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Abstract

Confirmational holism is at odds with Jeffrey conditioning—the orthodox
Bayesian policy for accommodating uncertain learning experiences. Two
of the great insights of holist epistemology are that (i) the effects of
experience ought to be mediated by one’s background beliefs, and (ii) the
support provided by one’s learning experience can and often is undercut
by subsequent learning. Jeffrey conditioning fails to vindicate either of
these insights. My aim is to describe and defend a new updating policy
that does better. In addition to showing that this new policy is more
holism-friendly than Jeffrey conditioning, I will also show that it has an
accuracy-centered justification.

How confident are you that you will make it through the afternoon without
a heart attack? 99%? 99.999%? Whatever your answer, you probably agree on
this much: whether you spend an hour reading the news and leaning lazily on
your left elbow is irrelevant to your prospects. It provides no evidence one way
or another about whether you will have a heart attack (unless an oracle told you,
“Lean on your elbow and meet your doom!” or something of the sort). Finding
out that you have high levels of “bad cholesterol,” for example, is bad news. But
finding out that you will spend the next hour reading and leaning is neither bad
news nor good news. It is no news (no relevant news anyway). It does not tell
you much one way or another about the risk of cardiovascular catastrophe.

But now imagine that you feel your left arm tingling. As a result, your
credence that you are about to have a heart attack shoots up. As you start
to panic, the kind stranger next to you asks you whether they can help. You
explain your situation. They respond calmly, “You do realise that you have been
leaning on your left elbow while reading for the last hour, don’t you?” Prior to
feeling your left arm tingle and spiraling into a panic, you thought this bit of
information was no news. It did not, in your view, give you any evidence about
whether you will have a heart attack. But now the situation is different. You are
well aware that the ulnar nerve runs along the back of your elbow; a nerve that
might get pinched if you lean on it for too long and cause your arm to tingle.
So now the kind stranger’s information is highly relevant news. Learning that
you have been leaning on your left elbow changes your opinion dramatically. It

0Acknowledgments: many thanks to Ray Briggs, Catrin Campbell-Moore, David Cor-
field, Billy Dunaway, Kenny Easwaran, Branden Fitelson, Graeme Forbes, Pavel Janda, Jim
Joyce, Ben Levinstein, Hanti Lin, Samir Okasha, Richard Pettigrew, Miriam Schoenfield, Jon
Williamson, and participants of the Epistemic Utility Theory Conference at the University of
Bristol (2016) for very helpful comments and questions on earlier versions of this work. This
research was partially supported by the Epistemic Utility for Imprecise Probability project
which is funded by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement no. 852677).

1



causes you to become pretty sure that you are fine; no heart attack in sight.
Irrelevant before, but irrelevant no more!

Your learning experience in this case has multiple effects. It raises your
credence that you will have a heart attack. But it also introduces new undercut-
ting defeaters. Undercutting defeaters cause you to re-evaluate the evidential
import of some prior learning experience. More carefully, if a proposition X
undercuts the support that a learning experience E provides for a hypothesis
Y , then learning X makes you think that E provides no support whatsoever
for Y .1 However we cash this out, the following seems true: X undercuts the
support that E provides for Y only to the extent that your post-E credence for Y
conditional on X (immediately after E , before acquiring additional information)
is close to your pre-E credence for Y . The more X undercuts E ’s support for
Y , the more learning X would push your confidence in Y back near its pre-E
levels. This means that X must be relevant to Y to count as an undercutting
defeater for Y .

In the case at hand, your learning experience E∗ turns the proposition L
that you lean on your elbow for an hour into an undercutting defeater for the
proposition H that you will have a heart attack. Prior to the experience, L is
irrelevant to H. And irrelevant propositions do not undercut anything. But
after the experience you see L as an undercutting defeater for H. Experience E∗
causes you to think that L undercuts the support that E∗ itself provides for H.
After E∗ you think: Learning L would be good reason to drop my high posterior
(post-E∗) credence in H back down to something like its pre-arm-tingling level.

According to Christensen (1992) and Weisberg (2015), cases like this are
both utterly ubiquitous, and cause big problems for Jeffrey conditioning. Jeffrey
conditioning says that you ought to update your credences in light of new learning
experiences as follows:

J-Con. If you have prior credences old and undergo a learning expe-
rience E that shifts your credences on some partition {E1, . . . , En}
to x1, . . . , xn, and nothing more, then your new credence for any
proposition X ought to be:

new(X) =
∑
i6n

xi · old(X | Ei).

According to Weisberg, J-Con bungles the introduction of new undercutting
defeaters. A rational agent’s confidence in most propositions (maybe all proposi-
tions) can be undermined by theoretical considerations. This is one of the basic
insights of holist epistemology. Moreover, rational agents change their mind
about what undercuts what. Learning experiences introduce new undercutting
defeaters. In our heart attack case, E∗ causes you to think that L undercuts
the support that E∗ itself provides for H, despite the fact that you previously
thought L was irrelevant to H. But Jeffrey conditioning simply does not allow
for this. J-Con is a “rigid” updating rule (§1). And rigid updating rules preserve
opinions about irrelevance. So if you thought L was irrelevant to H before E∗,
then you must think it is irrelevant after E∗. But this means that if you update

1Rebutting defeaters, in contrast, undermine your confidence in Y not by undercutting the
support for Y provided by some learning experience E, but rather by “telling directly against”
the truth of Y .
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by Jeffrey conditioning in our heart attack case, then E∗ will not push you to
treat L as an undercutting defeater for H. Hence J-Con makes bad predictions
about rational learning.

Christensen’s problem is a bit different. Christensen focuses on whether J-Con
has the resources to explain how inputs to updating depend on background beliefs.
According to Christensen, learning experiences never push your credences up or
down directly. Rather, the doxastic effects of experience are always mediated by
your background beliefs. Whether the tingling in your arm pushes your credence
that you are going to have a heart attack up, or down, or leaves it unchanged,
ought to depend on your prior opinions on a whole host of matters: your current
state of cardiovascular health, what exactly the warning signs of a heart attack
are, whether you have been leaning on your left elbow, etc. This is another
basic insight of holist epistemology. But Jeffrey conditioning treats the initial
effect of experience—a shifting of credences over some partition (sometimes
called a “Jeffrey shift”)—as an exogenous factor; an output of some “black box”
process that serves as an input to Jeffrey conditioning. Hence J-Con fails to
explain an important feature of rational learning: how or why the initial effects
of experience (the Jeffrey shift) depend on prior opinion.

Jeffrey was comfortable with this. Training the messy network of neurons
in your skull to translate perceptive and proprioceptive inputs into sensible
Jeffrey shifts is simply not something that formal epistemology should speak
to. That training happens in one’s PhD programme, in the lab, etc. It yields a
domain-specific skill; a skill that goes far beyond the skills one might be said
to have simply in virtue of being epistemically rational. Christensen, on the
other hand, sees Jeffrey’s ‘concession’ as placing “an important cognitive or
structural aspect of justification outside the area our theory purports to describe”
(Christensen, 1992, p. 547).

My aim in this paper is to describe and defend a new updating policy that
answers both Christensen and Weisberg’s concerns. Because it shares structural
features with J-Con, I call it J-Kon. Unlike J-Con, J-Kon makes explicit the way
in which inputs to updating depend on background beliefs. J-Kon also naturally
accounts for the introduction of new undercutting defeaters. In addition to being
more holism-friendly than J-Con, it also has an accuracy-centered justification.

Here is the plan in a bit more detail. In §1, I will briefly explain why
“rigid” updating rules like J-Con have trouble introducing new undercutting
defeaters. In §2, I will describe J-Kon and show how it works in a few simple
case. In §3, I will show that J-Kon is in fact equivalent to what Jeffrey called
“superconditioning” (with a few extra bells and whistles). In §4, I will extol the
epistemic virtues of J-Kon. More carefully, I will provide a chance-dominance
argument for J-Kon. If you fail to update by J-Kon, then your epistemic life—the
sequence of credal states that you adopt in response to your learning experiences—
is chance-dominated by some other J-Kon satisfying life. What it means to be
chance-dominated is this: every possible chance function expects your life to
accrue strictly less total epistemic value than the J-Kon satisfying life. If you
update by J-Kon, in contrast, your epistemic life is never chance-dominated in
this way. This provides a purely alethic (rather than evidential or pragmatic)
rationale for updating by J-Kon. In §5, I will explore the ways in which J-Kon
makes inputs to updating depend on background beliefs. I will also run through
a few cases that illustrate how J-Kon introduces new undercutting defeaters. In
§6, I will respond to some pressing objections. Finally, in §7, I will wrap up.
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1 Rigidity and Undercutting Defeat

Consider a histopathologist looking at stained cells under a microscope. Careful
examination might make her fairly confident that the relevant sample is, e.g.,
Ductal cell carcinoma. Given her training and expertise, she may well have good
reason for her confidence. Nevertheless, she might be wholly unaware of what
features of the cells she is picking up on. Despite the fact that there are definite
features that she is tracking, there is no reason to expect that she will have any
kind of privileged access to information about those features. There is no reason
to expect she will store such information as a “passive data structure,” or in
a more action-guiding fashion (directly in her sensorimotor system), or in any
other way that makes that info available as an input to action, decision-making,
or reasoning. As Weiskrantz puts it, “a large amount of bodily processing. . . in
sensory channels proceeds quite detached from any awareness. . . Awareness of an
event is a form of privileged access that allows further perceptual and cognitive
manipulations to occur; as far as neural processes are concerned, it is probably
a minority privilege” ((Jeffrey, 1992, p. 197), (Weiskrantz, 1986, pp. 168-9)).

None of this is unique to histopathologists, of course. It is “typical of our
most familiar sorts of updating, as when we recognize friends’ faces or voices or
handwritings pretty surely, and when we recognize familiar foods pretty surely
by their look, smell, taste, feel, and heft.” (Jeffrey, 1992, p. 79). In these run-of-
the-mill learning situations, there are definite features that you are picking up on.
And in virtue of your sensitivity to these features, you may well have good reason
for being fairly confident that the person in the distance is your friend, that Abbi
Jacobson is narrating your new favourite podcast, etc. But there typically is no
proposition describing those features that you even have an opinion about, let
alone become certain of. The reason is familiar. For you to count as having an
opinion about those features, propositions describing them must be available (in
some way or other) as inputs to action, decision-making, or reasoning. But such
information typically does not enjoy this ‘minority privilege’. It is processed and
has various downstream effects on your doxastic, affective and conative state, but
is not itself made available as an input to action, decision-making, or reasoning.

How should you update your credences, then, when you have learning expe-
riences like our histopathologist’s? Jeffrey conditioning offers a partial answer.
Suppose that you have prior credences old : F → R for propositions in a σ-
algebra F on a set of worlds Ω.2 Suppose also that you undergo a learning
experience E that (i) does not make you certain of anything, but nevertheless
(ii) shifts your credences on some partition {E1, . . . , En} of Ω to x1, . . . , xn (and
nothing more). That is, E induces a “Jeffrey shift” over {E1, . . . , En}. Then
Jeffrey conditioning (J-Con) says that your new credence for any proposition X
ought to be:

new(X) =
∑
i6n

xi · old(X | Ei).

When is Jeffrey conditioning appropriate? According to Jeffrey, you ought to
update by J-Con just in case two conditions hold.

2Ω contains the finest-grained possibilities you can distinguish between. Saying that F is a
σ-algebra means that (i) F contains the tautology Ω, and (ii) F is closed under complement
(negation), countable union (disjunction), and countable intersection (conjunction). We will
assume that Ω is finite.
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1. new(Ei) = xi.
2. new(X | Ei) = old(X | Ei).

The first condition says that you take the credences produced directly by E
at face value. For each Ei, you stick with xi as your new credence (rather than
treating this shift in your credences as the aberrant result of momentary mania).
The second condition says that you treat E as the sort of learning experience
that provides information about which of the Ei is true, but not about what
else is true given that Ei is true. So you hold your credence in X conditional on
Ei fixed for each X and each Ei. When this second condition holds, we say that
your update is “rigid.”

For example, our histopathologist’s learning experience (examining stained
cells under a microscope) might make her 80% confident that the sample is
Ductal cell carcinoma and 20% confident that it is not. And she might take these
“direct effects” of experience at face value (stick with them as her new credences).
Moreover, she might think that while E provides information about whether the
sample is Ductal cell carcinoma or not, it does not provide information about,
for example, the patient’s survival prospects S given that it is (or is not) Ductal
cell carcinoma. If the same holds not just for S, but for any proposition X, and
she holds her conditional credences fixed as a result (i.e., new(X |Ei) = old(X |
Ei)), then both conditions (1) and (2) hold.

And in that case, J-Con is simply mandated by probabilistic coherence.
Given that new : F → R satisfies the probability axioms, (1) and (2) are jointly
equivalent to:

new(X) =
∑
i6n

xi · old(X | Ei).

But—and here’s the rub—both (1) and (2) are quite strong conditions. Indeed,
the rigidity condition (2) is so strong that it plausibly never holds.

Our heart attack example illustrates the point. Recall, in that example, your
learning experience E∗ (tingling arm) raises your credence for the proposition H
(that you will have a heart attack).

new(H) > old(H).

It also turns the proposition L (that you lean on your elbow for an hour) into
an undercutting defeater for H. Prior to the experience, L is irrelevant to H.

old(H | L) = old(H).

But after the experience you come to see L as an undercutting defeater for H.
After E∗ you think: learning L would be good reason to drop my high posterior
(post-E∗) credence in H back down to something like its pre-arm-tingling level.

new(H) > new(H | L).

The problem is this. Suppose that you accommodate E∗ by Jeffrey conditioning,
using your new distribution

new(H) = high, new(¬H) = low

over {H,¬H} as an input. Then we must have:

new(H) = new(H | L)
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contra our assumption that new(H) > new(H | L). So J-Con simply fails to
introduce L as a new undercutting defeater for H. The proof is dead simple.
Firstly, note that old(H) = old(H | L) implies

old(L) = old(L |H) = old(L | ¬H).

Next, note that since J-Con implies the rigidity condition (2), we have

new(L |H) = old(L |H) and new(L | ¬H) = old(L | ¬H).

This straightaway gives us

new(H | L) =
new(L |H)new(H)

new(L |H)new(H) + new(L | ¬H)new(¬H)

=
old(L |H)new(H)

old(L |H)new(H) + old(L | ¬H)new(¬H)

=
old(L)new(H)

old(L)new(H) + old(L)new(¬H)

= new(H).

The moral is this. Rigidity forces you to preserve your old opinions about
irrelevance. So if your updating rule is rigid with respect to {E1, . . . , En} (it
leaves your credences conditional on the Ei unchanged), then that rule cannot
take you from thinking that X was irrelevant to Ei before E to thinking that
X is relevant to Ei after E . But turning an irrelevant X into a relevant X
is precisely what is involved in introducing a new undercutting defeater. So
whenever E should introduce a new undercutting defeater for one of the Ei, you
should not update according to J-Con, or any other rigid updating rule.

This is really bad for J-Con. Learning experiences should almost always
introduce new undercutting defeaters. For any learning experience E that pushes
your credences over some partition {E1, . . . , En} around, there will be some
proposition X that you previously took to be irrelevant to Ei, but now should
take to be relevant; now you should take X to undercut the support that E
provides for Ei. Any X that describes conditions that compromise the reliability
of your credence-formation process—the process that pushed your credences for
the Ei around—will do the trick. This, again, is one of the basic insights of holist
epistemology. And if this insight is right, then according to Jeffrey’s own criteria,
it is almost never appropriate to update by Jeffrey conditioning.

To recap, J-Con bungles the introduction of new undercutting defeaters.
Since nearly all learning experiences introduce new undercutting defeaters, J-
Con almost never applies. This is Weisberg’s main concern. The question now
is: Can we do better? The answer: yes.

2 J-Kon

We seem to be back at square one. When our histopathologist examines her cells,
she becomes fairly confident that the sample is one type of carcinoma rather
than another. But she does not become certain of anything new. The orthodox
Bayesian method for updating in light of such “uncertain learning experiences”
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is Jeffrey conditioning. But J-Con is almost never appropriate. How then should
we update in light of uncertain learning experiences?

My aim now is to describe and defend a new updating policy for uncertain
learning: J-Kon. Firstly, I will describe J-Kon briefly and show how it works
in a few cases (§2.1-2.2). Then I will show that J-Kon is in fact equivalent to a
restricted form of what Jeffrey called superconditioning. This will be important
for showing that J-Kon has an accuracy-centered justification (§4). Finally,
with this justification for J-Kon in place, I will return to the issues surrounding
confirmational holism that we began with. In particular, I will show that J-Kon
naturally explains how inputs to updating depend on background beliefs, and
naturally accounts for the introduction of new undercutting defeaters (§5).

2.1 Formal Description

Before outlining J-Kon, we need to introduce one key concept: the conditional
chance estimate. Estimates are familiar enough. For example, the Met office’s
best estimate of the amount of rainfall that London will receive next year might
be 597mm. Your best estimate of the number of children that your brother
will have might be 2.7. And so on. Estimates are numbers; numbers that fall
between the possible values of the quantity that you are estimating; numbers
that are evaluated principally on the basis of their accuracy (the closer they
are to the true value of the quantity, the better).3 In the Bayesian tradition,
rational choice is a matter of choosing the option that you estimate to produce
the most utility. And your best estimates of utility (and other quantities) are
determined by your best estimates of truth-values, which are captured by your
credences, or degrees of belief.

Conditional estimates are also familiar. For example, the Met office’s best
estimate of the amount of rainfall that London will receive next year might be
597mm on the supposition that a catastrophic climate event does not derail the
Gulf stream. Your best estimate of the number of children that your brother will
have might be 2.7 on the supposition that he and his partner work through their
issues. And so on. Like plain old unconditional estimates, conditional estimates
are numbers; numbers that fall between the possible values of the quantity
that you are estimating. But where unconditional estimates are something like
epistemic bets—bets that pay out in an epistemic currency, viz., accuracy—
conditional estimates are more like called-off epistemic bets. They are evaluable
for accuracy only in worlds where their condition holds. In worlds where the
condition does not hold, the epistemic bet that they represent is called off.

Conditional chance estimates, then, are just conditional estimates of a par-
ticular quantity: chance. In particular, a conditional chance estimate of the
form:

est[ch(X | Y ) | Y ]

is an estimate of the conditional chance ch(X | Y ) on the supposition that Y is
true. Put differently, it is an estimate of the chance of X when both you and
chance take the supposition Y on board.

Following de Finetti, Jeffrey thought of estimation as basic, and credences
as capturing a particular type of estimate, viz., an agent’s best estimates of

3Indeed, one might think that it is constitutive of estimates that they are evaluable on the
basis of their accuracy. See Konek (2019).

7



truth-values.4 More carefully, Jeffrey thought of propositions X as “indicator
variables” that take the value 1 at worlds where X is true, and 0 where X is false.
(In what follows, we will slip between talking of propositions as sets of worlds
and indicator variables.) Truth-value estimates, then, are simply estimates of
the value, 0 or 1, that the proposition takes at the actual world. And an agent’s
credence for a proposition is just her best estimate of its truth-value.

Treating estimation as basic allows us to see the laws of (finitely) additive
probability, i.e.,

Normalisation. p(Ω) = 1.

Non-negativity. p(X) > 0.

Finite Additivity. p(X ∪ Y ) + p(X ∩ Y ) = p(X) + p(Y ).

as straightforward consequences of de Finetti’s laws of estimation (or what are
sometimes called the axioms of linear previsions). De Finetti’s laws say that
your estimates of any two variables, V : Ω→ R and Q : Ω→ R, ought to satisfy
the following conditions (de Finetti, 1974, §3.1.5):

Boundedness. infω∈Ω V(ω) 6 est(V) 6 supω∈Ω V(ω).

Homogeneity. est(λV) = λest(V) for λ ∈ R.

Additivity. est(V +Q) = est(V) + est(Q).

The boundedness condition says roughly that your estimate of V should fall
somewhere between the minimum and maximum possible values of V. The
homogeneity conditions says that your estimate of V scaled by λ, i.e., λV , should
be the result of scaling your original estimate by λ, i.e., λest(V). The additivity
condition says that your estimate of the sum of V and Q, V+Q—i.e., the variable
whose value at a world is the sum of V ’s value and Q’s value, respectively—should
equal the sum of your individual estimates for V and Q. If the unconditional
estimates captured by est satisfy de Finetti’s laws, then we say that est is
coherent (or a linear prevision). Similarly, we can see the Rényi-Popper axioms
for conditional probability, i.e.,

Conditional Probability. c(· |X) is a probability function with
c(X |X) = 1.

Generalised Ratio Constraint.

c(Y ∩ Z |X) = c(Z |X ∩ Y )c(Y |X) if X ∩ Y 6= ∅.

as straightforward consequences of the laws of conditional estimation. The laws
of conditional estimation say that your conditional estimates ought to satisfy:

Conditional Boundedness. infw∈X V(w) 6 est(V|X) 6 supw∈X V(w).

Conditional Homogeneity. est(λV |X) = λest(V) for λ ∈ R.

Conditional Additivity. est(V +Q |X) = est(V |X) + est(Q |X).

Bayes Rule. est(Y V |X) = est(V |X ∩ Y )est(Y |X) if X ∩ Y 6= ∅
(where Y V is the product of Y and V, i.e. (Y V)(w) = Y (w)V(w)).

4See (Jeffrey, 1986, p.51).
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If the conditional estimates captured by est satisfy the laws of conditional
estimation, then we say that est is coherent (or a conditional linear prevision).

With these preliminary remarks in place, we can now outline J-Kon. Note
though that I will initially present J-Kon as a very deliberate, cognitively
demanding updating procedure. This will help get the basic picture across
without too much fuss. But the official version of J-Kon only involves updating
as if you are deliberately following this procedure. It is much less cognitively
demanding than it appears at first blush. We return to this issue in §3 and §6.

J-Kon proceeds in two stages. The first stage is the expansion stage. In
response to any learning experience, E , you ought to settle on a new conditional
credence, new(E | ω), for each world ω. These new conditional credences reflect
how likely you think you are to have that very experience conditional on being
in this, that, or the other world. Typically, you will not have any prior (pre-
E) credences about E , conditional or not. E itself puts you in a position to
have opinions about E . So settling on these new conditional credences involves
expanding the range of propositions that you have opinions about.

J-Kon updaters, however, do not expand willy nilly. Rather, they settle on
new conditional credences by settling on new conditional chance estimates. They
estimate the chance of having the experience E conditional on being in this, that,
or the other world. Then they use these new conditional chance estimates as
their new conditional credences.

The second stage is the update stage. Once you have expanded, you should in-
put your old unconditional credences for atoms (worlds) and your new conditional
chance estimates into Bayes’ theorem. Then conditionalize on E . This specifies
new credences for each atom of your algebra. Together with the probability
axioms, this fixes your entire new credal state.

In a little bit more detail, J-Kon says that you ought to accommodate
uncertain learning experiences as follows:

J-Kon (Unofficial Version). Suppose you have prior credences
old and have accommodated past learning experiences P via J-Kon
using some set of conditional chance estimates ESTold. You now
undergo learning experience E . Then you ought to update old as
follows.

1. Expansion stage. Expand ESTold to include new conditional
chance estimates of the form:

est[ch(E | ω ∩ P) | ω ∩ P].

The only constraints on the newly expanded set of conditional
estimates EST are: (i) EST should be consistent, in the sense
that it never commits you to estimating that a variable will
take a positive value if it cannot possibly do so (this is what
Peter Walley calls avoiding uniform loss; see appendix); (ii)
EST should be consistent with the Principal Principle.5

5EST is consistent with the Principal Principle iff expanding it to include conditional
estimates of the form est[X | (CH = ch) ∩ Y ] = ch(X | Y ) preserves consistency, i.e., does not
make it subject to a uniform loss. See the appendix for more detail.
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2. Update stage. Use these new conditional chance estimates to
update your credence for each atom ω of F as follows:

new(ω) =
est[ch(E | ω ∩ P) | ω ∩ P] · old(ω)∑

ω′∈Ω est[ch(E | ω′ ∩ P) | ω′ ∩ P] · old(ω′)
.

The best way to get a feel for J-Kon is to see it in action. But before we
do, we should set aside a few potential concerns. Firstly, a word about learning
experiences and these heretofore nebulous propositions E that we have been
using to describe them. Learning experiences are rich, complex events with
a range of properties. An agent’s learning experience might have a certain
phenomenological character, for example. In addition, it might “directly affect”
her doxastic, affective or conative state in various ways. For example, it might
shift her credences over some partition, as Jeffrey imagined. Or it could push
her conditional credences around, or her expectations, or other properties of her
credal state. And of course learning experiences do not happen in a vacuum.
Some learning experiences are shaped by years of training. Others are not. And
on, and on, and on.

Given how rich and varied learning experiences are, it is a fool’s errand to
try to pin down any single property, or even a cluster of properties that we
can always use to characterise them. Simply describing the phenomenological
character of an agent’s learning experience, or its direct effects on her credal state,
etc., will almost certainly leave out epistemologically important information;
information that ought to have some impact on how she accommodates that
learning experience. To avoid this sort of concern, we will pick out learning
experiences using demonstrative propositions. That is, we will describe learning
experiences using propositions E of the form agent A had that learning experience.
Of course, this is the sort of proposition that you are only in a position to have
opinions about once you have already had the learning experience. This would
be problematic if J-Kon required you to have prior credences about E . But it
does not.

Secondly, J-Kon may seem to just dress up an old Bayesian story in new garb.
After all, the unofficial version says that if you undergo a non-dogmatic learning
experience E—one that does not make you certain of anything, but nevertheless
shifts your credences around in some way or other—then even though you cannot
conditionalize straighaway (because there is no proposition learned with certainty
to conditionalize on), you should nonetheless (i) put yourself in a position to
conditionalize (on E in particular) and then (ii) conditionalize. But this concern
misses the mark in two ways. Firstly, the unofficial version of J-Kon recommends
responding to non-dogmatic learning experiences by expanding. Moreover, it
constrains how you should expand (at least if there are interesting constraints
on the space of possible chance functions). None of this is standard Bayesian
fare. Secondly, the official version of J-Kon (§3) ditches the recommendation to
explicitly expand and conditionalize, and rather recommends updating as if you
were expanding and conditionalizing. As will be abundantly clear by the end of
§3, what we end up with is a genuinely new story about rational updating; more
than just an old tune in a new key.

So much for the preliminary remarks. Onto the applications!
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2.2 Applications

1. Dogmatic learning. Vanji is having a route sexual health check-up. Though
she does not suspect that she is at risk for HIV, she decides to have an HIV test
anyway. She has prior credences over the power set F of Ω, which contains:

ω1 = HIV & Test + ω2 = HIV & Test —
ω3 = No HIV & Test + ω4 = No HIV & Test —

Her prior credences are as follows:

old(ω1) = 0.00095 old(ω2) = 0.00005
old(ω3) = 0.04995 old(ω4) = 0.94905

So Vanji’s prior credence that she has HIV is 0.001. Her prior credence
that the test will come back positive given that she has HIV is 0.95. Her prior
credence that the test will come back negative given that she has does not have
HIV is also 0.95. Finally, her prior credence that she has HIV given that the
test comes back positive is about 0.019 (19 times higher than her unconditional
prior for HIV, but still rather low).

The doctor hands her the results of the test. This causes her to have a
learning experience E that pushes her credence that the test is positive up to 1
(i.e., a dogmatic learning experience).

Question: What should Vanji’s new credences be after E?

Answer : According to J-Kon, she ought to update as follows. Firstly, adopt
conditional chance estimates of the form:

est[ch(E | ω) | ω]

(To simplify the problem, we will imagine that this learning experience is first of
Vanji’s epistemic life. So the proposition P describing her past learning experi-
ences is just the tautology. We will make the same assumption in subsequent
examples. But the results in the appendix do not make this assumption.) For
example, Vanji might adopt the following conditional chance estimates:

est[ch(E | ω1) | ω1] = est[ch(E | ω3) | ω3] = 1

and
est[ch(E | ω2) | ω2] = est[ch(E | ω4) | ω4] = 0.

These estimates reflect the opinion that Vanji is an infallible learner, at least
on this occasion. There is no chance of failing to have this sort of learning
experience—one which sends her credence in a positive test result up to 1—if the
test does in fact come back positive. Likewise, there is no chance of mistakenly
having this sort of learning experience if the test comes back negative.

Next, she should treat these new conditional chance estimates, est[ch(E |ωi) |
ωi], as her old conditional credences, old(E | ωi), and conditionalize on E . This
yields a new credal state given by:

new(ωi) =
est[ch(E | ωi) | ωi] · old(ωi)∑
j est[ch(E | ωj) | ωj ] · old(ωj)

.
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So, for example, Vanji’s new credence for ω1 is:

new(ω1) =
est[ch(E | ω1) | ω1] · old(ω1)∑
j est[ch(E | ωj) | ωj ] · old(ωj)

=
1 · 0.00095

1 · 0.00095 + 0 · 0.00005 + 1 · 0.04995 + 0 · 0.94905
= 0.018664.

More generally, her new credal state is given by:

new(ω1) = 0.018664 new(ω2) = 0
new(ω3) = 0.981336 new(ω4) = 0

This is precisely the same posterior credal state that Vanji would end up with
if she updated by conditioning on the proposition that the test came back positive.
This is no coincidence. Orthodox conditionalization is equivalent to J-
Kon for infallible dogmatic learners. For agents whose learning experiences
always push their credences up to 1 in some proposition E (and nothing more),
and who are infallible in the sense that (i) there no chance of this occurring
when E is false, and (ii) no chance of it not occurring when E is true, Orthodox
Bayesian conditionalization is the way to go.

But even dogmatic learners are not always infallible. For example, Vanji
might be extermely nervous about a positive test result. She might think: there
is a marginal chance that I will mistakenly have E even if the test comes back
negative. Perhaps her anxiety will cause her to not properly register the words
printed on the report. In that case, the following conditional chance estimates
estimates might seem appropriate:

est[ch(E | ω1) | ω1] = est[ch(E | ω3) | ω3] = 1

and
est[ch(E | ω2) | ω2] = est[ch(E | ω4) | ω4] = .01.

And if she uses those estimates to accommodate E via J-Kon, she will end up
with a different posterior credal state:

new∗(ω1) = 0.0157308 new∗(ω2) = 8.27938 · 10−6

new∗(ω3) = 0.82711 new∗(ω4) = 0.157151

This is the same posterior credal state that Vanji would end up with if E
“directly” affected her credences for Test + and Test —, pushing them to 0.842841
and 0.157159, respectively, and she then updated by J-Con. The moral: her
conditional estimates reflect the opinion that there is a marginal chance of
mistakenly having E . J-Kon tells Vanji that, in light of this, she should hedge
her epistemic bets that E is on the money by not quite conditioning, but Jeffrey
conditioning instead. As is clear from this example, such hedging can have a big
impact on your posterior credences. Marginal chances of error are not necessarily
negligible.

2. Uncertain learning with Jeffrey shifts.6 Nahdika is a histopathologist.
She recently received a section of tissue surgically removed from a pancreatic

6This case is adapted from (Jeffrey, 1992, pp. 7-9).
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tumor. She hopes to settle on a diagnosis by examining the tissue under
a microscope. (To simplify matters, suppose that exactly one of the three
diagnoses is correct.) Nahdika has prior credences over the power set F of Ω,
which contains:

ω1 = A&¬B&¬C&L ω2 = A&¬B&¬C&¬L
ω3 = ¬A&B&¬C&L ω4 = ¬A&B&¬C&¬L
ω5 = ¬A&¬B&C&L ω6 = ¬A&¬B&C&¬L

where

A = Islet cell carcinoma B = Ductal cell carcinoma
C = Benign tumor L = Patient lives

Her prior credences are as follows:

old(ω1) = 0.2 old(ω2) = 0.3
old(ω3) = 0.15 old(ω4) = 0.1
old(ω5) = 0.225 old(ω6) = 0.025

So Nadhika’s priors for A, B and C are as follows:

old(A) = 0.5 and old(B) = old(C) = 0.25.

Likewise, her priors for L conditional on A, B and C, respectively, are as follows:

old(L |A) = 0.4, old(L |B) = 0.6 and old(L | C) = 0.9.

Nadhika looks in the microscope. This causes her to have a learning experience
E that pushes her credence for A, B and C to 1/3, 1/6 and 1/2, respectively.

Question: What should Nadhika’s new credences be after E?

Answer : According to J-Kon, she ought to update as follows. Firstly, adopt
conditional chance estimates of the form est[ch(E | ω) | ω]. For example, Nahdika
might adopt the following conditional chance estimates:

est[ch(E |ω1)|ω1] = est[ch(E |ω2)|ω2] = est[ch(E |ω3)|ω3] = est[ch(E |ω4)|ω4] = 0.3

as well as:
est[ch(E | ω5) | ω5] = est[ch(E | ω6) | ω6] = 0.9.

(We will explore why these might be sensible conditional chance estimates shortly.)
Next, she should use these new conditional chance estimates to update her old
credences as follows:

new(ωi) =
est[ch(E | ωi) | ωi] · old(ωi)∑
j est[ch(E | ωj) | ωj ] · old(ωj)

.

This yields:

new(ω1) = 0.133333 new(ω2) = 0.2
new(ω3) = 0.1 new(ω4) = 0.0666667
new(ω5) = 0.45 new(ω6) = 0.05

So Nahdika’s posteriors for A, B and C are:
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new(A) = 1/3, new(B) = 1/6 and new(C) = 1/2.

Her posteriors for L conditional on A, B and C remain unchanged:

new(L |A) = 0.4, new(L |B) = 0.6 and new(L | C) = 0.9.

This is precisely the same posterior credal state that Nahdika would end up with
if she accommodated the Jeffrey shift induced by E via J-Con. But what is it
about Nahdika’s conditional chance estimates that forces J-Kon to agree with
J-Con? And when might it make sense to adopt conditional chance estimates
like Nahdika’s?

The answer to the first question is given by (F). Choose any learning
experience E that induces a Jeffrey shift over a partition {E1, . . . , En}. To keep
the new credences recommended by J-Kon separate from the “direct” effects of
E , let dir capture the latter. So in Nahdika’s case we have:

dir(A) = 1/3, dir(B) = 1/6 and dir(C) = 1/2.

Then J-Kon agrees with J-Con if and only if:

(F) For all X ∈ {E1, . . . , En} and ωi ∈ X, if old(ωi) = 0 then
new(ωi) = 0, and if old(ωi) > 0 then

dir(X)

old(X)
=

est[ch(E | ωi) | ωi]∑
j est[ch(E | ωj) | ωj ] · old(ωj)

.

The second question, then, amounts to the following: When might it make sense
to adopt conditional chance estimates that satisfy (F), as Nahdika’s do? The
answer is not obvious. (F) is a strong condition. Spelling out its consequences
requires work. Here is one such consequence. (F) implies (♥):

(♥) For all X ∈ {E1, . . . , En} and ωi, ωj ∈ X with old(ωi) > 0 and
old(ωj) > 0

est[ch(E | ωi) | ωi] = est[ch(E | ωj) | ωj ].

Having conditional chance estimates that satisfy (♥) is only appropriate if
you take a particular view of the credence formation process P that induces the
Jeffrey shift; the one that translates perceptive and proprioceptive inputs into
new credences for elements of {E1, . . . , En}. In particular, you must think that
P is transparent about what it is causally sensitive to. You must think that if
P is causally sensitive to the differences between ωi and ωj , in the sense that
the chance that P produces E if you are in ωi is different, in your view, than
the chance if you are in ωj—i.e., est[ch(E | ωi) | ωi] 6= est[ch(E | ωj) | ωj ]—then P
will be transparent about this fact. It will announce it to the world by inducing
a shift over a sufficiently fine partition; one that slots ωi and ωj into different
cells.

But when is it appropriate to adopt conditional chance estimates that reflect
this sort of opinion about P? Partial answer: not if E introduces a new undercut-
ting defeater D for one of the Ei. Consider, for example, the learning experience
E∗ in our heart attack example (§1). Recall, E∗ involved a tingling arm which
caused your credence that you are about to have a heart attack to shoot up
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toward 1. E∗ ought to cause the proposition L (that you lean on your elbow for
an hour) to become an undercutting defeater for the proposition H (that you
will have a heart attack) only if leaning on your elbow makes a difference to the
chance of having a tingling arm and subsequent credence-in-H boost. If leaning
on your elbow makes no difference to the chance of all that (i.e., to E∗), then
learning L ought to leave your post-E∗ credence in H intact.

The upshot: whenever E introduces a new undercutting defeater D for one
of the Ei, (♥) will fail. And whenever (♥) fails, J-Kon and J-Con come apart.
This helps to explain how J-Kon might naturally introduce new undercutting
defeaters where J-Con stumbles.

(F) has other consequences too. For example, it implies (♦):

(♦) For all X,Y ∈ {E1, . . . , En}, ωi ∈ X and ωj ∈ Y with old(ωi) >
0 and old(ωj) > 0:

est[ch(E | ωi) | ωi]
est[ch(E | ωj) | ωj ]

=
dir(X)/dir(Y )

old(X)/old(Y )
.

Having conditional chance estimates that satisfy (♦) is only appropriate if you
think that P “tracks the chances” in a certain sense. For example, if you used
to think that X and Y were equally likely (i.e., old(X)/old(Y ) = 1), then you
must think that P will produce an experience E that makes you think that X
is twice as likely as Y just in case the chance of having E in any X-world is,
in your view, twice as great as the chance of having E in any Y -world. In this
sense, P must “track the chances.” More generally, you must think that P will
produce an E that sets your new odds for X and Y (i.e., dir(X)/dir(Y )) to be
k times your old odds (i.e., old(X)/old(Y )) just in case the chance of having E
in any X-world is, in your view, k-times as great as the chance of having E in
any Y -world (i.e., est[ch(E | ωi) | ωi]/est[ch(E | ωj) | ωj ] = k).

Back to our second question then. When might it make sense to adopt
conditional chance estimates that satisfy (F)? We now have an informative
partial answer: only if you think that the credence formation process P in play
is “transparent about what it is causally sensitive to” in the sense of (♥), and
“tracks the chances” in the sense of (♦).

Now consider Nahdika again. In particular, consider her view about the
chance of having a learning experience E that impacts her like so:

dir(A) = 1/3, dir(B) = 1/6 and dir(C) = 1/2.

She might well think that the chance of E is greater in A-worlds (the patient has
Islet cell carcinoma) than in B-worlds (the patient has Ductal cell carcinoma).
In that case, Nahdika’s original chance estimates are inapproprate. They do not
reflect this opinion. After all, ω1 is an A-world, ω3 a B-world, but nevertheless:

est[ch(E | ω1) | ω1]

est[ch(E | ω3) | ω3]
=

0.3

0.3
= 1.

Instead, Nahdika might opt for the following:

est∗[ch(E | ω1) | ω1] = est∗[ch(E | ω2) | ω2] = 0.6
est∗[ch(E | ω3) | ω3] = est∗[ch(E | ω4) | ω4] = 0.3
est∗[ch(E | ω5) | ω5] = est∗[ch(E | ω6) | ω6] = 0.9
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And if she uses those estimates to accommodate E via J-Kon, she will end up
with a different posterior credal state:

new∗(ω1) = 0.2 new∗(ω2) = 0.3
new∗(ω3) = 0.075 new∗(ω4) = 0.05
new∗(ω5) = 0.3375 new∗(ω6) = 0.0375

So Nahdika’s posteriors for A, B and C are:

new∗(A) = 1/2, new∗(B) = 1/8 and new∗(C) = 3/8.

Indeed, new∗ is the same posterior credal state that Nahdika would end
up with if she used this distribution over {A,B,C}, rather than the “direct
effect” of E , as an input to J-Con. The moral seems to be this: by taking the
“direct effect” of E at face value—using it as an input to updating—J-Con tacitly
presupposes that the credence formation process P that produced E satisfies
(F). This means presupposing that P is “transparent about what it is causally
sensitive to” in the sense of (♥), and “tracks the chances” in the sense of (♦).
If (F) holds, and consequently (♥) and (♦) hold, then J-Kon and J-Con agree.
If not, not.

When (♦) fails, but (♥) holds, J-Kon says: use your views about the way
in which P fails to track the chances to adjust the input to J-Con. (More
specifically, keep the input partition fixed, but adjust the distribution over that
partition.) When (♥) fails, J-Kon recommends more radical departures from
J-Con; departures which are inconsistent with any näıve application of J-Con.

3. Uncertain learning without Jeffrey shifts. Aamilah is walking past the
abandoned coin factory at night. She picks up an old coin. She plans to flip it
three times. She has prior credences over the power set F of Ω, which contains:

ω1 = H1&H2&H3 ω2 = H1&H2&T3

ω3 = H1&T2&H3 ω4 = H1&T2&T3

ω5 = T1&H2&H3 ω6 = T1&H2&T3

ω7 = T1&T2&H3 ω8 = T1&T2&T3

Her prior credences are as follows:

old(ω1) = .25 old(ω2) = .083
old(ω3) = .083 old(ω4) = .083
old(ω5) = .083 old(ω6) = .083
old(ω7) = .083 old(ω8) = .25

(There are just the credences she would have if she had a uniform distribution
over hypotheses about the bias of the coin.) Aamilah flips the coin three times.
In the black of night, she glimpses the outcome of each flip. The first flip causes
her to have a fairly ambiguous heads-ish visual experience E1. The second and
third flips cause her to have fairly ambiguous tails-ish visual experiences, E2 and
E3.

E1 E2 E3
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Question: What should Aamilah’s new credences be after E1? E2? E3?

Answer : According to J-Kon, she ought to update as follows. Firstly, adopt
conditional chance estimates of the form:

est[ch(E1 | ω) | ω].

For example, Aamilah might adopt the following conditional chance estimates:

est[ch(E1|ω1)|ω1] = est[ch(E1|ω2)|ω2] = est[ch(E1|ω3)|ω3] = est[ch(E1|ω4)|ω4] = 0.8

as well as:

est[ch(E1|ω5)|ω5] = est[ch(E1|ω6)|ω6] = est[ch(E1|ω7)|ω7] = est[ch(E1|ω8)|ω8] = 0.2.

Such estimates seem appropriate if you think (i) that there is a high (low) chance
of having an ambiguously heads-ish visual experience in a dark environment
given that the first flip comes up heads (tails), and (ii) the chance of having that
experience is independent of the outcome of the second and third toss conditional
on the outcome of the first.

Next, she should use these conditional chance estimates to update her old
credences as follows:

new1(ωi) =
est[ch(E | ωi) | ωi] · old(ωi)∑
j est[ch(E | ωj) | ωj ] · old(ωj)

.

This yields:

new1(ω1) = .4 new1(ω2) = .13
new1(ω3) = .13 new1(ω4) = .13
new1(ω5) = .03 new1(ω6) = .03
new1(ω7) = .03 new1(ω8) = .1

So Aamilah’s ambiguously heads-ish learning experience makes her fairly con-
fident (credence 0.8) that the coin came up heads on the first flip. This, in
turn, is evidence that the coin is biased towards heads, and hence increases her
confidence that it will come up heads on flips two and three.

new1(H1) = .8 and new1(H2) = new1(H3) = .6.

This is precisely the same posterior credal state that Aamilah would end up with
if E1 “directly” affected her credences for H1 and T1, pushing them to 0.8 and
0.2, respectively, and she then updated by J-Con.

What credences should Aamilah have after E2? According to J-Kon, she
ought to adopt new conditional chance estimates of the form:

est[ch(E2 | ω ∩ E1) | ω ∩ E1].

And she ought to do so in a way that preserves coherence, so that her new
expanded set of conditional chance estimates satisfies the laws of conditional
estimation. For example, Aamilah might adopt the following:

est[ch(E2 | ω1 ∩ E1) | ω1 ∩ E1] (1)

= est[ch(E2 | ω2 ∩ E1) | ω2 ∩ E1] (2)

= est[ch(E2 | ω7 ∩ E1) | ω7 ∩ E1] (3)

= est[ch(E2 | ω8 ∩ E1) | ω8 ∩ E1] (4)

= .001 (5)
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as well as:

est[ch(E2 | ω3 ∩ E1) | ω3 ∩ E1] (6)

= est[ch(E2 | ω4 ∩ E1) | ω4 ∩ E1] (7)

= .8 (8)

and:

est[ch(E2 | ω5 ∩ E1) | ω5 ∩ E1] (9)

= est[ch(E2 | ω6 ∩ E1) | ω6 ∩ E1] (10)

= .2 (11)

(1)-(5) seem appropriate if you think your visual system is stable. In what
sense? The following: if you had an ambiguously heads-ish visual experience in
response to a heads on the first flip, then there is almost no chance that you will
have a different (tails-ish) experience in response to the same outcome (heads)
on the second. Ditto for tails. If you had a heads-ish experience in response to
a tails on the first flip, there is almost no chance that you will have a different
(tails-ish) experience in response to the same outcome (tails) on the second.

(6)-(8) seem appropriate if you think that having a heads-ish visual experience
in response to heads on the first flip is good evidence that the lighting conditions
are just good enough for your visual system to be sensitive to the outcome. In
that case, you think: there is a reasonably high chance of having a tails-ish
experience if you get tails on the second.

(9)-(11) seem appropriate if you think that having a heads-ish visual expe-
rience in response to tails on the first flip is good evidence that the lighting
conditions are just bad enough for your visual system to not be sensitive to the
outcome. In that case, you think: there is a high chance of having the same
heads-ish experience even if you get tails on the second. So there is a low chance
of having the tails-ish experience described by E2.

With these estimates in hand, Aamilah ought to update as follows:

new2(ωi) =
est[ch(E2 | ωi ∩ E1) | ωi ∩ E1] · new1(ωi)∑
j est[ch(E2 | ωj ∩ E1) | ωj ∩ E1] · new1(ωj)

.

This yields:

new2(ω1) = 0.00175953 new2(ω2) = 0.00058651
new2(ω3) = 0.469208 new2(ω4) = 0.469208
new2(ω5) = 0.0293255 new2(ω6) = 0.0293255
new2(ω7) = 0.000146628 new2(ω8) = 0.000439883

So Aamilah’s credence that the first and second flips resulted in heads and
tails, respectively, are now roughly 0.94. Her credence that the third flip will
come up heads still hovers around 0.5.

new2(H1) = 0.940762, new2(T2) = 0.939003, new2(H3) = 0.50044.

But why would Aamilah’s credence that the first flip came up heads shoot
up (from 0.8 to 0.94) in response to an ambiguously tails-ish visual experience
following the second flip? The reason: her conditional chance estimates reflect
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the opinion that having different visual experiences in response to the first two
flips is good news about the reliability of her visual system. It is evidence that
the lighting conditions are just good enough for her visual system to track the
outcome. Wiping away this uncertainty about the reliability of her visual system
pushes her credence in H1 up from 0.8 to 0.94.

Finally, what credences should Aamilah have after E3? According to J-Kon,
she ought to adopt new conditional chance estimates of the form:

est[ch(E3 | ω ∩ E1 ∩ E2) | ω ∩ E1 ∩ E2]

while again ensuring to preserve coherence. She might, for example, adopt the
following:

est[ch(E3 | ω1 ∩ E1 ∩ E2) | ω1 ∩ E1 ∩ E2] = .4 (12)

est[ch(E3 | ω2 ∩ E1 ∩ E2) | ω2 ∩ E1 ∩ E2] = .6 (13)

est[ch(E3 | ω3 ∩ E1 ∩ E2) | ω3 ∩ E1 ∩ E2] = .0001 (14)

est[ch(E3 | ω4 ∩ E1 ∩ E2) | ω4 ∩ E1 ∩ E2] = .9999 (15)

est[ch(E3 | ω5 ∩ E1 ∩ E2) | ω5 ∩ E1 ∩ E2] = .8 (16)

est[ch(E3 | ω6 ∩ E1 ∩ E2) | ω6 ∩ E1 ∩ E2] = .2 (17)

est[ch(E3 | ω7 ∩ E1 ∩ E2) | ω7 ∩ E1 ∩ E2] = .4 (18)

est[ch(E3 | ω8 ∩ E1 ∩ E2) | ω8 ∩ E1 ∩ E2] = .6 (19)

(12)-(13) and (18)-(19) seem appropriate if having different visual experiences
(a heads-ish and tails-ish experience, respectively) in response to the same
outcome on flips 1 and 2—which is precisely what happens in ω1/ω2 and ω7/ω8—
makes you think that, in the current lighting conditions, a small tilt of the head
this way, or a half step that way might well make you have an entirely different
experience regardless of how the coin lands. The output of your visual system in
current conditions is rather fragile. In that case, one “success” (e.g., head-ish
experience in response to heads on trial 1) and one “failure” (e.g., tails-ish
experience in response to heads on trial 2) might cause you to think that your
chance of success is not much better than 0.5, e.g., 0.6 (down from est[ch(E1 |
ω1) | ω1] = 0.8.)

(14)-(15) seem appropriate if you think that having a heads-ish visual ex-
perience in response to heads on the first flip, and a tails-ish experience in
response to tails on the second flip provide overwhelming evidence that the
lighting conditions are good enough for your visual system to reliably track the
outcome.

(16)-(17) seem appropriate if you think that having a heads-ish visual experi-
ence in response to tails on the first flip, and a tails-ish experience in response
to heads on the second flip provide good evidence that (i) there is enough light
for your visual system to be sensitive to something, but (ii) it is sensitive to an
oddly misleading set of features; a set of features that renders your visual system
anti-reliable.

Then yet again Aamilah ought to update as follows:

new3(ωi) =
est[ch(E3 | ωi ∩ E1 ∩ E2) | ωi ∩ E1 ∩ E2] · new2(ωi)∑
j est[ch(E3 | ωj ∩ E1 ∩ E2) | ωj ∩ E1 ∩ E2] · new2(ωj)

.

This yields:
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new3(ω1) = 0.00140787 new3(ω2) = 0.000703936
new3(ω3) = 0.0000938582 new3(ω4) = 0.938488
new3(ω5) = 0.0469291 new3(ω6) = 0.0117323
new3(ω7) = 0.000117323 new3(ω8) = 0.000527953

So Aamilah’s post-E3 credences for heads on the first flip, tails on the second
flip, and tails on the third flip are as follows:

new3(H1) = 0.940693,new3(T2) = 0.939227,new3(T3) = 0.951452.

Of course, the conditional chance estimates that we imagined Aamilah adopting
at each stage of our little inference problem are merely illustrative. Nothing in
J-Kon forces you to adopt such estimates. J-Kon permits using any conditional
chance estimates as inputs to updating so long as (i) each time you expand
that set of chance estimates you preserve consistency (avoid uniform loss), and
(ii) your estimates are consistent with the Principal Principle, in the sense that
expanding to include estimates of the form

est[X | (CH = ch) ∩ Y ] = ch(X | Y )

(where CH = ch is the proposition that ch is the true chance function) also
preserves consistency. So the examples in §2 describe only one way you might
apply J-Kon, not the way.

3 Equivalence to Gilded Superconditioning

We now have a new policy for rational learning on the table. To recap, J-Kon in
its unofficial form says: when you have a learning experience, E , you ought to
estimate the chance of having that very experience conditional on being in this,
that, or the other world (expansion stage). Then you ought to treat these new
conditional chance estimates, est[ch(E | ω) | ω], as your old conditional credences,
old(E | ω) (conditional credences which you in fact lack, since you have no pre-E
opinions about E). Input your old unconditional credences, old(ω), and your
new conditional chance estimates, est[ch(E | ω) | ω], into Bayes’ theorem. Then
conditionalize on E . In its official form (detailed shortly), J-Kon says that you
ought to update as if you were expanding and conditioning in this way.

This updating policy might seem as if it was plucked out of thin air. But in
fact it characterises a brand of what Jeffrey called “superconditioning.” Your
new credences new : F → R come from your old credences old : F → R by
superconditioning when you can:

(i) Expand F to a larger σ-algebra F+

(ii) Extend old : F → R to old+ : F+ → R
(iii) Obtain new+ from old+ by conditioning on some proposition E in the

larger algebra F+, so that new+(·) = old+(· | E)
(iv) Recover new by restricting new+ to F .

Figure 1 shows what superconditioning looks like in pictures.
Diaconis and Zabell (1982, p. 824) provide necessary and sufficient conditions

for your new credences to come from your old ones by superconditioning. They
prove that new : F → R comes from old : F → R by superconditioning just in
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Figure 1: old(·) can be extended to old+(·) defined on F+ and new(·) can be
recovered by cutting old+(· | E) back down to F .

case there is some upper bound b > 1 on your probability ratios, so that for
every X ∈ F we have

b >
new(X)

old(X)
.

Diaconis and Zabell are concerned with what you might call austere supercondi-
tioning. Austere superconditioning places no constraints at all on what the larger
algebra F+ looks like. Neither does it place any constraints on the extended
prior old+, save for probabilistic coherence.

But we might hope that old+ satisfies norms of epistemic rationality beyond
probabilism. For example, we might require old+ to satisfy Lewis’ Principal
Principle (PP), so that once chance is brought up to speed on your past learning
experiences P, old+ treats it as an expert worthy of full deference:7

old+(X | Y ∩ (CH = ch)) = ch(X | Y ∩ P).

We might also hope that we can recover new not simply by conditioning old+ on
some proposition or other in F+ and then cutting back down to F , but rather
by conditioning old+ on the proposition E describing your learning experience.

Finally, we might hope that not only can we obtain new (your post-E cre-
dences) from old (your pre-E credences) in this way, but moreover that your
entire epistemic life hangs together in the right way. Let c0 : F → R be your
initial credence function, c1 : F → R be your credence function after learning
experience E1, c2 : F → R be your credence function after learning experience
E2, and so on. Let c = 〈c0, . . . , cn〉 be the sequence of credal states that you
adopt over the course of your life. Call c your epistemic life. Then we might
hope that the various stages of your epistemic life hang together in the following
sense: we can extend c0 to some Principal Principle satisfying c+0 defined on F+

and recover each ci by conditioning c+0 on the proposition E1 ∩ . . .∩Ei describing
your learning experiences to that point in your life and cutting back down to F .

7This is a variant of what (Pettigrew, 2016, p. 135) calls the “Extended Principal Principle.”
See chapters 9 and 10 of Pettigrew (2016) for a careful discussion of the strengths and
weaknesses of various formulations of the Principal Principle.
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When c hangs together in this way, call it a gilded superconditioning life.
More carefully, say that c is a gilded superconditioning life when you can:

(v) Refine the possibilities ω ∈ Ω into new, more finely-grained possibilities
α ∈ Ω+ which specify whether E1, . . . , En are true and which chance
function ch ∈ C is true;

(vi) Collect these possibilities into a new set Ω+ and the propositions expressible
as subsets of Ω+ into a new σ-algebra, F+;

(vii) Extend c0 : F → R to c+0 : F+ → R, where c+0 is not only probabilistically
coherent, but also satisfies the Principal Principle;

(viii) Obtain c+i from c+0 by conditioning on E1 ∩ . . . ∩ Ei, for all i 6 n, so that
c+i (·) = c+0 (· | E1 ∩ . . . ∩ Ei);

(iv) Recover ci by restricting c+i to F .

A natural question, then: when exactly is your epistemic life a gilded super-
conditioning life? The answer: exactly when you update by the official version
of J-Kon.

J-Kon (Official Version). Suppose c = 〈c0, . . . , cn〉 is your epis-
temic life. So c0 : F → R is your initial credence function, c1 : F → R
is the credence function you adopt in response to learning experience
E1, and so on. Let Ω be the set of atoms of F , Ω+ be the set of atoms
of F+, and Li be shorthand for E1 ∩ . . . ∩ Ei. Then there ought to
be some set of conditional chance estimates, EST, of the form

est[ch(ω | Ω+) | Ω+]

and
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1]

which are both consistent (avoid uniform loss) and PP-consistent
such that

c0(ω) = est[ch(ω | Ω+) | Ω+]

and

ci(ω) =
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · ci−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · ci−1(ω′)

for all ω ∈ Ω and 0 < i 6 n.

Your epistemic life satisfies J-Kon just in case it is a gilded superconditioning
life (proposition 4, appendix).

What this means is that even when you are not in a position to condition on
the proposition E describing your learning experience—perhaps because you have
no prior opinions about E (it is not in your algebra)—you should nonetheless,
according to J-Kon, update your “small space credences,” i.e., your credences
over “first order” propositions in F , just as a more opinionated Bayesian agent
would. Such an agent would update her Principal Principle satisfying “big space
credences” for propositions in F+—which include all of the propositions that
you have opinions about and more—by conditioning on E . You should mimic her
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Figure 2: 3D dynamics (top) vs. 2D cross-section dynamics (bottom).

in your small space. Your update should be something like a 2D cross-section of
her 3D update.

Of course, there are many ways of extending your old small space credences
to PP-satisfying big space credences. Accordingly, there will be many ways of
mimicking a big space Bayesian agent. This is why there is slack in J-Kon that
there is not in J-Con. Every PP-consistent set of conditional chance estimates
corresponds to a different PP-satisfying extension (or rather, an equivalence
class of extensions). J-Kon simply recommends mimicking a big space Bayesian
agent somehow, using some PP-consistent set of conditional chance estimates.
It does not specify which set to use.

Given how complicated this all seems, you might reasonably wonder whether
J-Kon is within our epistemic ken. J-Kon says that you should update as if
you were explicitly settling on new, PP-consistent conditional chance estimates
(expanding), treating them as your old conditional credences, and conditionalizing
on E . If it turned out that testing the consistency of a set of conditional estimates
was really computationally difficult, then you might worry that updating as if
you were choosing such estimates would be practically impossible for agents like
us. Two points are worth bearing in mind here. Firstly, we often behave as
if we were solving computationally intensive problems by employing low-cost
strategies. For example, when we catch a ball, we behave as if we were projecting
its trajectory and estimating both when and where it will land. But we do so
by employing a low-cost strategy: run in a way that keeps the ball moving at a
constant speed through your visual field (Clark, 2016, p. 247). Of course, that is
no guarantee that there is a low-cost strategy available for updating via J-Kon.
But it would be a mistake to simply assume that there is not, given how often
nature finds elegant solutions to seemingly computationally difficult problems.
Secondly, and more to the point, it is not computationally difficult to check
the consistency of a set of conditional estimates. Walley et al. (2004) provide
algorithms for checking consistency (avoiding uniform loss) that only require
solving one or two linear programming problems, which can be done efficiently.
Human brains (and indeed artificial neural networks) are perfectly capable of
solving such problems.

Now we have a better understanding of what J-Kon demands of us, and
whether agents like us can meet those demands. But you might still wonder
why any of this is a good idea. There are good epistemic reasons to condition
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when you have infallible dogmatic learning experiences. For example, Greaves
and Wallace (2006) provide an expected accuracy argument for conditioning,
and Briggs and Pettigrew (2018) provide an accuracy-dominance argument.8

Likewise, there are good epistemic reasons to satisfy the Principal Principle.
Pettigrew (2016), for example, provides an objective expected accuracy (i.e.,
chance-dominance) argument for PP. But these are all reasons for actually being
a PP-satisfying conditioner. Is there any reason to mimic such an agent? Does
small-space updating that mimics PP-satisfying big-space conditioning enjoy
any of the epistemic benefits that the latter is privy to?

The answer is yes. In the next section I will provide a chance-dominance
argument for J-Kon, or equivalently, gilded superconditioning. Put roughly:
failing to update by J-Kon/gilded superconditioning reduces your chances of
living the epistemic good life, or accruing accuracy over the course of your life.

4 Chance-Dominance Argument for J-Kon

Here is how we will proceed. Firstly, we will attempt to pin down what it is that
makes one’s credences epistemically valuable at a world, and specify “epistemic
utility functions” that measure this sort of value. Secondly, we will use the
machinery of decision theory to show that J-Kon can be given an epistemic-
value-based rationale. The story in a nutshell is this: if you fail to update by
J-Kon, your epistemic life is chance-dominated by some other J-Kon satisfying
life, i.e., every possible chance function expects your life to accrue strictly less
total epistemic value than the J-Kon satisfying life. In this sense, you are
guaranteed to have a worse chance of living the epistemic good life than you
could have had by satisfying J-Kon. If you update by J-Kon, in contrast, you are
never chance-dominated in this way. This reveals an evaluative defect—chance-
dominance—that mars the epistemic lives of J-Kon violators. And facts about
such defects ought to inform your preferences over epistemic lives. They give
you reason to prefer updating via J-Kon to not.

Here is our main argument:

1. Veritism: The ultimate source of epistemic value is accuracy. So the
epistemic value of an unconditional credence function c : F → R at a
world α ∈ Ω+ is given by −I(c, α), where I is some reasonable measure of
inaccuracy. We assume that I is an additive inaccuracy score generated
by a continuous, bounded, strictly proper component function. Moreover,
the epistemic value of an epistemic life, or sequence of credal states c =
〈c0, . . . , cn〉 at α is given by

I(c, α) =
∑
i:α∈Li

I(ci, α)

where Li = E1 ∩ . . . ∩ Ei. I reflects the view that life stages ci ought to be
evaluated as conditional credence functions. More carefully, ci(X) should

8Both Greaves and Wallace (2006) and Briggs and Pettigrew (2018) tacitly assume that
rational agents are infallible dogmatic learners. They measure the epistemic value of an
updating plan at a world by the accuracy of the credal state that the plan recommends at the
world. But this only makes sense if there is no chance that the agent will mis-execute the plan.
In this way, they bake infallibility into their measure of epistemic value.
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be evaluated as your credence for X conditional on the learning experiences
that produced ci. As such, ci is evaluable for accuracy only at worlds α in
which the learning experiences that produced that stage take place, viz.,
α ∈ Li. The total inaccuracy of your epistemic life c at α is the sum of the
degrees of inaccuracy of the life stages ci that are evaluable for accuracy
at α.

2. Chance-dominance: If one option O strictly chance-dominates an-
other option O′, in the sense that every possible chance function ch expects
O to be strictly more valuable than O′, i.e.∑

α∈Ω+

ch(α | Ω+)U(O,α) >
∑
α∈Ω+

ch(α | Ω+)U(O′, α)

then any rational agent ought to strictly prefer O to O′.
3. Theorem9 If b is not a J-Kon sequence (or gilded superconditioning

sequence), then b is strictly chance-dominated by a J-Kon sequence c,
i.e., ∑

α∈Ω+

ch(α | Ω+)I(b, α) >
∑
α∈Ω+

ch(α | Ω+)I(c, α)

for every possible chance function ch. If b is a J-Kon sequence, on the
other hand, then it is not even weakly chance-dominated, i.e., there is
no c 6= b such that∑

α∈Ω+

ch(α | Ω+)I(b, α) >
∑
α∈Ω+

ch(α | Ω+)I(c, α)

for all possible chance functions ch.
C. J-Kon: If a rational agent fails to update via J-Kon, then she ought to

strictly prefer some other J-Kon satisfying epistemic life to her own.

Premise 1 identifies a theory of epistemic value: veritism. Veritists claim
that accuracy is the principal epistemic good-making feature of credal states.
Your credences may well be epistemically laudable for a range of reasons. They
may be specific, informative, verisimilar, encode simple, unified explanations, be
justified, etc. But these are all instrumental epistemic good-making features,
on the veritist view. They are good, roughly speaking, as a means to the
end of accuracy. Accuracy—how close your credences are to the truth—is the
fundamental epistemic good. It is the primary source of epistemic value. The
higher your credence in truths and the lower your credence in falsehoods, the
more valuable your credal state is from the epistemic perspective.

And this applies not just to your credal state at a single time—to an epistemic
time slice—but to your whole epistemic life. The principal epistemic good-making
feature of your epistemic life—the sequence of credal states that you adopt over
time—is the total accuracy that your life accrues. This really captures two
distinct veritist thoughts. Firstly, the epistemic value of your life supervenes on
accuracy of the credal states you adopt over the course of your life. Secondly,
the shape of your epistemic life does not contribute to its distinctively epistemic

9We should note that the proof of this theorem makes a number of simplifying assumptions.
For example, we assume that both “small space” and “big space” credence functions are defined
on finite algebras. We also assume that all small space credence function are regular, in the
sense that they assign positive probability to each world.
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value. A life of gradual gains in accuracy is no better or worse, from the epistemic
perspective, than a life of alethic ups and downs. Any two lives that accrue
the same total accuracy are equally epistemically valuable. The shape of one’s
epistemic life is not the “right kind of alethic fact” to determine its epistemic
value.

Premise 1 also delineates a class of reasonable measures of accuracy, or what’s
better for technical purposes, inaccuracy. We will assume that inaccuracy is
measured by an additive, continuous, bounded, strictly proper inaccuracy score
I. Additivity says that I takes the following form:

I(c, α) =
∑
X∈F

s(c(X), α(X))

where s : R × {0, 1} → R is what Joyce (2009) calls a component function; a
function which measures the inaccuracy of an individual credence c(X) when X’s
truth value is α(X) (0 or 1). Strict Propriety says that every probabilistically
coherent credence function expects itself to be strictly more accurate than any
other credence function. See appendix for technical details. For a philosophical
rich discussion of these properties, see Joyce (2009); Pettigrew (2016).

Now extend I to measure not only the accuracy of individual credence
functions c, but also epistemic lives c = 〈c0, . . . , cn〉 as follows:

I(c, α) =
∑
i:α∈Li

I(ci, α)

I reflects the view that epistemic time slices ci ought to be evaluated as con-
ditional credence functions. More carefully, ci(X) should be evaluated as an
epistemic bet on the truth-value X, but only a conditional one; one which “takes
for granted” the learning experiences Li that produced it, and so is “called-off”—
not evaluable for accuracy—at worlds α in which those learning experiences do
not take place. According to I, the total inaccuracy of your epistemic life c
at α is the sum of the degrees of inaccuracy of the epistemic time slices or life
stages ci that are evaluable for accuracy at α. When I takes this form, call it
temporally additive.

Premise 2 identifies a constraint on rational preference. It specifies how
rational agents structure their preferences over options in light of facts about
their value, together with facts about the chances. In particular, it says that
if every possible chance function expects one option to be better than another,
then you ought to prefer the one to the other.

Imagine, for example, that a friend tells you that she is going to pick a ball
from one of two urns, A or B. Whichever urn she draws from, she will pick
the ball at random. Both urns contain red and blue balls in the exact same
proportion. But you have no idea what that proportion is. Finally, your friend
drops one additional red ball into urn B. Now she gives you a choice. You can
select the urn, A or B, and she will give you £100 if she draws a red. (What a
friend!) Which should you prefer? Urn B, of course. Whatever proportion you
started with, urn B now has a higher objective expected payout than urn A.
You have a better chance of making off with the goods if you go with B. Chance
dominance says: in light of these facts, you ought to prefer B to A.

Premise 3 is the spine of the argument. It shows that if you violate J-
Kon, then your epistemic life is chance-dominated. There is some other J-Kon
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satisfying life that has higher objective expected value relative to every possible
chance function. (See proposition 8 in the appendix.) In conjunction with
premises 1 and 2, this establishes that J-Kon violators should prefer some other
J-Kon satisfying life to their own.

This argument provides a purely alethic (rather than evidential or pragmatic)
rationale for abiding by J-Kon. The epistemic lives of J-Kon violators are marred
by a particular sort of evaluative defect. They are chance-dominated. This is
a “wide scope” defect; a defect of epistemic lives which may not be reflected in
“lower level defects.” Each stage of an agent’s epistemic life—the credal state
that she adopts at any particular time—may be epistemically unimpugnable
considered individually. But nevertheless, those stages may together constitute
an epistemically defective life.

Upon reflection, this is perhaps not very surprising. Wide scope evaluative
defects are precisely the sorts of defects you would expect to underpin a genuinely
diachronic updating policy like J-Kon.

5 Confirmational Holism

To recap, we began our journey in §1 by outlining Weisberg’s concern. J-Con
bungles the introduction of new undercutting defeaters. Since nearly all learning
experiences introduce new undercutting defeaters, J-Con almost never applies.
We then introduced a new updating policy, J-Kon, designed to apply where J-Con
does not. After seeing how J-Kon works in practice, we explored its equivalence
to gilded superconditioning. We also provided a purely alethic (accuracy-centred)
rationale for abiding by J-Kon. Now we will return to the issues surrounding
confirmational holism that set us on this path.

Consider our heart attack case again. For the last hour you have been sitting
on the train, reading the news, and, unbeknownst to you, leaning lazily on your
left elbow. You have prior credences over the power set F of Ω, which contains:

ω1 = L&H ω2 = L&¬H
ω3 = ¬L&H ω4 = ¬L&¬H

where

L = You have been leaning on your elbow for an hour

H = You will have a heart attack.

Your prior credence that you will have a heart attack is low—maybe 0.001. You
have no idea whether you have been leaning on your elbow for an hour. So we
will say that you are 50-50. Your prior credence for L is 0.5. Finally, you think
that leaning lazily on your left elbow is irrelevant to your prospects of having
a heart attack. Taking on the supposition that you have been leaning on your
elbow does nothing to raise or lower your credence that you will have a heart
attack:

old(H | L) = old(H) = 0.001.

This fixes your prior credal state:

old(w1) = 0.0005 old(w2) = 0.4995
old(w3) = 0.0005 old(w4) = 0.4995
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Then you feel your left arm tingling. This learning experience E “directly affects”
your credence for H, pushing it up to 0.99. But what should your new credences
be after E? Should you take this “direct product” of E at face value? Should
you stick with 0.99 as your new credence for H, rather than sloughing it off as
you would if it were the aberrant result of momentary mania? Or should you
correct for biases in your credence-producing processes in some other way? And
what about the rest of your new credences? What should they be?

According to Christensen, the doxastic effects of experience should almost
always be mediated by your background beliefs. This is one of confirmational
holism’s great insights. Whether the tingling in your arm pushes your credence
that you are going to have a heart attack up, or down, or leaves it unchanged,
ought to depend for example on your background beliefs about your cardiovascular
health, what exactly the symptoms of a heart attack are, whether you have
been leaning on your left elbow, etc. But J-Con treats the doxastic effects of
experience as an exogenous factor; an output of some “black box” process that
serves as an input to J-Con. So it fails to vindicate this insight.

The inputs to J-Kon, on the other hand, are not the direct effects of experience.
Rather, they are quantities that might plausibly be mediated by your background
beliefs. Recall, two types of quantities serve as inputs to J-Kon. The first quantity
is your old credence function. The second quantity is a set of conditional chance
estimates of the form:

est[ch(E | ω ∩ P) | ω ∩ P].

The conditional chance estimates that you are disposed to adopt (or behave
as if you were adopting) reflect your background beliefs. In particular, they
reflect your beliefs about how various factors causally influence your learning
experiences. For example, you might estimate the chance of having an arm-
tingling experience conditional on being in a heart-attack world to be roughly
0.999. This reflects your background belief that heart attacks cause arm tingling.
Of course, conditional chance estimates will often reflect background beliefs
in varied and complex ways. But the basic point stands: background beliefs
influence which conditional chance estimates you are disposed to adopt (or behave
as if you were adopting). (Maybe such dispositions even constitute background
beliefs.) Conditional chance estimates, in turn, serve as an input to J-Kon. As
such, they provide a vehicle for background beliefs to systematically influence
the doxastic effects of experience.

Of course, J-Kon does not specify precisely how an agent’s background
beliefs ought to determine how she expands; which conditional chance estimates
she ought to adopt. But we side with Jeffrey here. Learning how to change
one’s mind involves training the messy network of neurons in your skull to
translate perceptive and proprioceptive inputs into sensible inputs to updating—
in our case, sensible conditional chance estimates. This will undoubtedly involve
domain-specific skill; skill that goes far beyond the skills one might be said to
have simply in virtue of being epistemically rational. As such, it will not be
something that constraints on rational updating will speak to.

Importantly, though, J-Kon makes sensible updating rather less mysterious
than J-Con does. It leaves less to domain-specific skill than J-Con. According
to Jeffrey, settling on a sensible input to J-Con (a sensible input partition and
distribution) is a matter of skill; outside the purview of epistemic rationality.
But according to J-Kon, this is only half right. Settling on sensible conditional
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chance estimates may be a matter of domain-specific skill. From there, however,
J-Kon determines whether you should update by J-Con, and if so, what the
input partition and distribution ought to be. So we have a story about where
the inputs to J-Con come from (at least in those situations where J-Kon agrees
that J-Con applies). We have lightened how much of the explanatory burden we
offload onto domain-specific skill, just as Christensen requested.

Back to our heart attack case. What should your new credences be after E?
According to J-Kon, you ought to update as follows. Firstly, adopt conditional
chance estimates of the form est[ch(E | ωi) | ωi]. For example, you might adopt
the following conditional chance estimates:

est[ch(E | ω1) | ω1] = est[ch(E | ω3) | ω3] = 0.99

as well as:
est[ch(E | ω2) | ω2] = 0.1

and:
est[ch(E | ω4) | ω4] = 0.01.

The first two estimates seem appropriate if you think that there is a high (≈ 99%)
chance of having an arm-tingling, credence-pushing learning experience if you
are indeed having a heart attack. The third estimate seems appropriate if you
think that there is a significant, but nevertheless fairly low (≈ 10%) chance of
having an arm-tingling, credence-pushing experience if you have been leaning on
your elbow, potentially pinching your ulnar nerve, even if you are not having a
heart attack. The final estimate seems appropriate if you think there is a rather
low chance (≈ 1%) of having such an experience otherwise.

Next, you should use these conditional chance estimates to update as follows:

new(ωi) =
est[ch(E | ωi) | ωi] · old(ωi)∑
j est[ch(E | ωj) | ωj ] · old(ωj)

.

This yields:

new(ω1) = 0.00884956 new(ω2) = 0.893001
new(ω3) = 0.00884956 new(ω4) = 0.0893001

So your posteriors for H and L are:

new(H) = 0.0176991 and new(L) = 0.90185.

So despite the fact your learning experience E “directly affects” your credence
for H, pushing it up to 0.99, J-Kon recommends adopting a significantly lower
(≈ 0.02) credence for H. Why? Because your conditional chance estimates reflect
the opinion that there is a significant (≈ 10%) chance of having E even if H is
false—in particular, if L is true. In light of this and your prior near-certainty in
¬H (before E , you were 99.9% confident that you are not going to have a heart
attack), J-Kon recommends hedging your epistemic bets that E is on the money
by only bumping up your credence in H to roughly 0.02.

More importantly, your posterior for H conditional on L is:

new(H | L) = 0.00981267.
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So J-Kon naturally predicts that E turns L into an undercutting de-
feater for H. Prior to E , L is irrelevant to H. And irrelevant propositions do
not undercut anything. But after E , you do see L as an undercutting defeater for
H. After E you think: Learning L would be good reason to cut your posterior
confidence in H in half, dropping it from roughly 0.02 to 0.01.

J-Kon does not do this by hand, in some ad hoc fashion. Take yourself back
to the moment when you feel your arm tingling and your credence in H shoots
up to 0.99. Ask yourself about the chance of having that experience if you are in
ω2 (no heart attack, but leaning on elbow). What’s your best estimate of that
chance? Now ask yourself about the chance of having that experience if you are
in ω4 (no heart attack, no leaning). What’s your best estimate? Is it different
from your earlier estimate? If so—and I am betting it is—then J-Kon demands
that you accommodate your experience by applying J-Con to a sufficiently fine
partition; one that slots ω2 and ω4 into different cells.10 (See our discussion of
(♥) in §2.2.) But then new cannot come from old by applying J-Con näıvely
to any Jeffrey shift over {H,¬H}. And it is precisely this fact—that we were
applying J-Con to some Jeffrey shift over {H,¬H}—that prevented E from
turning L into an undercutting defeater for H.

The moral: J-Kon handles the introduction of new undercutting defeaters
in a natural and principled fashion, just as Weisberg requested. J-Kon also
specifies the sense in which the doxastic effects of experience are mediated by
one’s background beliefs, just as Christensen required. So J-Kon is pretty holism-
friendly!11 Even more importantly, there is a purely alethic (accuracy-centred)
justication for updating via J-Kon.

6 Objections

Before wrapping up, let’s address a few pressing concerns.

Objection. If you start your epistemic life with an initial credence function and
an extremely rich set of conditional chance estimates, as J-Kon requires, then
you never really learn to learn. How you update over the course of your epistemic
life is fixed by (i) those estimates, which do not change with domain-specific
training, and (ii) one’s experiences, which do not obviously change with training
either. So it seems as though we have lost Jeffrey’s insight that learning to
translate perceptive and proprioceptive inputs into the sort of information that
feeds into your updating policy is a matter of acquiring a domain-specific skill.

Reply. J-Kon does not require you to start your epistemic life with an extremely
rich set of conditional chance estimates. It just requires you to consistently
expand that set after each learning experience (or rather to update as if you
were doing so). Becoming skilled at settling on sensible inputs is a matter of
becoming skilled at estimating the conditional chance of having various types of
experience. And that is something you can plausibly improve on with domain-
specific training.

10Any shift from old to new can be accommodated by applying J-Con to a sufficiently fine
partition. The question is simply: How fine? And is there a principled story about why to
choose that input distribution over that input partition?

11Gallow’s (2013) HCondi is also holist-friendly. An extended comparison of J-Kon and
HCondi is beyond the scope of this paper.
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Objection. If J-Kon is equivalent to gilded superconditioning, then it in effect
requires having prior credences over an extremely rich algebra F+. F+ must
include demonstrative propositions describing all possible learning experiences.
But that is massively implausible! You are only in a position to have opinions
about those demonstrative propositions (I had that learning experience) after you
have the experience. Secondly, even if you somehow have such prior credences,
then J-Kon just recommends conditioning on the proposition describing your
learning experience. But this is just Bayesian orthodoxy!

Reply. J-Kon/gilded superconditioning is not conditioning. It does not require
you to have prior credences over propositions describing all possible learning
experiences. It merely requires that in response to any learning experience, you
“settle on” conditional chance estimates that are consistent with the conditional
chance estimates that you used earlier. And it only requires you to “settle
on” and “use” conditional chance estimates in an extremely thin sense. J-Kon
updaters only need to be causally sensitive to learning experiences in such a way
that they transition from old to new credences as if they are explicitly estimating
conditional chances. But those conditional chance estimates, which are in this
thin sense available for the purposes of updating, need not be available for other
purposes. You need not be able to announce those estimates, for example. You
need not be able to use them to guide action (e.g., to decide whether to accept
or reject a bet). So while these estimates reflect your opinions in some weak
sense, they need not play the theoretical roles characteristic of credences or
expectations in the Bayesian tradition. This more subtle story is quite clearly
not standard Bayesian orthodoxy.

Objection. J-Kon recommends updating as if you were (i) generating new
conditional chance estimates est[ch(E | ω) | ω] and then (ii) conditionalizing on
E . In this second step, est[ch(E | ω) | ω] functions as your old credence for E
conditional on ω (a conditional credence which you lack). Why take this detour
through conditional chance estimates? Why not simply update by expanding
your old credal state to include new credences for E conditional on ω, and then
updating as if you were conditionalizing on E?

Reply. J-Kon is equivalent to gilded superconditioning. Gilded superconditioning
requires that your new credences for E conditional on ω take a particular form,
viz., the form of conditional chance estimates. This makes J-Kon more restrictive
than austere superconditioning (at least if there are interesting constraints on the
space of possible chance functions). And gilded superconditioning, not austere
conditioning, is what our chance dominance argument yields. So this restriction
is forced on us by accuracy considerations.

Objection. Garber (1980) objected to Field’s (1978) reformulation of J-Con—
Field conditioning—on (roughly) the following grounds. Suppose that you have
phenomenologically identical uncertain learning experiences (glimpsing a coin in
poor lighting conditions, hearing a voice that sounds familiar but you cannot
quite place, etc.) back to back to back—9 times instead of once, let’s say.
Then you get no more information from the last 8 than you do from the first.
Nevertheless, Field conditioning predicts that your credence in some cell of the
input partition will keep going up and up and up, in the end rendering you
“virtually certain” that the given cell is the true one (that the coin came up heads,
that the distant voice belongs to a particular friend, etc.). But J-Kon is just a
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species of Field conditioning! It is what you get when you set the eαi ’s in (5′) of
(Field, 1978, p. 367) as follows:

eαi = est[ch(E | ωi ∩ P) | ωi ∩ P]

But then surely J-Kon falls to the same objection.

Reply. It does not. Garber and Field both assume that the αi’s are “given by
experience.” Since you have phenomenologically identical uncertain learning
experiences in Garber’s example, he uses the same αi’s as inputs to Field
conditioning after each experience. J-Kon does not use the same inputs after
each experience. And rightly so. Garber’s intuition that you get no more
information from the last 8 experiences than you do from the first is undergirded
by the thought that if you had a certain type of experience the first time around,
and nothing relevant has changed, then you are virtually certain—chance of 1—to
have the same type of experience the next 8 times. This information is reflected
in the conditional chance estimates that serve as inputs to J-Kon, and prevent
the sort of compounding that plagues näıve applications of Field conditioning.
(In fact, we already saw J-Kon handle this sort of case in §2.2, example 3.)

7 Summary and Epilogue

Confirmational holism causes fits for J-Con. According to holism, the effects
of experience ought to be mediated by one’s background beliefs. J-Con fails to
adequately explain how the latter influences the former. Holism also maintains
that learning experiences ought nearly always to introduce new undercutting
defeaters. But J-Con bungles the introduction of new undercutting defeaters.

Our question was this: Can we provide a more holism-friendly alternative
to J-Con? And if so, can we provide a purely epistemic rationale for employing
this alternative updating rule?

To that end, we detailed and defended J-Kon. J-Kon says, roughly, that
when you have a learning experience, E , you should expand by settling on new
conditional chance estimates, est[ch(E | ω) | ω]; estimates of the chance of having
that very experience conditional on being in this, or that, or the other world.
Then you should to treat these new conditional chance estimates, est[ch(E | ω) |
ω], as your old conditional credences, old(E | ω) (conditional credences which
you in fact lack, since you have no pre-E opinions about E). Input your old
unconditional credences, old(ω), and your new conditional chance estimates,
est[ch(E | ω) | ω], into Bayes’ theorem. Then conditionalize on E . This specifies
new credences for each atom of your algebra. Together with the probability
axioms, this fixes your entire new credal state.

After putting J-Kon to work in a range of applications, we showed that
J-Kon was in fact equivalent to what we called gilded superconditioning. Then we
used this equivalence to provide a purely alethic (accuracy-centred) rationale for
updating via J-Kon (rather than an evidential or pragmatic rationale). Finally,
we showed that J-Kon is indeed more holism-friendly than J-Con. It pins down a
precise sense in which the effects of experience are mediated by one’s background
beliefs. It also elegantly handles the introduction of new undercutting defeaters.

At the end of his life, Jeffrey rejected the claim that epistemic rationality
requires you to update in accordance with any particular updating policy. As
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he himself put it, “it no longer goes without saying that you will change your
mind by conditioning or generalized conditioning (probability kinematics),” i.e.,
J-Con, “any more than it goes without saying that your changes of mind will be
quite spontaneous or unconsidered... these are questions about which you may
make up your mind about changing your mind in specific cases.” (Jeffrey, 1992,
p. 6). This was part of Jeffrey’s “radical probabilism.”

Our project here shows us that accuracy considerations seem to push us
toward something of a middle ground. Gone are the old days of Bayesian
orthodoxy. In the old days, there was conditioning and Jeffrey conditioning
(and perhaps minimisation of Kullback-Leibler divergence). And according to
each of these updating policies, one’s old credences and learning experience
uniquely determines one’s new credences. Rational agents have no wiggle room
in updating.

In Jeffrey’s radical paradise, quite the opposite is true. In this paradise,
rational agents have nothing but wiggle room. They may choose which properties
of their old credal state to preserve, choose which new properties seem appropriate
in light of their learning experience, and adopt any new coherent credal state
that has the whole lot of them. Sometimes these properties, together with
the probability axioms, will be sufficient to single out a unique new credal
state. Sometimes not. Of course, that does not mean that just anything goes.
They may make these choices well or poorly. And their skill at making these
choices will often be the product of hard-earned domain-specific skill. But as we
emphasised earlier, such skill will far outstrip the skill one might be said to have
in virtue of being epistemically rational. As such, it will simply not be reflected
in constraints of rationality.

The accuracy considerations that motivate J-Kon seem to land us somewhere
in the middle. Unlike the old days of Bayesian orthodoxy, J-Kon permits
significant wiggle room in updating. Rational agents can accommodate new
learning experiences using any set of conditional chance estimates that are
consistent with the Principal Principle and their past updates. And there are
many such sets. But unlike Jeffrey’s radical paradise, the wiggle room does not
stretch all the way to the horizon. If there are interesting constraints on the
space of possible chance functions, these will also constrain how you can update.
So while you have quite a bit of wiggle room in updating, according to J-Kon,
you do not have all the room in the world.

J-Kon also clears up a mystifying bit of Jeffrey’s radical probabilism. Learning
to change one’s mind, on Jeffrey’s picture, involves acquiring skill at deciding
which properties of one’s old credal state to preserve, and which new properties
seem appropriate in light of their learning experience. But without some insight
into what makes properties of credal states good or bad quite generally—without
a theory of value for properties of credal states (not for credal states themselves,
but for properties of credal states)—it is slightly perplexing what it might mean
to make such choices well or poorly.

J-Kon swaps out this perplexing skill for a more understandable one. Learning
to change one’s mind does not involve acquiring skill at choosing properties
of credal states. Instead, it involves acquiring skill at estimating conditional
chances. But we already have a theory of value for estimates! According to
veritism, estimates are good exactly to the extent that they are accurate; exactly
to the extent that they are close to the true value of the estimated quantity. The
upshot: it is much easier to wrap one’s head around what learning to change
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one’s mind might actually amount to.
To conclude, it is worth pointing to a number of exciting new questions that

J-Kon raises. Firstly, J-Kon makes room for a healthy subjectivism/objectivism
debate about rational learning. Subjectivists might be swayed only by accuracy-
dominance considerations, rather than chance-dominance considerations. Such
considerations seem to support superconditioning, rather then gilded supercondi-
tioning, or J-Kon. And plain old superconditioning really does permit epistemic
lives comprising nearly any sequence of coherent credal states. On the other
hand, objectivists might be swayed by considerations of worst-case epistemic
loss avoidance (cf. Pettigrew (2014)). Such considerations seem to support an
even more restrictive form of superconditioning than gilded superconditioning;
one that requires old+ to maximise entropy, perhaps. As a result, objectivists
will tighten up what slack J-Kon permits.

Secondly, J-Kon opens up new questions about diachronic deference principles.
Synchronic deference principles answer the following question: When I learn
that another agent’s credence for X is x (maybe she is an expert, maybe an
epistemic peer), how should I adjust my credence in X? Diachronic deference
principles, in contrast, answer this question: When I learn that another agent
accommodated learning experiences E1, . . . , En by adopting a particular sequence
of credal states, how should that influence how I update in the future? Perhaps
the tools used to provide an alethic justification for J-Kon can help answer this
question.

Finally, J-Kon raises questions about diachronic aggregation principles. Syn-
chronic aggregation principles answer the following question: Given the credal
states of some group members, how can we arrive at a single credal state that
captures not the members’ individual opinions, but the group’s opinions as a
whole? Diachronic aggregation principles answer a slightly different question:
Given how different group members accommodated past learning experiences,
how we can we arrive at a single updating rule that captures not the members’
individual inductive dispositions, but the group’s inductive dispositions as a
whole? For a group of J-Kon updaters, you might aggregate the conditional
chance estimates that the members used to update in the past, and then ac-
commodate group learning experiences by expanding that aggregated set going
forward. Or perhaps the tools used to provide an alethic justification for J-Kon
will offer up a different solution.
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A Appendix

A.1 The Framework

Let Ω be a finite sample space. Let

Ω+ = Ω× {a1, b1} × . . .× {an, bn} × {c1, . . . , cm}

Let F be the power set of Ω and F+ be the power set of Ω+. Intuitively, Ω
contains all of the “possible worlds” ω that you can distinguish and F contains
all of the propositions that you have opinions about. Ω+ contains more refined
possibilities and consequently F+ contains additional propositions that you do
not have opinions about. The way to think about Ω+ is as follows. In the
actual world, you have learning experiences E1, . . . , En at times t1, . . . , tn. We
introduce variables E1, . . . , En that indicate whether you have these experiences
at any “world” α in Ω+. Ei = ai means that you have experience Ei at ti.
Ei = bi means that you do not have experience Ei at ti. Finally, we introduce
a variable CH that indicates which of a finite number of possible conditional
chance functions obtains. CH = chj means that chj : F+ ×F+ → R is the true
chance function. So, for example, the “fine-grained world”

α = 〈ω, a1, a2, . . . , bn, chj〉

in Ω+ says not only that the “coarse-grained world” ω in Ω is true, but also
that you have learning experience E1 at t1 (E1 = a1), E2 at t2 (E2 = a2), and
so on, but do not have learning experience En at tn (En = bn). In addition,
chj : F+ ×F+ → R is the true chance function (CH = chj).

In what follows, we will abuse notation by using ‘Ei’ to refer to the set of all
α ∈ Ω+ with Ei = ai. Also for convenience let Li = E1 ∩ . . . ∩ Ei for 1 6 i 6 n.

Let C = {ch1, . . . , chm} be the set of possible conditional chance functions. We
assume that every chj ∈ C is coherent (i.e., satisfies the Rényi-Popper axioms)
and non-self-undermining, in the sense that chj(CH = chj | Ω+) = 1. We also
assume that chj(Ln | Ω+) > 0.

Let S be the set of all sequences b = 〈b0, . . . , bn〉 of “small space” credence
functions bi : F → [0, 1]. We will assume that every b ∈ S is regular in the
sense that bi({ω}) > 0 for all i 6 n and ω ∈ Ω. (Henceforth we write bi(ω) > 0.)
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Let B be the set of all sequences p = 〈p0, . . . , pn〉 of “big space” credence functions
pi : F+ → [0, 1].

Definition 1. p is coherent iff pi is a finitely additive probability function for
all i 6 n.

Definition 2. p is quasi-regular iff p0(Ln) > 0.

Definition 3. p is a condi sequence iff

pi(X)p0(Li) = p0(X ∩ Li)

for all X ∈ F+ and i 6 n.

For any ch ∈ C, let

ch =
〈
ch(· | Ω+), ch(· | L1), . . . , ch(· | Ln)

〉
Let C be the set of all ch with ch ∈ C. Then every ch ∈ C is a coherent,
quasi-regular, condi sequence.

Definition 4. p is a PP sequence iff

pi(Y ∩ (CH = chj))chj(X | Y ∩ Li) = pi(X ∩ Y ∩ (CH = chj))

for all i 6 n, chj ∈ C and X,Y ∈ F+.

Let Q ⊆ B be the set of coherent, quasi-regular, condi sequences.

Let P ⊆ Q ⊆ B be the set of coherent, quasi-regular, condi, PP sequences.

Now choose any “small space” sequence b = 〈b0, . . . , bn〉 ∈ S.

Definition 5. b is coherent iff bi is a finitely additive probability function for
all i 6 n.

Definition 6. b = 〈b0, . . . , bn〉 is a superconditioning sequence iff there is
some coherent condi sequence p = 〈p0, . . . , pn〉 that extends b to F+, i.e., pi
extends bi for all i 6 n.

Definition 7. b is a quasi-regular superconditioning sequence iff there is
some coherent, quasi-regular, condi sequence p that extends b to F+.

Definition 8. b is a gilded superconditioning sequence iff there is some
coherent, quasi-regular, condi, PP sequence p that extends b to F+.

For any 1 6 i 6 n and ω ∈ Ω, let CHω,i : Ω+ → R be defined by

CHω,i(ω
∗, a1/b1, . . . , an/bn, chj) = chj(Ei | ω ∩ Li−1)

CHω,i(α) specifies the chance of Ei conditional on ω∩Li−1 at α = 〈ω∗, a1/b1, . . . , an/bn, chj〉.
Similarly, let CHω : Ω+ → R be defined by

CHω(ω∗, a1/b1, . . . , an/bn, chj) = chj(ω | Ω+)

CHω specifies the “ur-chance” of ω at α = 〈ω∗, a1/b1, . . . , an/bn, chj〉.
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Let EST be a (finite) set of conditional chance estimates of the form

est[CHω,i | ω ∩ Li−1] = x

and
est[CHω | Ω+] = y

for all 1 6 i 6 n and ω ∈ Ω. Formally, each such estimate is a tuple

〈〈V, E〉 , x〉

consisting of a variable V : Ω+ → R (in our case, V = CHω,i or V = CHω), a
condition E ⊆ Ω+ (in our case, E = ω ∩ Li−1 or E = Ω+), and an estimate
x ∈ R. In what follows, we will sometimes write

est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] = x, est[ch(ω | Ω+) | Ω+] = y

rather than est[CHω,i |ω ∩Li−1] = x or est[CHω |Ω+] = y, just to make it easier
to remember what CHω,i and CHω mean.

For any i 6 n and ω ∈ Ω, let

Mω,i = ω ∩ Li−1 (CHω,i − est[CHω,i | ω ∩ Li−1])

Here again we abuse notation and use ‘ω∩Li−1’ to refer to the indicator function
which returns 1 if α ∈ ω ∩ Li−1 and 0 otherwise. So

Mω,i(α) =

{
CHω,i(α)− est[CHω,i | ω ∩ Li−1] if α ∈ ω ∩ Li−1

0 otherwise

Hence Mω,i is “called off” if α 6∈ ω ∩ Li−1 and “pays out” CHω,i − est[CHω,i |
ω ∩ Li−1] otherwise.

We will assume that adopting a precise conditional estimate est[V |E] requires
judging the gamble M = E (V − est[V | E]), as well as the gamble −M , to both
be “marginal gambles.” M and −M are marginal gambles, in your view, just in
case you estimate them to pay out 0—no more or less than the status quo. Call
M and −M the marginal gambles associated with est[V | E].

Let V be the set of all (bounded) gambles/variables V : Ω+ → R. Let V<0 ⊆ V
be the set of gambles/variables V : Ω+ → R with V(α) < 0 for all α ∈ Ω+.

Definition 9. For any V1, . . . ,Vk ∈ V, the positive hull of {V1, . . . ,Vk} is
given by

posi({V1, . . . ,Vk}) :=

∑
i6k

λiVi | λi > 0 for all i 6 k and λj > 0 for some j 6 k


i.e., posi({V1, . . . ,Vk}) is the set of all positive linear combinations of V1, . . . ,Vk.

Definition 10. A set D ⊆ V is a coherent set of desirable gambles iff:

D1. 0 6∈ D
D2. If V(α) > 0 for all α ∈ Ω+ and V(α′) > 0 for some α′ ∈ Ω+, then V ∈ D
D3. If V ∈ D and λ > 0, then λV ∈ D
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D4. If V,Q ∈ D, then V +Q ∈ D

Let D be the set of all coherent sets of desirable gambles.

Definition 11. For any set A ⊆ V, the natural extension of A is

ext(A) :=
⋂

D∈D:A⊆D

D

Definition 12. A finite set of conditional estimates

X = {est[V1 | E1] = x1, . . . , est[Vk | Ek] = xk}

avoids uniform loss (AUL) iff the marginal gambles associated with X,

MX = {Mi | i 6 k} ∪ {−Mi | i 6 k}

avoid uniform loss (Mi = Ei [Vi − xi]).

Definition 13. MX avoids uniform loss (AUL) iff there is no set of non-
negative reals

{λi | i 6 k} ∪ {ρi | i 6 k} ⊆ R>0

with some λi or ρi positive and some ε > 0 such that∑
i6k

λi (Mi + εEi) +
∑
i6k

ρi (−Mi + εEi) 6 0

In English, MX is subject to uniform loss if there is a positive linear combination
of the acceptable variables/gambles Mi + εEi and −Mi + εEi (which are slight
sweetenings of the marginal gambles Mi and −Mi) whose net reward cannot
possibly be positive.

Definition 14. A finite set of conditional estimates X avoids conditional
negativity iff for every subset A ⊆ X, the set of marginal gambles A associated
with A avoids conditional negativity.

Definition 15. A finite set of marginal gambles A ⊆MX avoids conditional
negativity iff

posi(A|S(A)) ∩ V<0|S(A) = ∅

where

• S(A) =
⋃

±Mi∈A
Ei

• Mi|E is the restriction of Mi to E ⊆ Ω+

• A|E = {±Mi|E | ±Mi ∈ A}

It is straightforward to show that X avoids conditional negativity iff it avoids
uniform loss.

Lemma 1. A finite set of conditional estimates

X = {est[V1 | E1] = x1, . . . , est[Vk | Ek] = xk}

avoids conditional negativity iff it avoids uniform loss.
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Proof. Suppose that X avoids conditional negativity but does not avoid uniform
loss. So there is some set of non-negative reals

{λi | i 6 k} ∪ {ρi | i 6 k} ⊆ R>0

with some λi or ρi positive and some ε > 0 such that

G =
∑
i6k

λi (Mi + εEi) +
∑
i6k

ρi (−Mi + εEi) 6 0

Let
A =

⋃
i6k:λi>0 or ρi>0

{Mi,−Mi}

A is the set of marginal gambles associated with

A = {est[Vi | Ei] = xi | λi > 0 or ρi > 0} ⊆ X

Note that

G =
∑
Mi∈A

λi (Mi + εEi) +
∑
−Mi∈A

ρi (−Mi + εEi) 6 0

Let
G′ =

∑
Mi∈A

λiMi +
∑
−Mi∈A

ρi (−Mi)

Then G′(α) < G(α) 6 0 for any α ∈ S(A). Hence G′|S(A) ∈ V<0|S(A). But

also G′|S(A) ∈ posi(A|S(A)). So the set of marginal gambles A associated with
A ⊆ X does not avoid conditional negativity. ⇒⇐.

For the other direction, suppose that X avoids uniform loss but does not avoid
conditional negativity. So there is some subset A ⊆ X whose associated marginal
gambles

A =
⋃

(est[Vi|Ei]=xi)∈A

{Mi,−Mi}

do not avoid conditional negativity, i.e.

posi(A|S(A)) ∩ V<0|S(A) 6= ∅

For notational convenience, let A = {N1, . . . , Nt}. Then there is some F =∑
i6t λiNi|S(A) with λi > 0 for all i 6 t and λj > 0 for some j 6 t such that

F ∈ V<0|S(A). Let

A′ = {Ni ∈ A | λi > 0}

Then F =
∑
Ni∈A′ λiNi|S(A). Let ε =

1

2
· min
β∈S(A′)

−
∑
Ni∈A′ λiNi|S(A′)(β)∑
Ni∈A′ λiEi|S(A′)(β)

> 0.

Let

δi =

{
λi if Ni ∈ A′
0 otherwise
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And let
F ′ :=

∑
i6t

δi (Ni + εEi)

Firstly choose α 6∈ S(A′). Then (Ni + εEi) (α) = 0 for all Ni ∈ A′ and δi = 0
for all Ni 6∈ A′. Hence F ′(α) = 0. Next choose α ∈ S(A′). Then

F ′(α) =
∑
i6t

δi (Ni + εEi) (α) =
∑
Ni∈A′

λi

(
Ni|S(A′) + εEi|S(A′)

)
(α) < 0

iff ∑
Ni∈A′

λiNi|S(A′)(α) < −ε
∑
Ni∈A′

λiEi|S(A′)(α)

iff

ε < −
∑
Ni∈A′ λiNi|S(A′)(α)∑
Ni∈A′ λiEi|S(A′)(α)

But by definition

ε < 2ε = min
β∈S(A′)

−
∑
Ni∈A′ λiNi|S(A′)(β)∑
Ni∈A′ λiEi|S(A′)(β)

6 −
∑
Ni∈A′ λiNi|S(A′)(α)∑
Ni∈A′ λiEi|S(A′)(α)

So F ′(α) < 0. Hence F ′ 6 0. But then X does not avoid uniform loss. ⇒⇐.

Lemma 2. For any

A ⊆ X = {est[V1 | E1] = x1, . . . , est[Vk | Ek] = xk}

the set of positive linear combinations of elements of A (the marginal gam-
bles associated with A) is the full set of linear combinations of elements of A:
posi(A) = span(A).

Proof.

A =
⋃
i∈I
{Mi,−Mi}

for some I ⊆ {1, . . . , k}. Trivially posi(A) ⊆ span(A). Choose F ∈ span(A). So
there are reals λi and ρi for all i ∈ I such that

F =
∑
Mi∈A

λiMi +
∑
−Mi∈A

ρi (−Mi)

Assume WLOG that λi 6= 0 or ρi 6= 0 for some i ∈ I, since we already know that

0 =
∑
Mi∈A

Mi +
∑
−Mi∈A

(−Mi) ∈ posi(A)

Let

〈λ∗i , ρ∗i 〉 =


〈λi, ρi〉 if λi > 0, ρi > 0
〈λi − ρi, 0〉 if λi > 0, ρi < 0
〈0, ρi − λi〉 if λi < 0, ρi > 0
〈−ρi,−λi〉 if λi < 0, ρi < 0
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Let
F ∗ =

∑
Mi∈A

λ∗iMi +
∑
−Mi∈A

ρ∗i (−Mi)

Clearly F = F ∗ and F ∗ ∈ posi(A). Hence span(A) ⊆ posi(A).

Corollary 3. For any finite set of conditional estimates

X = {est[V1 | E1] = x1, . . . , est[Vk | Ek] = xk}

the following conditions are equivalent:

• X avoids conditional negativity

• X avoids uniform loss

• For every subset A ⊆ X, the marginal gambles A associated with A satisfy

span(A|S(A)) ∩ V<0|S(A) = ∅

Definition 16. A set of conditional chance estimates EST which avoids condi-
tional negativity is PP-consistent iff

EST ∪
{

est[X | Y ∩ (CH = chj)] = chj(X | Y ) | chj ∈ C and X,Y ∈ F+
}

also avoids conditional negativity.

Definition 17. A function P : V× F+ → R is a coherent lower prevision
iff there is some coherent set of desirable gambles D such that

P (V | E) = sup {x | E [V − x] ∈ D}

for all V ∈ V and E ∈ F+.

This is what De Bock (2019) calls “Williams coherence.” It is inspired by the
work of Williams (1975, 2007).

Definition 18. A function P : V×F+ → R is a conditional linear prevision
iff

P1. P (V |A) > infα∈A V(α)
P2. P (λV |A) = λP (V |A) for any λ ∈ R
P3. P (V +Q |A) = P (V |A) + P (Q |A)
P4. P (BV |A) = P (V |A ∩B)P (B |A) if A ∩B 6= ∅

Definition 19. b = 〈b0, . . . , bn〉 is a J-Kon sequence iff there is a finite set of
conditional chance estimates, EST, which (i) avoids conditional negativity, (ii)
is PP-consistent and satisfies (iii) for all ω ∈ Ω

b0(ω) = est[ch(ω | Ω+) | Ω+]

and for all 0 < i 6 n

bi(ω) =
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · bi−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · bi−1(ω′)
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A.2 Characterizing J-Kon Sequences

Proposition 4. For any sequence b ∈ S, b is a J-Kon sequence iff b is a gilded
superconditioning sequence.

Proof. Suppose that b = 〈b0, . . . , bn〉 is a J-Kon sequence. So there is a finite
set of conditional chance estimates, EST, which (i) avoids conditional negativity,
(ii) is PP-consistent and satisfies (iii) for all ω ∈ Ω

b0(ω) = est[ch(ω | Ω+) | Ω+]

and for all 0 < i 6 n

bi(ω) =
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · bi−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · bi−1(ω′)

Since EST is PP-consistent, we can assume WLOG that{
est[X | Y ∩ (CH = chj)] = chj(X | Y ) | chj ∈ C and X,Y ∈ F+

}
⊆ EST

By corollary 3, EST avoids uniform loss. By (de Cooman and Quaeghebeur,
2012, Theorem 1), EST avoids uniform loss iff the natural extension of the set

A =
⋃

(est[Vi|Ei]=xi)∈EST

{Mi + εEi | ε > 0} ∪ {−Mi + εEi | ε > 0}

is a coherent set of desirable gambles (where Mi = Ei [Vi − xi]), in which case

ext(A) = posi(A ∪
{
V > 0 | V(α) > 0 for some α ∈ Ω+

}
).

And as (Walley et al., 2004, §3.2) notes, the function P : V×F+ → R defined
by

P (V | E) := sup {x | E [V − x] ∈ ext(A)}
is a coherent conditional lower prevision and

P (V | E) = est(V | E) = x

for all (est[V | E] = x) ∈ EST. Indeed, since both E [V − x+ ε] and E [x− V + ε]
are in A for all (est[V | E] = x) ∈ EST and ε > 0, we must have

P (V | E) := sup {x | E [V − x] ∈ ext(A)} = inf {x | E [x− V] ∈ ext(A)}

in which case P is a conditional linear prevision.

For any i 6 n and X ∈ F+, let

pi(X) := P (X | Li)

Since P is a conditional linear prevision, it follows trivially that pi is a finitely
additive probability function. So p is coherent. And

p0(Ln) = P (Ln | Ω+)

=
∑
chi∈C

P (Ln | (CH = ci) ∩ Ω+)P (CH = ci | Ω+)

=
∑
chi∈C

est[Ln | (CH = ci) ∩ Ω+]P (CH = ci | Ω+)

=
∑
chi∈C

chi(Ln | Ω+)P (CH = ci | Ω+) > 0
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So p is quasi-regular. To see that p is a condi sequence, note that for any X ∈ F+

and i 6 n
pi(X)p0(Li) = p0(X ∩ Li)

iff
P (X | Li ∩ Ω+)P (Li | Ω+) = P (X ∩ Li | Ω+)

which follows immediately from axiom 4 for conditional linear previsions. To see
that p is a PP sequence, note that for any i 6 n, chj ∈ C and X,Y ∈ F+

pi(Y ∩ (CH = chj))chj(X | Y ∩ Li) = pi(X ∩ Y ∩ (CH = chj))

iff

P (Y ∩ (CH = chj) | Li)chj(X | Y ∩ Li) = P (X ∩ Y ∩ (CH = chj) | Li)

Given chj(X |Y ∩Li) = est[X |(CH = chj)∩Y ∩Li] = P (X |(CH = chj)∩Y ∩Li)
this holds iff

P (Y ∩(CH = chj) |Li)P (X |(CH = chj)∩Y ∩Li) = P (X∩Y ∩(CH = chj) |Li)

which follows immediately from axiom 4 for conditional linear previsions.

To show that b is a gilded superconditioning sequence, it only remains to show
that p extends b to F+. Choose ω ∈ Ω. First note that

p0(ω) = P (ω | Ω+)

=
∑

chj∈C

P (ω | (CH = chj) ∩ Ω+)P (CH = chj | Ω+)

=
∑

chj∈C

est[ω | (CH = chj) ∩ Ω+]P (CH = chj | Ω+)

=
∑

chj∈C

chj(ω | Ω+)P (CH = chj | Ω+)

= P (ch(ω | Ω+) | Ω+)

= est[ch(ω | Ω+) | Ω+]

= b0(ω)

Now suppose that pi−1 extends bi−1 to F+. We will show that pi must extend
bi to F+ as well.

bi(ω) =
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · bi−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · bi−1(ω′)

=
P (ch(Ei | ω ∩ Li−1) | ω ∩ Li−1) · pi−1(ω)∑

ω′∈Ω

P (ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1) · pi−1(ω′)
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=

 ∑
chj∈C

chj(Ei | ω ∩ Li−1)P (CH = chj | ω ∩ Li−1)

 · P (ω | Li−1)

∑
ω′∈Ω

 ∑
chj∈C

chj(Ei | ω′ ∩ Li−1)P (CH = chj | ω′ ∩ Li−1)

 · P (ω′ | Li−1)

=

 ∑
chj∈C

P (Ei | (CH = chj) ∩ ω ∩ Li−1)P (CH = chj | ω ∩ Li−1)

 · P (ω | Li−1)

∑
ω′∈Ω

 ∑
chj∈C

P (Ei | (CH = chj) ∩ ω′ ∩ Li−1)P (CH = chj | ω′ ∩ Li−1)

 · P (ω′ | Li−1)

=
P (Ei | ω ∩ Li−1) · P (ω | Li−1)∑

ω′∈Ω

P (Ei | ω′ ∩ Li−1) · P (ω′ | Li−1)

= P (ω | Ei ∩ Li−1) = P (ω | Li) = pi(ω)

Therefore b is a gilded superconditioning sequence.

For the other direction, suppose that b is a gilded superconditioning sequence.
So there is some coherent, quasi-regular, condi, PP sequence p that extends b
to F+. Let P : V×F+ → R be the partial assignment of conditional estimates
defined by

P (V|A) :=

{
Ep0(V |A) if A ∈ F+ and p0(A) > 0
Echj

(V |A) if A = Y ∩ (CH = chj) for some Y ∈ F+, chj ∈ C and p0(Y ∩ (CH = chj)) = 0

where

Ep0(V |A) :=
∑
ω∈Ω

V(ω)
p0(ω ∩A)

p0(A)

and
Echj

(V |A) :=
∑
ω∈Ω

V(ω)chj(ω |A)

Since both Ep0(· |A) and Echj
(· |A) satisfy (P1)-(P3) whenever they are defined,

so too does P whenever P (· |A) is defined. It is also easy to verify that P satisfies
(P4) whenever the relevant terms are defined. In that case, (Williams, 2007,
Thm 3) guarantees that P is extendable to a full conditional linear prevision, so
that P (V |A) is defined for all V ∈ V and A ∈ F+. We assume WLOG that P
is so defined.

Let EST be the following (finite) set of conditional chance estimates

EST = {P (CHω,i | ω ∩ Li−1) | ω ∈ Ω, 1 6 i 6 n}
⋃{

P (CHω | Ω+) | ω ∈ Ω
}

Since P is a conditional linear prevision, it is coherent (De Bock, 2019, Prop 35),
and hence avoids uniform loss (de Cooman and Quaeghebeur, 2012, Thm 1) and
conditional negativity (corollary 3).
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To see that EST is PP-consistent, note that if p0(Y ∩ (CH = chj)) > 0, then

P (X | Y ∩ (CH = chj)) = Ep0(X | Y ∩ (CH = chj))

=
∑
ω∈Ω

1X(ω)
p0(ω ∩ Y ∩ (CH = chj))

p0(Y ∩ (CH = chj))

=
∑
ω∈Ω

1X(ω)chj(ω | Y ) = chj(X | Y )

where 1X : Ω+ → {0, 1} is the indicator function for X. And if p0(Y ∩
(CH = chj)) = 0, then

P (X |A) = Echj
(X | Y ∩ (CH = chj)) = chj(X | Y )

To show that b is a J-Kon sequence, it only remains to show that for all ω ∈ Ω

b0(ω) = est[ch(ω | Ω+) | Ω+]

and for all 0 < i 6 n

bi(ω) =
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · bi−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · bi−1(ω′)

Choose ω ∈ Ω. Then

b0(w) = p0(w)

=
∑

chj∈C:p0(CH=chj)>0

p0(ω ∩ (CH = chj))

p0(CH = chj)
p0(CH = chj)

=
∑

chj∈C:p0(CH=chj)>0

chj(ω | Ω+)p0(CH = chj | Ω+)

= Ep0(ch(ω | Ω+) | Ω+)

= P (ch(ω | Ω+) | Ω+)

= est[ch(ω | Ω+) | Ω+]

Now choose 0 < i 6 n. Suppose WLOG that bi−1(ω) = pi−1(ω) > 0.

bi(ω) = pi(ω) =
pi−1(Ei ∩ ω)

pi−1(Ei)
=

pi−1(Ei ∩ ω)

pi−1(ω)
· bi−1(ω)∑

ω′∈Ω:pi−1(ω′)>0

pi−1(Ei ∩ ω′)
pi−1(ω′)

· bi−1(ω′)

=

 ∑
chj∈C:pi−1(ω∩(CH=chj))>0

pi−1(Ei ∩ ω ∩ (CH = chj))

pi−1(ω ∩ (CH = chj))

pi−1(ω ∩ (CH = chj))

pi−1(ω)

 · bi−1(ω)

∑
ω′∈Ω

 ∑
chj∈C:pi−1(ω′∩(CH=chj))>0

pi−1(Ei ∩ ω′ ∩ (CH = chj))

pi−1(ω′ ∩ (CH = chj))

pi−1(ω′ ∩ (CH = chj))

pi−1(ω′)

 · bi−1(ω′)
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=

 ∑
chj∈C

chj(Ei | ω ∩ Li−1)P (CH = chj | ω ∩ Li−1)

 · bi−1(ω)

∑
ω′∈Ω

 ∑
chj∈C

chj(Ei | ω′ ∩ Li−1)P (CH = chj | ω′ ∩ Li−1)

 · bi−1(ω′)

=
P (ch(Ei | ω ∩ Li−1) | ω ∩ Li−1) · bi−1(ω)∑

ω′∈Ω

P (ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1) · bi−1(ω′)

=
est[ch(Ei | ω ∩ Li−1) | ω ∩ Li−1] · bi−1(ω)∑

ω′∈Ω

est[ch(Ei | ω′ ∩ Li−1) | ω′ ∩ Li−1] · bi−1(ω′)

This establishes that b is J-Kon sequence.

A.3 Quasi Bregman Divergences

Let I : S× Ω+ → R>0 be an inaccuracy measure

I(b, α) =
∑
X∈F

s(b(X), α(X))

defined by a continuous, bounded, strictly proper component function

s : [0, 1]× {0, 1} → R>0

s is strictly proper iff

x · s(x, 1) + (1− x) · s(x, 0) < x · s(y, 1) + (1− x) · s(y, 0)

for any x, y ∈ [0, 1] with x 6= y. A component function s measures the inaccuracy
of the credence b(X) when X’s truth-value is α(X). When I is defined by a
component function in this way, we call it additive.

Now extend I to measure not only the accuracy of individual credence functions
b, but also epistemic lives b = 〈b0, . . . , bn〉 ∈ S as follows:

I(b, ω) =
∑
i:α∈Li

I(bi, α)

I reflects the view that life stages bi ought to be evaluated as conditional credence
functions. More carefully, bi(X) should be evaluated as your credence for X
conditional on the learning experiences that produced bi. As such, bi is evaluable
for accuracy only at worlds α in which the learning experiences that produced
that stage take place, viz., α ∈ Li.

According to I, the total inaccuracy of your epistemic life b at α is the sum of
the degrees of inaccuracy of the life stages bi that are evaluable for accuracy at
α. When I takes this form, call it temporally additive.
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For any temporally additive I defined by a continuous, bounded, strictly proper
component function, we can generate a divergence between big space lives,
p = 〈p0, . . . , pn〉 and q = 〈q0, . . . , qn〉, as follows.

Let b = 〈b0, . . . , bn〉 be the restriction of p to F , i.e., bi is the restriction of pi to
F for all i 6 n. Similarly, let c be the restriction of q to F . Now let

H(p, q) =
∑
α∈Ω+

p0(α)I(c, α)

Then let
D(p, q) = H(p, q)−H(p, p)

So the divergence from p to q is given by the difference between the expected
inaccuracy of their respective restrictions, from p0’s perspective.

Say that p and q are small space equivalent iff pi(X) = qi(X) for all i > 0
and all X ∈ F . When p and q are small space equivalent, we write p ≈ q.

Say that D is a Quasi Bregman divergence iff

(I) For any p and q in the set Q ⊆ B of coherent, quasi-regular, conditioning
sequences

– D(p, q) = 0 if p ≈ q

– D(p, q) > 0 if p 6≈ q

(II) D(·, r) is quasi convex on the set Q of coherent, quasi-regular, conditioning
sequences in the following sense. Choose r ∈ B and p, q1, . . . , qk ∈ Q. If (i)
p0 =

∑
i6k µ

iqi0 for some µi ∈ [0, 1] with
∑
i6k µ

i = 1 and (ii) qa 6≈ qb for

some a, b 6 k with µa, µb > 0, then

D(p, r) <
∑
i6k

µiD(qi, r)

(III) There is some Φ : B→ [0,∞] that is bounded and continuously differen-
tiable on Q, and moreover

D(p, q) = Φ(p)− Φ(q)−∇Φ(q) · (p− q)

for any p, q ∈ Q.

Proposition 5. For any temporally additive inaccuracy measure I defined by a
continuous, bounded, strictly proper component function

D(p, q) = H(p, q)−H(p, p)

is a Quasi Bregman divergence.

Proof. Let I be a temporally additive inaccuracy measure defined by a continu-
ous, bounded, strictly proper component function. Let

D(p, q) = H(p, q)−H(p, p)
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Proof of (I). Choose p, q ∈ Q. Let b and c be the restrictions of p and q to F ,
respectively.

Case 1. p ≈ q. Then b = c. Hence

H(p, q) =
∑
α∈Ω+

p0(α)I(c, α) =
∑
α∈Ω+

p0(α)I(b, α) = H(p, p)

So
D(p, q) = H(p, q)−H(p, p) = 0

Case 2. p 6≈ q. Then b 6= c.

Since s is strictly proper, for any i 6 n and any X ∈ F we have

pi(X)s(qi(X), 1) + (1− pi(X))s(qi(X), 0)

> pi(X)s(pi(X), 1) + (1− pi(X))s(pi(X), 0)

with equality iff pi(X) = qi(X). Moreover, since p is a coherent, quasi-regular,
condi sequence we have

pi(X) =
p0(X ∩ Li)
p0(Li)

So the above inequality holds iff

p0(X ∩ Li)s(qi(X), 1) + p0(¬X ∩ Li) · s(qi(X), 0)

> p0(X ∩ Li)s(pi(X), 1) + p0(¬X ∩ Li)s(pi(X), 0)

In addition, since p 6≈ q, qj(Y ) 6= pj(Y ) for some j 6 n and Y ∈ F . Hence

p0(Y ∩ Lj)s(qj(Y ), 1) + p0(¬Y ∩ Lj) · s(qj(Y ), 0)

> p0(Y ∩ Lj)s(pj(Y ), 1) + p0(¬Y ∩ Lj)s(pj(Y ), 0)

Finally we have

H(p, q) =
∑
α∈Ω+

p0(α)I(c, α)

=
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(ci, α)

=
∑
i6n

∑
α∈Li

p0(α)I(ci, α)

=
∑
i6n

∑
α∈Li

p0(α)
∑
X∈F

s(ci(X), α(X))

=
∑
i6n

∑
α∈Li

p0(α)
∑
X∈F

s(qi(X), α(X))

=
∑
i6n

∑
X∈F

p0(X ∩ Li)s(qi(X), 1) + p0(¬X ∩ Li)s(qi(X), 0)

>
∑
i6n

∑
X∈F

p0(X ∩ Li)s(pi(X), 1) + p0(¬X ∩ Li)s(pi(X), 0)

= H(p, p)
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Therefore D(p, q) = H(p, q)−H(p, p) > 0.

Proof of (II). Choose r ∈ B and p, q1, . . . , qk ∈ Q. Suppose that (i) p0 =∑
i6k µ

iqi0 for some µi ∈ [0, 1] with
∑
i6k µ

i = 1 and (ii) qa 6≈ qb for some

a, b 6 k with µa, µb > 0. We must show that

D(p, r) <
∑
i6k

µiD(qi, r)

Note that

D(p, r) = H(p, r)−H(p, p)

=
∑
i6n

∑
X∈F

p0(X ∩ Li)s(ri(X), 1) + p0(¬X ∩ Li)s(ri(X), 0)

−
∑
i6n

∑
X∈F

p0(X ∩ Li)s(pi(X), 1) + p0(¬X ∩ Li)s(pi(X), 0)

=
∑
i6n

∑
X∈F

∑
j6k

µjqj0(X ∩ Li)

 s(ri(X), 1) +

∑
j6k

µjqj0(¬X ∩ Li)

 s(ri(X), 0)

−
∑
i6n

∑
X∈F

∑
j6k

µjqj0(X ∩ Li)

 s(pi(X), 1) +

∑
j6k

µjqj0(¬X ∩ Li)

 s(pi(X), 0)

=
∑
j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(ri(X), 1) + qj0(¬X ∩ Li)s(ri(X), 0)

−
∑
j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(pi(X), 1) + qj0(¬X ∩ Li)s(pi(X), 0)

Similarly

D(qj , r) = H(qj , r)−H(qj , qj)

=
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(ri(X), 1) + qj0(¬X ∩ Li)s(ri(X), 0)

−
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(qji (X), 1) + qj0(¬X ∩ Li)s(qji (X), 0)

So
D(p, r) <

∑
j6k

µjD(qj , r)

iff ∑
j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(pi(X), 1) + qj0(¬X ∩ Li)s(pi(X), 0)

>
∑
j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(qji (X), 1) + qj0(¬X ∩ Li)s(qji (X), 0)

Since s is strictly proper, and qj is a coherent, quasi-regular, condi sequence

qj0(X ∩ Li)s(pi(X), 1) + qj0(¬X ∩ Li)s(pi(X), 0)

> qj0(X ∩ Li)s(qji (X), 1) + qj0(¬X ∩ Li)s(qji (X), 0)
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with equality iff pi(X) = qji (X). Now recall that qa 6≈ qb for some a, b 6 k
with µa, µb > 0. So qai (X) 6= qbi (X) for some i 6 n and X ∈ F . Hence either
pi(X) 6= qai (X) or pi(X) 6= qbi (X). This ensures that∑

j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(pi(X), 1) + qj0(¬X ∩ Li)s(pi(X), 0)

>
∑
j6k

µj
∑
i6n

∑
X∈F

qj0(X ∩ Li)s(qji (X), 1) + qj0(¬X ∩ Li)s(qji (X), 0)

Therefore
D(p, r) <

∑
j6k

µjD(qj , r)

Proof of (III). Represent any p ∈ B as a vector in [0, 1]t(n+1)

〈p0(X1), ..., p0(Xt), ..., pn(X1), ..., pn(Xt)〉 ∈ [0, 1]t(n+1)

where F+ = {X1, . . . , Xt}. Assume WLOG that Ω+ = {α1, . . . , αs} and that
X1 = α1, . . . , Xs = αs.

Now let
Φ(p) = −H(p, p)

Let b be the restriction of p to F . And let

Ψ(p) =

〈
−

∑
i:α1∈Li

I(bi, α1), . . . ,−
∑

i:αs∈Li

I(bi, αs), 0, . . . , 0

〉
We will now show that (i) Φ is bounded and continuously differentiable on Q,
(ii) ∇Φ = Ψ, and (iii) for any p, q ∈ Q

D(p, q) = Φ(p)− Φ(q)−Ψ(q) · (p− q)

The continuity and boundedness of Φ follows trivially from the fact that I is
defined by a continuous, bounded component score.

Choose p ∈ Q. We will show that Φ is partially differentiable with respect to xj
at p, for each j 6 t(n+ 1), and moreover that these partial derivatives ensure
that ∇Φ(p) = Ψ(p).

Case 1 : 1 6 j 6 s. Choose ε > 0. Let q be

〈p0(α1), . . . , p0(αj) + ε, . . . , p0(αs), . . . , p0(Xt), . . . , pn(X1), . . . , pn(Xt)〉
Let b and c be the restrictions of p and q to F . Then

1

ε
[Φ(q)− Φ(p)]

=
1

ε
[H(p, p)−H(q, q)]

=
1

ε

[ ∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)−
∑
α∈Ω+

q0(α)
∑
i:α∈Li

I(ci, α)

]

=
1

ε

 ∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)−
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(ci, α)− ε
∑

i:αj∈Li

I(ci, αj)


= −

∑
i:αj∈Li

I(ci, αj) +
1

ε

[ ∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)−
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(ci, α)

]

51



Since I is defined by a strictly proper component score, and p is a coherent,
quasi-regular, condi sequence, this second term is less than or equal to zero.
Hence

lim
ε→0

1

ε
[Φ(q)− Φ(p)] 6 lim

ε→0
−

∑
i:αj∈Li

I(ci, αj)

= −
∑

i:αj∈Li

I(bi, αj)

Now let r be

〈p0(α1), . . . , p0(αj)− ε, . . . , p0(αs), . . . , p0(Xt), . . . , pn(X1), . . . , pn(Xt)〉

A similar argument shows that

lim
ε→0

1

ε
[Φ(p)− Φ(r)] > lim

ε→0
−

∑
i:αj∈Li

I(ci, αj)

= −
∑

i:αj∈Li

I(bi, αj)

Since Φ is continuous, this shows that Φ is partially differentiable with respect
to xj at p, and that

∂Φ

∂xj
(p) = −

∑
i:αj∈Li

I(bi, αj)

Case 2 : s < j. Choose ε > 0. Let q be

〈p0(X1), . . . , p0(Xt), . . . , pa(Xb) + ε, . . . , pn(X1), . . . , pn(Xt)〉

where pa(Xb) is the jth entry of p. Let b and c be the restrictions of p and q to
F . Then

1

ε
[Φ(q)− Φ(p)] =

1

ε
[H(p, p)−H(q, q)]

=
1

ε

[ ∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)−
∑
α∈Ω+

q0(α)
∑
i:α∈Li

I(ci, α)

]

=
1

ε

[ ∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)−
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(ci, α)

]

Since I is defined by a strictly proper component score, and p is a coherent,
quasi-regular, condi sequence, the term in brackets is less than or equal to zero.
Hence

lim
ε→0

1

ε
[Φ(q)− Φ(p)] 6 0

Let r be

〈p0(X1), . . . , p0(Xt), ..., pa(Xb)− ε, ..., pn(X1), ..., pn(Xt)〉

where again pa(Xb) is the jth entry of p. A similar argument shows that

lim
ε→0

1

ε
[Φ(p)− Φ(r)] > 0
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Since Φ is continuous, this shows that Φ is partially differentiable with respect
to xj at p, and that

∂Φ

∂xj
(p) = 0

Together cases 1 and 2 establish that

∇Φ(p) = Ψ(p) =

〈
−

∑
i:α1∈Li

I(bi, α1), . . . ,−
∑

i:αs∈Li

I(bi, αs), 0, . . . , 0

〉

Finally we must show that for any p, q ∈ Q

D(p, q) = Φ(p)− Φ(q)−Ψ(q) · (p− q)

Choose p, q ∈ Q.

D(p, q) = H(p, q)−H(p, p)

=
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(ci, α)−
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)

=
∑
α∈Ω+

[p0(α)− q0(α)]
∑
i:α∈Li

I(ci, α) +
∑
α∈Ω+

q0(α)
∑
i:α∈Li

I(ci, α)

−
∑
α∈Ω+

p0(α)
∑
i:α∈Li

I(bi, α)

= −Ψ(q) · (p− q)− Φ(q) + Φ(p)

Hence D is a Quasi Bregman divergence.

A.4 Chance-Dominance Argument for J-Kon

Proposition 6. Let D be a Quasi Bregman divergence. Then for any q ∈ Q−P
there is a point πq ∈ P, called the projection of q onto P, such that

D(πq, q) 6 D(p, q)

for any p ∈ P. Moreover, πq is unique up to small space equivalence.

Proof. Recall Q is the set of coherent, quasi-regular, condi sequences. And
P ⊆ Q is the set of coherent, quasi-regular, condi, PP sequences. (Pettigrew,
2012, Thm 5.3) shows that

{p0 | p = 〈p0, . . . , pn〉 ∈ P}

is the closed (and bounded) convex hull of C. Let Γ map any point p0 in this set
to p = 〈p0, . . . , pn〉. Γ is continuous. And the image of Γ is P. (Arkhangel’skii
and Fedorchuk, 1990, Thm 5.2.2) then implies that P is closed and bounded.

Choose q ∈ Q − P. Note that D(·, q) is continuous for fixed q. Hence D(·, q)
takes a minimum πq on the closed bounded set P.

To see that this minimum is unique up to small space equivalence, suppose that
D(·, q) takes a minimum at both πq and r, where the restrictions of πq and r to
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F are distinct. Since πq ∈ P, there are µj ∈ [0, 1] with
∑

chj∈C µj = 1 such that

πq
0 =

∑
chj∈C µjchj(· | Ω+). Likewise, there are θj ∈ [0, 1] with

∑
chj∈C θj = 1

such that rq0 =
∑

chj∈C θjchj(· | Ω+). Let p be the coherent, quasi-regular, condi

sequence with p0 = 1
2π

q
0 + 1

2r0. Then p0 =
∑

chj∈C(
1
2µj + 1

2θj)chj(· | Ω+). So
p ∈ P. But since D is quasi convex, we have

D(p, q) <
1

2
D(πq, q) +

1

2
D(r, q) = D(πq, q)

which contradicts the assumption that D(·, q) takes a minimum on P at πq.

Proposition 7. Let D be a Quasi Bregman divergence. Then for any q ∈ Q−P,
the projection of q onto P, πq, is such that

D(p, πq) 6 D(p, q)−D(πq, q)

for all p ∈ P.

Proof. Choose q ∈ Q− P and p ∈ P. Let πq be the projection of q onto P. We
will show that

D(p, πq) 6 D(p, q)−D(πq, q)

Let m ∈ P be the coherent, quasi-regular, condi, PP sequence with

m0 = (1− ε)πq
0 + εp0

for some 0 < ε 6 1. Then since D(·, q) takes a minimum on P at πq (unique up
to small space equivalence) we have

0 6 D(m, q)−D(πq, q)

This gives us

0 6 D(m, q)−D(πq, q)

= [Φ(m)− Φ(q)−∇Φ(q) · (m− q)]− [Φ(πq)− Φ(q)−∇Φ(q) · (πq − q)]

= −∇Φ(q) · (m− πq) + [Φ(m)− Φ(πq)]

= −ε∇Φ(q) · (p− πq) + [Φ(m)− Φ(πq)]

We also have

lim
ε→0

Φ(m)− Φ(πq)

ε
= lim

ε→0

∇Φ(πq) · (m− πq)

ε

= lim
ε→0

∇Φ(πq) · (εp− επq)

ε
= ∇Φ(πq) · (p− πq)

Hence

0 6 lim
ε→0

1

ε
[−ε∇Φ(q) · (p− πq) + [Φ(m)− Φ(πq)]]

= −∇Φ(q) · (p− πq) + lim
ε→0

Φ(m)− Φ(πq)

ε
= −∇Φ(q) · (p− πq) +∇Φ(πq) · (p− πq)

= [∇Φ(πq)−∇Φ(q)] · (p− πq)
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Finally note that

D(p, q)−D(πq, q)−D(p, πq) = [∇Φ(πq)−∇Φ(q)] · (p− πq)

So
0 6 D(p, q)−D(πq, q)−D(p, πq)

and therefore
D(p, πq) 6 D(p, q)−D(πq, q)

Proposition 8. Let I be a temporally additive inaccuracy measure defined by a
continuous, bounded, strictly proper component function. Then for any b ∈ S we
have the following:

(I) If b is not a J-Kon sequence, then b is strictly chance-dominated by a
J-Kon sequence c, i.e.,∑

α∈Ω+

chj(α | Ω+)I(b, α) >
∑
α∈Ω+

chj(α | Ω+)I(c, w)

for all chj ∈ C.
(II) If b is a J-Kon sequence, then it is not even weakly chance-dominated,

i.e., there is no c 6= b such that∑
α∈Ω+

chj(α | Ω+)I(b, α) >
∑
α∈Ω+

chj(α | Ω+)I(c, w)

for all chj ∈ C.

Proof. Choose b ∈ S. Suppose that b is not a J-Kon sequence. Then by
proposition 4, b is not a gilded superconditioning. So no extension of b to F+ is
a coherent, quasi-regular, condi, PP sequence.

Case 1. No extension of b to F+ is coherent. de Finetti (1949) shows that
any coherent bi is coherently extendable to F+. So b = 〈b0, . . . , bn〉 must be
incoherent. Suppose WLOG that bi is incoherent, but bj is coherent for all j 6= i.
Then theorem 1 of Predd et al. (2009) implies that there is some coherent c such
that

I(bi, α) > I(c, α)

for all α ∈ Ω+. Let c be

c = 〈b0, . . . , bi−1, c, bi+1, . . . , bn〉

Choose α ∈ Li. Suppose WLOG that α ∈ Lj for some j > i, but α 6∈ Lk for any
k > j. Then

I(c, α) =
∑
k6j

I(ck, α)

= I(c, α) +
∑

k6j:k 6=i

I(bk, α)

< I(bi, α) +
∑

k6j:k 6=i

I(bk, α)

= I(b, α)
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Now choose α 6∈ Li. Suppose WLOG that α ∈ Lj for some j < i, but α 6∈ Lk
for any k > j. Then

I(c, α) =
∑
k6j

I(ck, α) =
∑
k6j

I(bk, α) = I(b, α)

Since chj(Li | Ω+) > 0 for all chj ∈ C, this implies∑
α∈Ω+

chj(α | Ω+)I(b, α) =
∑
α∈Li

chj(α | Ω+)I(b, α) +
∑
α6∈Li

chj(α | Ω+)I(b, α)

>
∑
α∈Li

chj(α | Ω+)I(c, α) +
∑
α6∈Li

chj(α | Ω+)I(c, α)

=
∑
α∈Ω+

chj(α | Ω+)I(c, α)

Case 2. Some extension q of b to F+ is coherent, but no coherent extension is a
quasi-regular, condi, PP sequence.

Since q is coherent, b must be coherent. Since b is regular, the support of bi

supp(bi) = {X ∈ F | pi(X) 6= 0}

is trivially a superset of the support of bj for all i 6 n and j > i, i.e., supp(bj) ⊆
supp(bi) (since both = F). In that case, (Diaconis and Zabell, 1982, Thm 2.1)
guarantees that b is extendable to a coherent, quasi-regular, condi sequence. So
we can assume WLOG that q is a coherent, quasi-regular, condi sequence, but
not a PP sequence. That is, q ∈ Q− P.

By proposition 7, the projection of q onto P, πq, is such that

D(p, πq) 6 D(p, q)−D(πq, q)

for all p ∈ P. So in particular

D(ch, πq) 6 D(ch, q)−D(πq, q)

for all ch ∈ C ⊆ P.

Let c be the restriction of πq to F .

Since b is not extendable to any p ∈ P, πq 6≈ q. So D(πq, q) > 0 and hence

D(ch, πq) < D(ch, q)

for all ch ∈ C. But this inequality holds iff

H(ch, πq) < H(ch, q)

And this is the case iff∑
α∈Ω+

chj(α | Ω+)I(c, α) <
∑
α∈Ω+

chj(α | Ω+)I(b, α)

for all chj ∈ C. This suffices to establish (I).
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We will now prove (II). Choose b ∈ S. Suppose that b is a J-Kon sequence.
Suppose for reductio that there is some c 6= b such that

(F)
∑
α∈Ω+

chj(α | Ω+)I(b, α) >
∑
α∈Ω+

chj(α | Ω+)I(c, α)

for all chj ∈ C.

Since b is a J-Kon sequence, b is extendable to some p ∈ P, by proposition 4.
Let q be any extension of c to F+. (F) implies∑
chj∈C

p0(CH = chj)
∑
α∈Ω+

chj(α|Ω+)I(b, α) >
∑

chj∈C

p0(CH = chj)
∑
α∈Ω+

chj(α|Ω+)I(c, α)

Since p is a PP sequence, this holds iff∑
α∈Ω+

∑
chj∈C

p0(α ∩ (CH = chj))I(b, α) >
∑
α∈Ω+

∑
chj∈C

p0(α ∩ (CH = chj))I(c, α)

iff ∑
α∈Ω+

p0(α)I(b, α) >
∑
α∈Ω+

p0(α)I(c, α)

And this implies
0 = D(p, p) > D(p, q) > 0

Hence there is no c 6= b such that∑
α∈Ω+

chj(α | Ω+)I(b, α) >
∑
α∈Ω+

chj(α | Ω+)I(c, α)

for all chj ∈ C.
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