Skip to main content
Log in

Black Holes: Interfacing the Classical and the Quantum

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The central idea of this paper is that forming the black hole horizon is attended with the transition from the classical regime of evolution to the quantum one. We offer and justify the following criterion for discriminating between the classical and the quantum: creations and annihilations of particle-antiparticle pairs are impossible in the classical reality but possible in the quantum reality. In flat spacetime, we can switch from the classical picture of field propagation to the quantum picture by changing the overall sign of the spacetime signature. To describe a self-gravitating object at the final stage of its classical evolution, we propose to use the Foldy–Wouthuysen representation of the Dirac equation in curved spacetimes, and the Gozzi classical path integral. In both approaches, maintaining the dynamics in the classical regime is controlled by supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  2. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1992)

    Google Scholar 

  3. Heusler, M.: Black Hole Uniqueness theorems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Chruściel, P.T.: Black Holes. Lecture Notes in Physics, vol. 604, p. 61. Springer, Berlin (2002). arxivurl:gr-qc/0201053

    Google Scholar 

  5. Carlip, S.: Black hole entropy from conformal field theory in any dimensions. Phys. Rev. Lett. 64, 435 (1976). arxivurl:hep-th/9812013

    MathSciNet  Google Scholar 

  6. Solodukhin, S.: Conformal description of horizon’s states. Phys. Lett. B 454, 213 (1999). arxivurl:hep-th/9812056

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Wilson, K.G.: Problems in physics with many scales of length. Sci. Am. 241, 158 (1979)

    Article  Google Scholar 

  8. Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  9. Chapline, G., Hohfeld, E., Laughlin, R.B., Santiago, D.I.: Quantum phase transitions and breakdown of classical general relativity. Int. J. Mod. Phys. 18, 3587 (2003). arxivurl:gr-qc/0012094

    Article  ADS  Google Scholar 

  10. Laughlin, R.B.: Emergent relativity. Int. J. Mod. Phys. 18, 831 (2003). arxivurl:gr-qc/0302028

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Hawking, S.: Black hole explosions? Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  12. Hawking, S.: Quantum particle creation by black hole. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hawking, S., Ellis, G.: The Large Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  14. Horowitz, G.T., Maldacena, J.: The black hole final state. J. High Energy Phys. 02, 008 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Brink, L., Deser, S., Zumino, B., Di Vecchia, P., Howe, P.: Local supersymmetry for spinning particles. Phys. Lett. B 64, 435 (1976)

    Article  ADS  Google Scholar 

  16. Feynman, R.: The development of the space-time view of quantum electrodynamics. Phys. Today 19, 31 (1966)

    Article  Google Scholar 

  17. Kosyakov, B.: Introduction to the Classical Theory of Particles and Fields. Springer, Berlin (2007)

    MATH  Google Scholar 

  18. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin- \(\frac{1}{2}\) particles and its nonrelativistic limit. Phys. Rev. 78, 29 (1950)

    Article  MATH  ADS  Google Scholar 

  19. Case, K.M.: Some generalizations of the Foldy–Wouthuysen transformation. Phys. Rev. 95, 1323 (1954)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. de Vries, E.: Foldy–Wouthuysen transformations and related problems. Fortschr. Phys. 18, 149 (1970)

    Article  Google Scholar 

  21. Thaller, B.: The Dirac Equation. Berlin, Springer (1992)

    Google Scholar 

  22. Obukhov, Yu.N.: Spin, gravity, and inertia. Phys. Rev. Lett. 86, 192 (2001). arxivurl:gr-qc/0012102

    Article  ADS  MathSciNet  Google Scholar 

  23. Romero, R.P.M., Moreno, M., Zentella, A.: Supersymmetric properties and stability of the Dirac sea. Phys. Rev. D 43, 2036 (1991)

    Article  ADS  Google Scholar 

  24. Heidenreich, S., Chrobok, T., Borzeszkowski, H.-H. v.: Supersymmetry, exact Foldy–Wouthuysen transformation, and gravity. Phys. Rev. D 73, 044026 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Galvao, C.A.P., Teitelboim, C.: Classical supersymmetric particles. J. Math. Phys. 21, 1863 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gozzi, E.: Hidden BRS invariance in classical mechanics. Phys. Lett. 201, 525 (1988)

    MathSciNet  Google Scholar 

  27. Gozzi, E., Reuter, M., Thacker, W.D.: Hidden BRS invariance in classical mechanics, II. Phys. Rev. D 40, 3363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  28. Abrikosov, A.A. Jr., Gozzi, E., Mauro, D.: Geometric dequantization. Ann. Phys. (N.Y.) 317, 24 (2005). arxivurl:quant-ph/0406028

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Jackiw, R., Nair, V.P., Pi, S.-Y., Polychronakos, A.P.: Perfect fluid theory and its extension. J. Phys. A 37, R327 (2004). arxivurl:hep-ph/0407101

    Article  MATH  ADS  Google Scholar 

  30. Robinson, S., Wilczek, F.: Relation between Hawking radiation and gravitational anomalies. Phys. Rev. Lett. 95, 011303 (2005). arxivurl:gr-qc/0502074v3

    Article  ADS  MathSciNet  Google Scholar 

  31. Gozzi, E., Mauro, D., Silvestri, A.: Chiral anomalies via classical and quantum functional methods. Int. J. Mod. Phys. A 20, 5009 (2005). arxivurl:hep-th/0410129

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kosyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosyakov, B.P. Black Holes: Interfacing the Classical and the Quantum. Found Phys 38, 678–694 (2008). https://doi.org/10.1007/s10701-008-9227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9227-z

Keywords

Navigation