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Abstract. A probability distribution can be given to the set of isomorphism classes of
models with universe {1, . . . , n} of a sentence in �rst-order logic. We study the entropy
of this distribution and derive a result from the 0-1 law for �rst-order sentences.
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Introduction

We will study the entropy of a probability distribution on the set of isomorphism classes
of models with universe {1, . . . , n} of a �rst-order sentence (i.e. closed formula). Recall
that, for a �nite probability distribution p = (p1, . . . , pk), the entropy of p is H(p) =
−

∑k
i=1 pi ln pi (where we adopt the convention that 0 ln 0 = 0). For any probability

distribution p = (p1, . . . , pk) we have (see [6], Theorems 3.7 and 3.10, for instance)
0 ≤ H(p) ≤ ln k and

(a) H(p) = ln k if and only if pi = 1/k for every i = 1, . . . , k, and
(b) H(p) = 0 if and only if pi = 1 for some i.

Let L be a (�rst-order) language with �nitely many relation, function and constant
symbols. If ϕ is an L-sentence which has at least one model with exactly n elements,
then let A1, . . . , Akn be an enumeration of mutually non-isomorphic L-structures with
universe {1, . . . , n}, such that each Ai is a model of ϕ and any model of ϕ with exactly n
elements is isomorphic to some Ai. Let [Ai] be the set of all L-structures with universe
{1, . . . , n} which are isomorphic to Ai. If mn is the number of L-structures A with
universe {1, . . . , n} such that ϕ is true in A, then p = (p1, . . . , pkn), where pi = |[Ai]|/mn

for i = 1, . . . , kn, is a probability distribution. Hence we can consider the entropy H(p)
which in this case we denote by Hn(ϕ), and we call it `the entropy of ϕ for n-element
models'. If ϕ has no model with exactly n elements then we let Hn(ϕ) = 0. It follows
that if p is as de�ned above, then 0 ≤ Hn(ϕ) ≤ ln kn and from (a) and (b) we get:

(a)' Hn(ϕ) = ln kn if and only if [Ai] and [Aj ] contain the same number of structures
for any i and any j, and

(b)' Hn(ϕ) = 0 implies that any two models of ϕ with exactly n elements are isomor-
phic.

The entropy of a formula is not particularly well-behaved with respect to the relation
``', where, for L-sentences ϕ and ψ, ϕ ` ψ means that any L-structure which is a model
of ϕ is also a model of ψ. We may have ϕ1 ` ϕ2 and Hn(ϕ1) < Hn(ϕ2), but we may also
have ψ1 ` ψ2 and Hn(ψ1) > Hn(ψ2); examples showing this are given at the end of the
paper.

However, from the 0-1 law of (�rst-order) formulas we may draw a conclusion about
the entropy Hn(ϕ). The 0-1 law says that, under the assumption that L has only �nitely
many relation symbols and no function or constant symbols, for any L-formula ϕ, the
proportion of L-structures with universe {1, . . . , n} in which ϕ is true approaches either
0 or 1, as n approaches ∞. Under the additional condition that not all relation symbols
of L are unary, we will prove that if the above mentioned proportion approaches 1 then
Hn(ϕ) is asymptotic to ln kn (where kn is as above). By being asymptotic to ln kn we
mean that Hn(ϕ)/ ln kn → 1 as n→∞. Intuitively this means that, if the proportion of
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L-structures with universe {1, . . . , n} in which ϕ is true approaches 1 as n → ∞, then
the entropy Hn(ϕ) approaches maximal entropy as n→∞.

In the case that the proportion of L-structures with universe {1, . . . , n} in which ϕ is
true approaches 0 as n→∞, we cannot conclude anything particular about the asymp-
totic behaviour of Hn(ϕ). For example, we may have Hn(ϕ) = 0 for every n, but we
may also have Hn(ϕ) = ln kn for every n, and it may be the case that limn→∞Hn(ϕ)
and limn→∞Hn(ϕ)/ ln kn don't exist; examples illustrating these possibilities are given
at the end.

Acknowledgements. The idea to consider the questions dealt with in this paper was
suggested to me by Erik Palmgren. I also thank the anonymous referee for suggesting
simpli�cations of the proof of Theorem 3.

Notation and terminology. For de�nitions of, and elementary results about (�rst-
order) languages and structures, see [5] or [1] for instance; the notation and terminology
used here, for structures and languages, follows [5]. We always assume, even when not
explicitly mentioned, that the symbol `=' is part of the language and is interpreted in
structures as the identity relation. We say that a language is �nite and relational if it has
only �nitely many relation (also called predicate) symbols and no constant or function
symbols. A language is said to be monadic if every relation symbol of it, except for =,
is unary. If A and B are L-structures then A ∼= B means that A is isomorphic to B. We
may, as usual, identify a structure with its universe (or domain) notationally. For a k-ary
relation symbol R of the language L and an L-structure A, RA denotes the interpretation
of R in A. For an L-structure A and an L-sentence ϕ (i.e. closed L-formula), A |= ϕ
means that ϕ is true (or satis�ed) in A, or in other words, that A is a model of ϕ. If X
is a set then |X| denotes its cardinality. With k,m, n, n1, n2, . . . we will denote positive
integers.

Entropy of formulas

Throughout this paper we will assume that L is a �nite and relational language, although
we will occasionally repeat this assumption.

De�nition 1. Let Sn be the set of all L-structures with universe {1, . . . , n}. Since
L is �nite, each Sn is �nite. If A ∈ Sn then let [A] = {B ∈ Sn : B ∼= A}. Let
S ′n = {[A] : A ∈ Sn}. If ϕ is an L-sentence then let Mn(ϕ) = {A ∈ Sn : A |= ϕ} and let
M′

n(ϕ) = {[A] : A ∈Mn(ϕ)}

For any L-sentence ϕ we can consider a probability distribution on M′
n(ϕ) by letting

each [A] ∈M′
n(ϕ) have probability |[A]|/|M(ϕ)|. So if A ∈Mn(ϕ), and supposing that

each structure in Sn is equally probable, |[A]|/|M(ϕ)| is the probability that a model of
ϕ in Sn is isomorphic to A.

De�nition 2. Let L be a �nite and relational language. For an L-sentence ϕ, we de�ne
the entropy of ϕ for n-element models, denoted Hn(ϕ), by

Hn(ϕ) = −
k∑

i=1

|[Ai]|
|M(ϕ)|

ln
|[Ai]|
|M(ϕ)|

,

where [A1], . . . , [Ak] is an enumeration of M′
n(ϕ) without repetitions, if Mn(ϕ) 6= ∅. If

Mn(ϕ) = ∅ then de�ne Hn(ϕ) = 0.
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The so-called 0-1 law ([2], [4], [1] Theorem 4.1.5, [5] Theorem 7.4.7) states that, for any
L-sentence ϕ,

the limit lim
n→∞

|Mn(ϕ)|
|Sn|

exists and is either 0 or 1.

Theorem 3. Let L be a �nite and relational language which is not monadic and let ϕ
be an L-sentence.

If lim
n→∞

|Mn(ϕ)|
|Sn|

= 1 then lim
n→∞

Hn(ϕ)
ln |M′

n(ϕ)|
= 1.

Remark 4. (i) If |Mn(ϕ)|/|Sn| → 0 as n → ∞, then it may or may not be the case
that Hn(ϕ)/ ln |M′

n(ϕ)| → 1 as n→∞. Examples 6, 7 and 8 show this.
(ii) The theorem does not hold for monadic L. Example 9 shows this.

In order to prove Theorem 3 we will use the following lemma which should occur in the
literature in one form or another, but for the sake of completeness a (short) proof is
nevertheless given in the appendix.

Lemma 5. Suppose that an and bn are two sequences such that an ≥ bn > 0, for every

n, limn→∞ bn = ∞ and limn→∞ an/bn = 1. Then limn→∞(ln an − ln bn) = 0, and

consequently limn→∞ ln an/ ln bn = limn→∞ ln 2an/ ln bn = 1.

We now prove Theorem 3. Suppose that L is a �nite and relational language which is
not monadic and suppose that ϕ is a formula in L such that

lim
n→∞

|Mn(ϕ)|
|Sn|

= 1.

We introduce some simpler notation. For every n, let

sn = |Sn|, s′n = |S ′n|, mn = |Mn(ϕ)|, m′
n = |M′

n(ϕ)|.

With the new notation we have

(1) lim
n→∞

mn

sn
= 1

and we want to prove that Hn(ϕ)/ lnm′
n → 1 as n→∞.

Since L is not monadic, Theorem 8 in [2] says that

(2) lim
n→∞

sn

s′n · n!
= 1.

For every [A] ∈ S ′n, |[A]| = n!/k where k is the order of the group of automorphisms
of A. So if |[A]| < n! then |[A]| ≤ n!/2. A structure A ∈ Sn is rigid if A has only one
automorphism. It follows that A is rigid if and only if |[A]| = n!.

Let

rn =
∣∣{A ∈ Sn : A is rigid

}∣∣,
fn =

∣∣{A ∈Mn(ϕ) : A is rigid
}∣∣,

f̄n = rn − fn =
∣∣{A ∈ Sn −Mn(ϕ) : A is rigid

}∣∣,
f ′n =

∣∣{[A] ∈M′
n(ϕ) : A is rigid

}∣∣.
Observe that fn = n!f ′n and, by (1), that limn→∞ f̄n/sn = 0. From (2) together with
Lemma 4.3.2 and Proposition 4.3.3 in [1] we get

lim
n→∞

rn
sn

= 1

and from this and (1) we get
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(3)
fn

mn
=
fn

sn
· sn

mn
=

(rn
sn
− f̄n

sn

)
· sn

mn
→ 1 as n→∞.

Since L is not monadic it has at least one relation symbol R of arity k where k ≥ 2. For
each A ∈ Sn and each k-tuple ā of elements from {1, . . . , n} we have ā ∈ RA or ā /∈ RA.

As there are nk such k-tuples, there are 2nk
possibilities for RA. Since 2nk ≥ 2n2

, there

are at least 2n2
di�erent structures in Sn, so sn ≥ 2n2

, which gives

(4)
ln sn

ln(n!)
≥ ln(2n2

)
ln(n!)

≥ ln(2n2
)

ln(nn)
=
n ln 2
lnn

→∞ as n→∞.

By Lemma 5 and (1) we have limn→∞(lnmn− ln sn) = 0, which together with (4) implies
that

(5)
lnmn

ln(n!)
=

lnmn − ln sn

ln(n!)
+

ln sn

ln(n!)
→∞ as n→∞.

And (5) in turn gives

(6)
ln mn

n!

lnmn
= 1− ln(n!)

lnmn
→ 1 as n→∞.

As mn
n! ≤ m′

n ≤ mn we have ln mn
n! ≤ lnm′

n ≤ lnmn which together with (6) implies that

(7) lim
n→∞

lnm′
n

lnmn
= 1.

Since
Hn(ϕ)

ln |M′
n(ϕ)|

=
Hn(ϕ)
lnmn

· lnmn

lnm′
n

it su�ces, by (7), to prove that Hn(ϕ)/ lnmn → 1 as n → ∞. From the de�nitions of
fn and f ′n it follows that fn = n!f ′n and that

(8) Hn(ϕ) ≥ −f ′n
n!
mn

ln
n!
mn

= − fn

mn
ln

n!
mn

.

By (8), (6) and (3) we get

(9)
Hn(ϕ)
lnmn

≥
− fn

mn
ln n!

mn

lnmn
=

fn

mn
·
ln mn

n!

lnmn
→ 1 as n→∞.

Since for every probability distribution p = (p1, . . . , pk) Hn(p) ≤ ln k, we have Hn(ϕ) ≤
lnm′

n ≤ lnmn and hence Hn(ϕ)/ lnmn ≤ 1, for all su�ciently large n. Together with
(9) this implies that

lim
n→∞

Hn(ϕ)
lnmn

= 1

and, as shown above, Theorem 3 follows from this.

Examples

Example 6. This example shows that the conclusion of Theorem 3 may hold even if
|Mn(ϕ)|/|Sn| → 0 as n → ∞. Let L have one binary relation symbol R and no other
relation symbols (exept for =). Let ψ the following L-sentence

∀x, yR(x, y) ∨ ∀x, y¬R(x, y).

For any n, M′
n(ψ) has two elements and each of them contains exactly one structure.

It follows that |Mn(ψ)| = 2, for every n. In the proof of Theorem 3 we showed that



ENTROPY OF FORMULAS 5

|Sn| ≥ 2n2
, so we have |Mn(ϕ)|/|Sn| → 0 as n→∞. Since for any n, |M′

n(ψ)| = 2 and
Hn(ψ) = −1/2 ln(1/2)− 1/2 ln(1/2) = ln 2, we get Hn(ψ)/ ln |M′

n(ψ)| = 1 for every n.

Example 7. This example shows that the conclusion of Theorem 3 may fail if
|Mn(ϕ)|/|Sn| → 0 as n → ∞. It also shows that for certain formulas ψ and θ we have
ψ ` θ and Hn(θ) < Hn(ψ) for all su�ciently large n. Let L and ψ be as in the previous
example. Let χ be an L-sentence which expresses that

R is an equivalence relation such that R has exactly two equivalence classes and
one of them contains exactly one element.

Finally let θ be ψ∨χ. For any n,M′
n(θ) has three elements: The �rst contains the unique

structure in Sn which satis�es ∀x, yR(x, y); the second contains the unique strucure in
Sn which satis�es ∀x, y¬R(x, y); the third element of M′

n(θ) contains the precisely n
di�erent structures in Sn in which χ is true. It follows that |Mn(θ)| = n+ 2 and

Hn(θ) = −2
( 1
n+ 2

ln
1

n+ 2

)
− n

n+ 2
ln

n

n+ 2

= 2 · ln(n+ 2)
n+ 2

+
n

n+ 2
ln
n+ 2
n

→ 0 as n→∞,

because
ln(n+ 2)
n+ 2

→ 0,
n

n+ 2
→ 1 and ln

n+ 2
n

→ 0 as n→∞.

Therefore, Hn(θ)/ ln |M′
n(θ)| = Hn(θ)/ ln 3 → 0 as n → ∞. We clearly have ψ ` θ.

Since Hn(ψ) = ln 2 for all n and limn→∞Hn(θ) = 0 it follows that Hn(ψ) > Hn(θ) for
all su�ciently large n.

Example 8. This example shows that if |Mn(ϕ)|/|Sn| → 0 as n→∞ then limn→∞Hn(ϕ)
may not exist. It also shows that we may have ϕ ` ψ and Hn(ϕ) < Hn(ψ). Let L have
two relation symbols R, P (except for =) where R is binary and P is unary. Let σ1 be
a sentence which expresses that

R is symmetric and irre�exive,
for every x there exists a unique y such that R(x, y), and
either ∀xP (x) or ∀x¬P (x).

Let σ2 be the sentence ∀x, y
(
¬R(x, y) ∧ ¬P (x)

)
and let σ be the sentence σ1 ∨ σ2.

Then, for every n, M′
2n+1(σ) has exactly one element which contains exactly one

structure. And, for every n, M′
2n(σ) has exactly three elements; one of them contains

exactly one structure and each of the other two contains exactly an = (2n)!/2nn! struc-
tures; consequently

∣∣M2n(σ)
∣∣ = 2an +1. It follows that H2n+1(σ) = − ln 1 = 0, for every

n. For every n we also have

H2n(σ) = − 1
2an + 1

ln
1

2an + 1
− 2

( an

2an + 1
ln

an

2an + 1

)
=

ln(2an + 1)
2an + 1

+
2an

2an + 1
ln

2an + 1
an

→ ln 2 as n→∞,

because lim
n→∞

an = ∞ and lim
x→∞

lnx
x

= 0.

Hence limn→∞Hn(σ) does not exist; and neither does limn→∞Hn(σ)/|M′
n(σ)| exist

since |M′
n(σ)| is always 1 or 3. Clearly, σ2 ` σ and Hn(σ2) = 0 for all n. Hence

Hn(σ2) < Hn(σ) for all su�ciently large even n.

Example 9. The following example shows that the assumption about non-monadic
language L in Theorem 3 is necessary. Let L have only one unary relation symbol P
and no other relation symbols (in addition to =). Let ϕ be any sentence which is true
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in every L-structure; for instance, we can let ϕ be ∀x(x = x). Then Mn(ϕ) = Sn. We
will show that

lim
n→∞

Hn(ϕ)
ln |M′

n(ϕ)|
=

1
2
.

First note that for any A,B ∈ Sn, A ∼= B if and only if |PA| = |PB|, so |M′
n(ϕ)| = |S ′n| =

n. Hence it su�ces to prove that Hn(ϕ)/ lnn→ 1/2 as n→∞. For any n and 1 ≤ i ≤ n,
let pn,i =

(
n
i

)
/2n, so Hn(ϕ) = −

∑n
i=1 pn,i ln pn,i. Let H∗

n(ϕ) = −
∑n

i=1 pn,i log pn,i,
where log is the logarithm with base 2. From the identity ln a = log a/ log e it follows
that Hn(ϕ) = H∗

n(ϕ)/ log e. By [3] (Theorem 3) we have

H∗
n(ϕ) = log

√
πen

2
+ O

(
(4n)−2

)
.

Therefore

Hn(ϕ)
lnn

=
log e
log n

Hn(ϕ) =
H∗

n(ϕ)
log n

=
log

√
πen
2 + O

(
(4n)−2

)
log n

=
1
2
·
log n+ log πe

2 + 2 ·O
(
(4n)−2

)
log n

→ 1
2
as n→∞.

Appendix

Proof of Lemma 5: Suppose that an and bn are two sequences such that an ≥ bn > 0,
for every n, limn→∞ bn = ∞ and limn→∞ an/bn = 1. By the continuity of ln we have
limn→∞(ln an − ln bn) = limn→∞ ln an

bn
= 0, and consequently

ln an

ln bn
=

ln an − ln bn
ln bn

+ 1 → 1 as n→∞ (because lim
n→∞

bn = ∞).

Since ln 2an = ln 2 + ln an it follows that ln 2an/ ln bn → 1 as n→∞.
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