ENTROPY OF FORMULAS

VERA KOPONEN

Abstract

A probability distribution can be given to the set of isomorphism classes of models with universe $\{1, \ldots, n\}$ of a sentence in first-order logic. We study the entropy of this distribution and derive a result from the $0-1$ law for first-order sentences. Keywords: first-order logic, finite models, entropy, 0-1 law.

Introduction

We will study the entropy of a probability distribution on the set of isomorphism classes of models with universe $\{1, \ldots, n\}$ of a first-order sentence (i.e. closed formula). Recall that, for a finite probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$, the entropy of \mathbf{p} is $H(\mathbf{p})=$ $-\sum_{i=1}^{k} p_{i} \ln p_{i}$ (where we adopt the convention that $0 \ln 0=0$). For any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ we have (see [6], Theorems 3.7 and 3.10 , for instance) $0 \leq H(\mathbf{p}) \leq \ln k$ and
(a) $H(\mathbf{p})=\ln k$ if and only if $p_{i}=1 / k$ for every $i=1, \ldots, k$, and
(b) $H(\mathbf{p})=0$ if and only if $p_{i}=1$ for some i.

Let L be a (first-order) language with finitely many relation, function and constant symbols. If φ is an L-sentence which has at least one model with exactly n elements, then let $A_{1}, \ldots, A_{k_{n}}$ be an enumeration of mutually non-isomorphic L-structures with universe $\{1, \ldots, n\}$, such that each A_{i} is a model of φ and any model of φ with exactly n elements is isomorphic to some A_{i}. Let $\left[A_{i}\right]$ be the set of all L-structures with universe $\{1, \ldots, n\}$ which are isomorphic to A_{i}. If m_{n} is the number of L-structures A with universe $\{1, \ldots, n\}$ such that φ is true in A, then $\mathbf{p}=\left(p_{1}, \ldots, p_{k_{n}}\right)$, where $p_{i}=\left|\left[A_{i}\right]\right| / m_{n}$ for $i=1, \ldots, k_{n}$, is a probability distribution. Hence we can consider the entropy $H(\mathbf{p})$ which in this case we denote by $H_{n}(\varphi)$, and we call it 'the entropy of φ for n-element models'. If φ has no model with exactly n elements then we let $H_{n}(\varphi)=0$. It follows that if \mathbf{p} is as defined above, then $0 \leq H_{n}(\varphi) \leq \ln k_{n}$ and from (a) and (b) we get:
(a)' $H_{n}(\varphi)=\ln k_{n}$ if and only if $\left[A_{i}\right]$ and $\left[A_{j}\right]$ contain the same number of structures for any i and any j, and
(b)' $H_{n}(\varphi)=0$ implies that any two models of φ with exactly n elements are isomorphic.
The entropy of a formula is not particularly well-behaved with respect to the relation ' \vdash ', where, for L-sentences φ and $\psi, \varphi \vdash \psi$ means that any L-structure which is a model of φ is also a model of ψ. We may have $\varphi_{1} \vdash \varphi_{2}$ and $H_{n}\left(\varphi_{1}\right)<H_{n}\left(\varphi_{2}\right)$, but we may also have $\psi_{1} \vdash \psi_{2}$ and $H_{n}\left(\psi_{1}\right)>H_{n}\left(\psi_{2}\right)$; examples showing this are given at the end of the paper.

However, from the 0-1 law of (first-order) formulas we may draw a conclusion about the entropy $H_{n}(\varphi)$. The $0-1$ law says that, under the assumption that L has only finitely many relation symbols and no function or constant symbols, for any L-formula φ, the proportion of L-structures with universe $\{1, \ldots, n\}$ in which φ is true approaches either 0 or 1 , as n approaches ∞. Under the additional condition that not all relation symbols of L are unary, we will prove that if the above mentioned proportion approaches 1 then $H_{n}(\varphi)$ is asymptotic to $\ln k_{n}$ (where k_{n} is as above). By being asymptotic to $\ln k_{n}$ we mean that $H_{n}(\varphi) / \ln k_{n} \rightarrow 1$ as $n \rightarrow \infty$. Intuitively this means that, if the proportion of
L-structures with universe $\{1, \ldots, n\}$ in which φ is true approaches 1 as $n \rightarrow \infty$, then the entropy $H_{n}(\varphi)$ approaches maximal entropy as $n \rightarrow \infty$.

In the case that the proportion of L-structures with universe $\{1, \ldots, n\}$ in which φ is true approaches 0 as $n \rightarrow \infty$, we cannot conclude anything particular about the asymptotic behaviour of $H_{n}(\varphi)$. For example, we may have $H_{n}(\varphi)=0$ for every n, but we may also have $H_{n}(\varphi)=\ln k_{n}$ for every n, and it may be the case that $\lim _{n \rightarrow \infty} H_{n}(\varphi)$ and $\lim _{n \rightarrow \infty} H_{n}(\varphi) / \ln k_{n}$ don't exist; examples illustrating these possibilities are given at the end.

Acknowledgements. The idea to consider the questions dealt with in this paper was suggested to me by Erik Palmgren. I also thank the anonymous referee for suggesting simplifications of the proof of Theorem 3.

Notation and terminology. For definitions of, and elementary results about (firstorder) languages and structures, see [5] or [1] for instance; the notation and terminology used here, for structures and languages, follows [5]. We always assume, even when not explicitly mentioned, that the symbol ' $=$ ' is part of the language and is interpreted in structures as the identity relation. We say that a language is finite and relational if it has only finitely many relation (also called predicate) symbols and no constant or function symbols. A language is said to be monadic if every relation symbol of it, except for $=$, is unary. If A and B are L-structures then $A \cong B$ means that A is isomorphic to B. We may, as usual, identify a structure with its universe (or domain) notationally. For a k-ary relation symbol R of the language L and an L-structure A, R^{A} denotes the interpretation of R in A. For an L-structure A and an L-sentence φ (i.e. closed L-formula), $A \models \varphi$ means that φ is true (or satisfied) in A, or in other words, that A is a model of φ. If X is a set then $|X|$ denotes its cardinality. With $k, m, n, n_{1}, n_{2}, \ldots$ we will denote positive integers.

Entropy of formulas

Throughout this paper we will assume that L is a finite and relational language, although we will occasionally repeat this assumption.

Definition 1. Let \mathcal{S}_{n} be the set of all L-structures with universe $\{1, \ldots, n\}$. Since L is finite, each \mathcal{S}_{n} is finite. If $A \in \mathcal{S}_{n}$ then let $[A]=\left\{B \in \mathcal{S}_{n}: B \cong A\right\}$. Let $\mathcal{S}_{n}^{\prime}=\left\{[A]: A \in \mathcal{S}_{n}\right\}$. If φ is an L-sentence then let $\mathcal{M}_{n}(\varphi)=\left\{A \in \mathcal{S}_{n}: A \models \varphi\right\}$ and let $\mathcal{M}_{n}^{\prime}(\varphi)=\left\{[A]: A \in \mathcal{M}_{n}(\varphi)\right\}$

For any L-sentence φ we can consider a probability distribution on $\mathcal{M}_{n}^{\prime}(\varphi)$ by letting each $[A] \in \mathcal{M}_{n}^{\prime}(\varphi)$ have probability $|[A]| /|\mathcal{M}(\varphi)|$. So if $A \in \mathcal{M}_{n}(\varphi)$, and supposing that each structure in \mathcal{S}_{n} is equally probable, $|[A]| /|\mathcal{M}(\varphi)|$ is the probability that a model of φ in \mathcal{S}_{n} is isomorphic to A.

Definition 2. Let L be a finite and relational language. For an L-sentence φ, we define the entropy of φ for n-element models, denoted $H_{n}(\varphi)$, by

$$
H_{n}(\varphi)=-\sum_{i=1}^{k} \frac{\left|\left[A_{i}\right]\right|}{|\mathcal{M}(\varphi)|} \ln \frac{\left|\left[A_{i}\right]\right|}{|\mathcal{M}(\varphi)|}
$$

where $\left[A_{1}\right], \ldots,\left[A_{k}\right]$ is an enumeration of $\mathcal{M}_{n}^{\prime}(\varphi)$ without repetitions, if $\mathcal{M}_{n}(\varphi) \neq \emptyset$. If $\mathcal{M}_{n}(\varphi)=\emptyset$ then define $H_{n}(\varphi)=0$.

The so-called 0-1 law ([2], [4], [1] Theorem 4.1.5, [5] Theorem 7.4.7) states that, for any L-sentence φ,

$$
\text { the limit } \lim _{n \rightarrow \infty} \frac{\left|\mathcal{M}_{n}(\varphi)\right|}{\left|\mathcal{S}_{n}\right|} \text { exists and is either } 0 \text { or } 1
$$

Theorem 3. Let L be a finite and relational language which is not monadic and let φ be an L-sentence.

$$
\text { If } \lim _{n \rightarrow \infty} \frac{\left|\mathcal{M}_{n}(\varphi)\right|}{\left|\mathcal{S}_{n}\right|}=1 \quad \text { then } \quad \lim _{n \rightarrow \infty} \frac{H_{n}(\varphi)}{\ln \left|\mathcal{M}_{n}^{\prime}(\varphi)\right|}=1
$$

Remark 4. (i) If $\left|\mathcal{M}_{n}(\varphi)\right| /\left|\mathcal{S}_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, then it may or may not be the case that $H_{n}(\varphi) / \ln \left|\mathcal{M}_{n}^{\prime}(\varphi)\right| \rightarrow 1$ as $n \rightarrow \infty$. Examples 6,7 and 8 show this.
(ii) The theorem does not hold for monadic L. Example 9 shows this.

In order to prove Theorem 3 we will use the following lemma which should occur in the literature in one form or another, but for the sake of completeness a (short) proof is nevertheless given in the appendix.

Lemma 5. Suppose that a_{n} and b_{n} are two sequences such that $a_{n} \geq b_{n}>0$, for every $n, \lim _{n \rightarrow \infty} b_{n}=\infty$ and $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. Then $\lim _{n \rightarrow \infty}\left(\ln a_{n}-\ln b_{n}\right)=0$, and consequently $\lim _{n \rightarrow \infty} \ln a_{n} / \ln b_{n}=\lim _{n \rightarrow \infty} \ln 2 a_{n} / \ln b_{n}=1$.

We now prove Theorem 3. Suppose that L is a finite and relational language which is not monadic and suppose that φ is a formula in L such that

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{M}_{n}(\varphi)\right|}{\left|\mathcal{S}_{n}\right|}=1 .
$$

We introduce some simpler notation. For every n, let

$$
s_{n}=\left|\mathcal{S}_{n}\right|, \quad s_{n}^{\prime}=\left|\mathcal{S}_{n}^{\prime}\right|, \quad m_{n}=\left|\mathcal{M}_{n}(\varphi)\right|, \quad m_{n}^{\prime}=\left|\mathcal{M}_{n}^{\prime}(\varphi)\right| .
$$

With the new notation we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{m_{n}}{s_{n}}=1 \tag{1}
\end{equation*}
$$

and we want to prove that $H_{n}(\varphi) / \ln m_{n}^{\prime} \rightarrow 1$ as $n \rightarrow \infty$.
Since L is not monadic, Theorem 8 in [2] says that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}}{s_{n}^{\prime} \cdot n!}=1 \tag{2}
\end{equation*}
$$

For every $[A] \in \mathcal{S}_{n}^{\prime},|[A]|=n!/ k$ where k is the order of the group of automorphisms of A. So if $|[A]|<n!$ then $|[A]| \leq n!/ 2$. A structure $A \in \mathcal{S}_{n}$ is rigid if A has only one automorphism. It follows that A is rigid if and only if $|[A]|=n!$.

Let

$$
\begin{aligned}
& r_{n}=\mid\left\{A \in \mathcal{S}_{n}: A \text { is rigid }\right\} \mid, \\
& f_{n}=\mid\left\{A \in \mathcal{M}_{n}(\varphi): A \text { is rigid }\right\} \mid, \\
& \bar{f}_{n}=r_{n}-f_{n}=\mid\left\{A \in \mathcal{S}_{n}-\mathcal{M}_{n}(\varphi): A \text { is rigid }\right\} \mid, \\
& f_{n}^{\prime}=\mid\left\{[A] \in \mathcal{M}_{n}^{\prime}(\varphi): A \text { is rigid }\right\} \mid .
\end{aligned}
$$

Observe that $f_{n}=n!f_{n}^{\prime}$ and, by (1), that $\lim _{n \rightarrow \infty} \bar{f}_{n} / s_{n}=0$. From (2) together with Lemma 4.3.2 and Proposition 4.3.3 in [1] we get

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{s_{n}}=1
$$

and from this and (1) we get

$$
\begin{equation*}
\frac{f_{n}}{m_{n}}=\frac{f_{n}}{s_{n}} \cdot \frac{s_{n}}{m_{n}}=\left(\frac{r_{n}}{s_{n}}-\frac{\bar{f}_{n}}{s_{n}}\right) \cdot \frac{s_{n}}{m_{n}} \rightarrow 1 \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

Since L is not monadic it has at least one relation symbol R of arity k where $k \geq 2$. For each $A \in \mathcal{S}_{n}$ and each k-tuple \bar{a} of elements from $\{1, \ldots, n\}$ we have $\bar{a} \in R^{A}$ or $\bar{a} \notin R^{A}$. As there are n^{k} such k-tuples, there are $2^{n^{k}}$ possibilities for R^{A}. Since $2^{n^{k}} \geq 2^{n^{2}}$, there are at least $2^{n^{2}}$ different structures in \mathcal{S}_{n}, so $s_{n} \geq 2^{n^{2}}$, which gives

$$
\begin{equation*}
\frac{\ln s_{n}}{\ln (n!)} \geq \frac{\ln \left(2^{n^{2}}\right)}{\ln (n!)} \geq \frac{\ln \left(2^{n^{2}}\right)}{\ln \left(n^{n}\right)}=\frac{n \ln 2}{\ln n} \rightarrow \infty \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

By Lemma 5 and (1) we have $\lim _{n \rightarrow \infty}\left(\ln m_{n}-\ln s_{n}\right)=0$, which together with (4) implies that

$$
\begin{equation*}
\frac{\ln m_{n}}{\ln (n!)}=\frac{\ln m_{n}-\ln s_{n}}{\ln (n!)}+\frac{\ln s_{n}}{\ln (n!)} \rightarrow \infty \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

And (5) in turn gives

$$
\begin{equation*}
\frac{\ln \frac{m_{n}}{n!}}{\ln m_{n}}=1-\frac{\ln (n!)}{\ln m_{n}} \rightarrow 1 \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

As $\frac{m_{n}}{n!} \leq m_{n}^{\prime} \leq m_{n}$ we have $\ln \frac{m_{n}}{n!} \leq \ln m_{n}^{\prime} \leq \ln m_{n}$ which together with (6) implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\ln m_{n}^{\prime}}{\ln m_{n}}=1 \tag{7}
\end{equation*}
$$

Since

$$
\frac{H_{n}(\varphi)}{\ln \left|\mathcal{M}_{n}^{\prime}(\varphi)\right|}=\frac{H_{n}(\varphi)}{\ln m_{n}} \cdot \frac{\ln m_{n}}{\ln m_{n}^{\prime}}
$$

it suffices, by (7), to prove that $H_{n}(\varphi) / \ln m_{n} \rightarrow 1$ as $n \rightarrow \infty$. From the definitions of f_{n} and f_{n}^{\prime} it follows that $f_{n}=n!f_{n}^{\prime}$ and that

$$
\begin{equation*}
H_{n}(\varphi) \geq-f_{n}^{\prime} \frac{n!}{m_{n}} \ln \frac{n!}{m_{n}}=-\frac{f_{n}}{m_{n}} \ln \frac{n!}{m_{n}} \tag{8}
\end{equation*}
$$

By (8), (6) and (3) we get

$$
\begin{equation*}
\frac{H_{n}(\varphi)}{\ln m_{n}} \geq \frac{-\frac{f_{n}}{m_{n}} \ln \frac{n!}{m_{n}}}{\ln m_{n}}=\frac{f_{n}}{m_{n}} \cdot \frac{\ln \frac{m_{n}}{n!}}{\ln m_{n}} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

Since for every probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right) H_{n}(\mathbf{p}) \leq \ln k$, we have $H_{n}(\varphi) \leq$ $\ln m_{n}^{\prime} \leq \ln m_{n}$ and hence $H_{n}(\varphi) / \ln m_{n} \leq 1$, for all sufficiently large n. Together with (9) this implies that

$$
\lim _{n \rightarrow \infty} \frac{H_{n}(\varphi)}{\ln m_{n}}=1
$$

and, as shown above, Theorem 3 follows from this.

ExAMPLES

Example 6. This example shows that the conclusion of Theorem 3 may hold even if $\left|\mathcal{M}_{n}(\varphi)\right| /\left|\mathcal{S}_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Let L have one binary relation symbol R and no other relation symbols (exept for $=$). Let ψ the following L-sentence

$$
\forall x, y R(x, y) \vee \forall x, y \neg R(x, y)
$$

For any $n, \mathcal{M}_{n}^{\prime}(\psi)$ has two elements and each of them contains exactly one structure. It follows that $\left|\mathcal{M}_{n}(\psi)\right|=2$, for every n. In the proof of Theorem 3 we showed that
$\left|\mathcal{S}_{n}\right| \geq 2^{n^{2}}$, so we have $\left|\mathcal{M}_{n}(\varphi)\right| /\left|\mathcal{S}_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Since for any $n,\left|\mathcal{M}_{n}^{\prime}(\psi)\right|=2$ and $H_{n}(\psi)=-1 / 2 \ln (1 / 2)-1 / 2 \ln (1 / 2)=\ln 2$, we get $H_{n}(\psi) / \ln \left|\mathcal{M}_{n}^{\prime}(\psi)\right|=1$ for every n.

Example 7. This example shows that the conclusion of Theorem 3 may fail if $\left|\mathcal{M}_{n}(\varphi)\right| /\left|\mathcal{S}_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. It also shows that for certain formulas ψ and θ we have $\psi \vdash \theta$ and $H_{n}(\theta)<H_{n}(\psi)$ for all sufficiently large n. Let L and ψ be as in the previous example. Let χ be an L-sentence which expresses that
R is an equivalence relation such that R has exactly two equivalence classes and one of them contains exactly one element.
Finally let θ be $\psi \vee \chi$. For any $n, \mathcal{M}_{n}^{\prime}(\theta)$ has three elements: The first contains the unique structure in \mathcal{S}_{n} which satisfies $\forall x, y R(x, y)$; the second contains the unique strucure in \mathcal{S}_{n} which satisfies $\forall x, y \neg R(x, y)$; the third element of $\mathcal{M}_{n}^{\prime}(\theta)$ contains the precisely n different structures in \mathcal{S}_{n} in which χ is true. It follows that $\left|\mathcal{M}_{n}(\theta)\right|=n+2$ and

$$
\begin{aligned}
H_{n}(\theta) & =-2\left(\frac{1}{n+2} \ln \frac{1}{n+2}\right)-\frac{n}{n+2} \ln \frac{n}{n+2} \\
& =2 \cdot \frac{\ln (n+2)}{n+2}+\frac{n}{n+2} \ln \frac{n+2}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
& \text { because } \frac{\ln (n+2)}{n+2} \rightarrow 0, \quad \frac{n}{n+2} \rightarrow 1 \quad \text { and } \quad \ln \frac{n+2}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Therefore, $H_{n}(\theta) / \ln \left|\mathcal{M}_{n}^{\prime}(\theta)\right|=H_{n}(\theta) / \ln 3 \rightarrow 0$ as $n \rightarrow \infty$. We clearly have $\psi \vdash \theta$. Since $H_{n}(\psi)=\ln 2$ for all n and $\lim _{n \rightarrow \infty} H_{n}(\theta)=0$ it follows that $H_{n}(\psi)>H_{n}(\theta)$ for all sufficiently large n.

Example 8. This example shows that if $\left|\mathcal{M}_{n}(\varphi)\right| /\left|\mathcal{S}_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ then $\lim _{n \rightarrow \infty} H_{n}(\varphi)$ may not exist. It also shows that we may have $\varphi \vdash \psi$ and $H_{n}(\varphi)<H_{n}(\psi)$. Let L have two relation symbols R, P (except for $=$) where R is binary and P is unary. Let σ_{1} be a sentence which expresses that
R is symmetric and irreflexive, for every x there exists a unique y such that $R(x, y)$, and either $\forall x P(x)$ or $\forall x \neg P(x)$.
Let σ_{2} be the sentence $\forall x, y(\neg R(x, y) \wedge \neg P(x))$ and let σ be the sentence $\sigma_{1} \vee \sigma_{2}$.
Then, for every $n, \mathcal{M}_{2 n+1}^{\prime}(\sigma)$ has exactly one element which contains exactly one structure. And, for every $n, \mathcal{M}_{2 n}^{\prime}(\sigma)$ has exactly three elements; one of them contains exactly one structure and each of the other two contains exactly $a_{n}=(2 n)!/ 2^{n} n!$ structures; consequently $\left|\mathcal{M}_{2 n}(\sigma)\right|=2 a_{n}+1$. It follows that $H_{2 n+1}(\sigma)=-\ln 1=0$, for every n. For every n we also have

$$
\begin{aligned}
H_{2 n}(\sigma) & =-\frac{1}{2 a_{n}+1} \ln \frac{1}{2 a_{n}+1}-2\left(\frac{a_{n}}{2 a_{n}+1} \ln \frac{a_{n}}{2 a_{n}+1}\right) \\
& =\frac{\ln \left(2 a_{n}+1\right)}{2 a_{n}+1}+\frac{2 a_{n}}{2 a_{n}+1} \ln \frac{2 a_{n}+1}{a_{n}} \rightarrow \ln 2 \text { as } n \rightarrow \infty \\
& \text { because } \lim _{n \rightarrow \infty} a_{n}=\infty \text { and } \lim _{x \rightarrow \infty} \frac{\ln x}{x}=0
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} H_{n}(\sigma)$ does not exist; and neither does $\lim _{n \rightarrow \infty} H_{n}(\sigma) /\left|\mathcal{M}_{n}^{\prime}(\sigma)\right|$ exist since $\left|\mathcal{M}_{n}^{\prime}(\sigma)\right|$ is always 1 or 3 . Clearly, $\sigma_{2} \vdash \sigma$ and $H_{n}\left(\sigma_{2}\right)=0$ for all n. Hence $H_{n}\left(\sigma_{2}\right)<H_{n}(\sigma)$ for all sufficiently large even n.

Example 9. The following example shows that the assumption about non-monadic language L in Theorem 3 is necessary. Let L have only one unary relation symbol P and no other relation symbols (in addition to $=$). Let φ be any sentence which is true
in every L-structure; for instance, we can let φ be $\forall x(x=x)$. Then $\mathcal{M}_{n}(\varphi)=\mathcal{S}_{n}$. We will show that

$$
\lim _{n \rightarrow \infty} \frac{H_{n}(\varphi)}{\ln \left|\mathcal{M}_{n}^{\prime}(\varphi)\right|}=\frac{1}{2}
$$

First note that for any $A, B \in \mathcal{S}_{n}, A \cong B$ if and only if $\left|P^{A}\right|=\left|P^{B}\right|$, so $\left|\mathcal{M}_{n}^{\prime}(\varphi)\right|=\left|\mathcal{S}_{n}^{\prime}\right|=$ n. Hence it suffices to prove that $H_{n}(\varphi) / \ln n \rightarrow 1 / 2$ as $n \rightarrow \infty$. For any n and $1 \leq i \leq n$, let $p_{n, i}=\binom{n}{i} / 2^{n}$, so $H_{n}(\varphi)=-\sum_{i=1}^{n} p_{n, i} \ln p_{n, i}$. Let $H_{n}^{*}(\varphi)=-\sum_{i=1}^{n} p_{n, i} \log p_{n, i}$, where \log is the \log arithm with base 2 . From the identity $\ln a=\log a / \log e$ it follows that $H_{n}(\varphi)=H_{n}^{*}(\varphi) / \log e$. By [3] (Theorem 3) we have

$$
H_{n}^{*}(\varphi)=\log \sqrt{\frac{\pi e n}{2}}+\mathrm{O}\left((4 n)^{-2}\right)
$$

Therefore

$$
\begin{aligned}
\frac{H_{n}(\varphi)}{\ln n} & =\frac{\log e}{\log n} H_{n}(\varphi)=\frac{H_{n}^{*}(\varphi)}{\log n} \\
& =\frac{\log \sqrt{\frac{\pi e n}{2}}+\mathrm{O}\left((4 n)^{-2}\right)}{\log n} \\
& =\frac{1}{2} \cdot \frac{\log n+\log \frac{\pi e}{2}+2 \cdot \mathrm{O}\left((4 n)^{-2}\right)}{\log n} \\
& \rightarrow \frac{1}{2} \text { as } n \rightarrow \infty
\end{aligned}
$$

Appendix

Proof of Lemma 5: Suppose that a_{n} and b_{n} are two sequences such that $a_{n} \geq b_{n}>0$, for every $n, \lim _{n \rightarrow \infty} b_{n}=\infty$ and $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. By the continuity of \ln we have $\lim _{n \rightarrow \infty}\left(\ln a_{n}-\ln b_{n}\right)=\lim _{n \rightarrow \infty} \ln \frac{a_{n}}{b_{n}}=0$, and consequently

$$
\left.\frac{\ln a_{n}}{\ln b_{n}}=\frac{\ln a_{n}-\ln b_{n}}{\ln b_{n}}+1 \rightarrow 1 \text { as } n \rightarrow \infty \text { (because } \lim _{n \rightarrow \infty} b_{n}=\infty\right)
$$

Since $\ln 2 a_{n}=\ln 2+\ln a_{n}$ it follows that $\ln 2 a_{n} / \ln b_{n} \rightarrow 1$ as $n \rightarrow \infty$.

References

[1] H-D. Ebbinghaus, J. Flum, Finite Model Theory, Second Edition, Springer-Verlag, 1999.
[2] R. Fagin, Probabilities on finite models, The Journal of Symbolic Logic (41) 1976, 50-58.
[3] O. Frank, J. Öhrvik, Entropy of sums of random digits, Computational Statistics \& Data Analysis, (17) 1994, 177-184.
[4] Y. V Glebskii, D. I. Kogan, M. I. Liogonkii, V. A. Talanov, Volume and fraction of satisfiability of formulas of the lower predicate calculus, Kibernetyka (2) 1969, 17-27.
[5] W. Hodges, Model theory, Cambridge University Press, 1993.
[6] G. A. Jones, J. M. Jones, Information and Coding Theory, Springer-Verlag, 2000.
Dept. of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
E-mail address: vera@math.uu.se

