Q. The following examples show that second-order generalized
quantifiers are a natural extension from the first-order case.

∃2 = {(M,P ) | P ⊆ P(M) and P �= ∅}.
Even = {(M,P ) | P ⊆ P(M) and card(P ) is even}.

Even′ = {(M,P ) | P ⊆ P(M) and ∀X ∈ P(card(X) is even)}.
Most = {(M,P, S) | P, S ⊆ P(M) and card(P ∩ S) > card(P \ S)}.

The first example is the familiar unary second-order existential quantifier. The type of
∃2 is ((1)), i.e., it applies to one formula binding one unary second-order variable in
it. The type of the quantifier Even is also ((1)) and it expresses that a formula holds
for an even number of subsets of the universe. On the other hand, the quantifier Even′
expresses that all the subsets satisfying a formula have an even number of elements.
The type of the quantifier Most is ((1), (1)) and it is the second-order analogue of
the quantifier most.

As in the first-order case, we define the extension, FO(Q), of FO by a second-order
generalized quantifier Q of type t = (s1, . . . , sw), where si = (�i1, . . . , �

i
ri
), in the

following way:

• Second order variables are introduced to FO.
• The formula formation rules of FO are extended by the rule:

if for 1 ≤ i ≤ w, ϕi(Xi) is a formula and Xi = (X1,i , . . . , Xri ,i ) is a tuple of
pairwise distinct predicate variables, such that arity(Xj,i) = �ij , for 1 ≤ j ≤ ri ,
then

QX1, . . . , Xw (ϕ1(X1), . . . , ϕw(Xw))

is a formula.
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• The satisfaction relation of FO is extended by the rule:

M |� QX1, . . . , Xw (ϕ1, . . . , ϕw) iff (M, ϕM

1 , . . . , ϕ
M
w ) ∈ Q,

where ϕM

i = {R ∈ P(M�i1)× · · · × P(M�iri ) | M |� ϕi(R)}.

3.3 Definability

Informally, definability of a quantifier Q in a logic L means that there is a uniform
way to express every formula of the form Qx ϕ in L. Formally, let Q be a first-order
generalized quantifier of type s and L a logic. We say that the quantifier Q is definable
in L if there is a sentence ϕ ∈ L of vocabulary τs such that for any τs-structure M:

M |� ϕ ⇔ M ∈ Q.

Let L and L′ be logics. The logic L′ is at least as strong as the logic L (L ≤ L′)
if for every sentence ϕ ∈ L over any vocabulary there exists a sentence ψ ∈ L′ over
the same vocabulary such that:

|� ϕ ↔ ψ.

The logics L and L′ are equivalent (L ≡ L′) if L ≤ L′ and L′ ≤ L.
Below, we assume that the logic L has the so-called Substitution Property, i.e., that

the logic L is closed under substituting predicates by formulas. The following fact is
well-known for Lindström quantifiers.

Proposition 3.1 Let Q be a first-order generalized quantifier and L a logic. The
quantifier Q is definable in L iff

L(Q) ≡ L.

Proof Since Q = Mod(ϕ), where ϕ = Qx1, . . . , xr (P1(x1), . . . , Pr(xr)) the impli-
cation from right to left follows. For the other direction, we use recursively the fact
that if ϕ is the formula which defines Q and ψ1(x1), . . . , ψr(xr) are formulas of L,
then

|� Qx1, . . . , xr (ψ1(x1), . . . , ψr(xr)) ↔ ϕ(P1/ψ1, . . . , Pr/ψr),

where the formula on the right is obtained by substituting every occurrence of Pi(xi)
in ϕ by ψi(xi). �

In the second-order case, analogous notion of definability can be formulated. We
do not give the formal definition here. However, things are not completely analogous
to the first-order case. With second-order generalized quantifiers L(Q) ≡ L does not
imply that the quantifier Q is definable in the logic L. The converse implication is still
valid.
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Proposition 3.2 (Kontinen 2004) Let Q be a second-order generalized quantifier and
L a logic. If the quantifier Q is definable in L then

L(Q) ≡ L.

4 Defining Collective Determiners

In this section we show that collective determiners can be easily identified with certain
second-order generalized quantifiers.

At first sight, there seems to be a problem with identifying the collective deter-
miners with second-order generalized quantifiers; some of the collective determiners
discussed have a mixed type ((et)(((et)t)t)).1 However, this is not a problem since it
is straightforward to extend the definition to allow also quantifiers with mixed types.
Denote by someEM the following quantifier of type (1, (1))

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y �= ∅ and P ∈ G)}.

Obviously, we can now express the collective meaning of sentence (5) by the formula
(11).

(11) someEMx,X[Student(x),Play(X)].
Analogously, we can define the corresponding second-order quantifier appearing

in sentence (4), here as (12).

(12) Five people lifted the table.

We take fiveEM to be the second order-quantifier of type (1, (1)) denoting the class:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 and P ∈ G)}.

Now we can formalize the collective meaning of (12) by:

(13) fiveEMx,X[Student(x),Lift(X)].
Already these simple examples show that it is straightforward to associate with

every lifted determiner a mixed second-order generalized quantifier. Also, it easy to
see that for any first-order quantifier Q the lifted second-order quantifier QEM can
be uniformly expressed in second-order logic assuming the quantifier Q is also avail-
able. In fact, all the lifts discussed in Sect. 2, and, as far as we know, all proposed in
the literature, are definable in second-order logic. This observation can be stated as
follows.

Proposition 4.1 Let Q be a first-order quantifier definable in SO. Then the second-
order quantifiers QEM and Qdfit are definable in SO.

1 Note that the lift dfit of Ben-Avi and Winter (2003) turns a first-order quantifier of type (1, 1) directly
into a second-order quantifier of type ((1), (1)).
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Proof Let us consider the case of QEM . Let ψ(x) and φ(Y ) be formulas. We want to
express QEMx, Y (ψ(x), φ(Y )) in second-order logic. By the assumption, the quan-
tifier Q can be defined by some sentence θ ∈ SO[{P1, P2}]. We can now use the
following formula:

∃Z (∀x(Z(x) → ψ(x)) ∧ (θ(P1/ψ(x), P2/Z) ∧ φ(Y/Z)) .

The other lifts can be defined analogously. �
Proposition 4.1 shows that the type-shifting strategy cannot take us outside of sec-

ond-order logic. In the next section we show that it is very unlikely that all collective
determiners in natural language can be defined in second-order logic. Our argument
is based on the close connection between second-order generalized quantifiers and
certain complexity classes in computational complexity theory.

5 Lifting the Determiner most

Let us return to the example sentences (2)–(3) from the introduction. For readability,
we repeat (3) here as (14).

(14) Most groups of students have never played Hold’em together.

It is easy to see that (14) can be formalized using the quantifier Most by:

(15) MostX, Y [Students(X),¬Play(Y )].
We assume above that the predicates Students(X) and Play(Y ) are interpreted as col-
lections of sets of atomic entities of the universe of discourse. Obviously, this is just
one possible way of interpreting (14). However, it seems that something like Most
is needed in the formalization assuming that Students(X) and Play(Y ) are interpreted
as collective predicates.

For the sake of argument, let us assume that our formalization of sentence (14) is
correct. It is easy to see that the lifts discussed before do not give the intended meaning
when applied to the first-order quantifier most. We shall next show that it is unlikely
that any lift which can be defined in second-order logic can do the job. More precicely,
we shall show (Theorem 5.1 below) that if the quantifier Most can be lifted from the
first-order most using a lift which is definable in second-order logic then something
unexpected happens in computational complexity. This result indicates that the type-
shifting strategy used to define the collective determiners in the literature is probably
not general enough to cover all collective quantification in natural language.

We shall next discuss the complexity theoretic side of our argument. Recall that
second-order logic corresponds in the complexity theory to the polynomial hierarchy,
PH, (see Stockmeyer 1976). The polynomial hierarchy is an oracle hierarchy with NP
as the building block. If we replace NP by probabilistic polynomial time (PP) in the
definition of PH, then we arrive at a class called the counting hierarchy (CH). PP con-
sists of languages L for which there is a polynomial time-bounded nondeterministic
Turing machine N such that, for all inputs x, x ∈ L iff more than half of the compu-
tations of N on input x end up accepting. The counting hierarchy can be defined now
as follows in terms of oracle Turing machines
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(1) C0P = PTIME,
(2) Ck+1P = PPCkP ,
(3) CH = ⋃

k∈N
CkP .

It is known that PH is contained in the second level C2P of CH (see Toda 1991). The
question whether CH ⊆ PH is still open.

Now, we can turn to the theorem which is fundamental for our argumentation.

Theorem 5.1 If the quantifier Most is definable in second-order logic, then
CH = PH and CH collapses to its second level.

Proof The proof is based on the observation in Kontinen and Niemistö (2006) that
already the logic2 FO(Most) can define complete problems for each level of the count-
ing hierarchy. On the other hand, if the quantifier Most is definable in second-order
logic, then by Proposition 3.2 we would have that FO(Most) ≤ SO and therefore
SO would contain complete problems for each level of the counting hierarchy. This
would imply that CH = PH and furthermore that CH ⊆ PH ⊆ C2P . �

6 Conclusion

We have showed that the higher-order approach to collective quantification in natu-
ral language can be formalized in terms of second-order generalized quantifiers. The
previous attempts have relied implicitly on quantifiers which can be defined in sec-
ond-order logic. We have presented an argument indicating that second-order definable
quantifiers are probably not general enough to cover all collective quantification in
natural language.
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