
Functional completeness and primitive positive

decomposition of relations on finite domains

Sergiy Koshkin

Department of Mathematics and Statistics
University of Houston-Downtown

One Main Street
Houston, TX 77002

e-mail: koshkins@uhd.edu

Abstract

We give a new and elementary construction of primitive positive decomposition
of higher arity relations into binary relations on finite domains. Such decomposi-
tions come up in applications to constraint satisfaction problems, clone theory and
relational databases. The construction exploits functional completeness of 2-input
functions in many-valued logic by interpreting relations as graphs of partially de-
fined multivalued ‘functions’. The ‘functions’ are then composed from ordinary
functions in the usual sense. The construction is computationally effective and re-
lies on well-developed methods of functional decomposition, but reduces relations
only to ternary relations. An additional construction then decomposes ternary
into binary relations, also effectively, by converting certain disjunctions into exis-
tential quantifications. The result gives a uniform proof of Peirce’s reduction thesis
on finite domains, and shows that the graph of any Sheffer function composes all
relations there.

Keywords: relational operations, primitive positive formula, coclone, con-
straint satisfaction problem, irreducible relation, many-valued logic, functional
completeness, Sheffer functions, Post algebra, relative product, hypostatic abstrac-
tion, Peirce’s reduction thesis

MSC: 08A02, 03G20, 08A70, 03B50, 08A40

Introduction

First examples of primitive positive definitions appeared at the dawn of mathematical
logic in de Morgan’s compositions (relative products) of binary relations, and were
originally motivated by linguistic expressions like “brother of a parent”. The problem
of decomposing higher arity relations into binary relations was studied soon after de
Morgan by C.S. Peirce [6]. In a more formal context, primitive positive formulas (ppfs),
those that apply only conjunctions and existential quantifiers to predicates, appeared
in Robinson’s work on model theory in the 1950-s [23]. They came up independently
in universal algebra in the 1960-s in the context of Pol-Inv Galois connection [5, 18], as
preserving invariance of relations under a function.

1

Since the 1970-s, ppfs appeared in more practical contexts, as conjunctive queries
in relational databases [16] and as templates for polynomial time reductions of con-
straint satisfaction problems (CSP) [10, 14, 30]. Schaefer exploited the latter in his
proof of the dichotomy theorem for Boolean CSP [30], and ppfs are featured promi-
nently in Jeavons’s algebraic approach to CSP since the 1990-s [7, 14]. In particular, a
recent generalization of Schaefer’s CSP dichotomy to arbitrary finite domains relies on
primitive positive reductions [2].

We will be mainly interested in the perspective from Peirce’s classical work, which
was motivated, in part, by a functional analogy. It is a trivial observation that compo-
sition of 1-input functions does not produce functions with more inputs, while composi-
tion of 2-input functions can produce n-input functions with any n ≥ 2. Let us call the
functional reduction thesis (FRT) the two-part claim that n-input functions decompose
into (reduce to) 2-input functions, but the latter do not all decompose into 1-input ones
(are irreducible). While the irreducibility part is trivial, proving the reducibility part
needs some work.

On Boolean domains, it follows from the existence of disjunctive normal forms, with
only ∧, ∨ and ¬ composed, which are implicit in Peirce’s work of 1880-s and were ex-
plicitly derived by Schröder in 1890, see [19]. The case of arbitrary finite domains was
settled in Post’s seminal 1920 dissertation, where the general question about function-
ally complete sets of functions was also raised, and solved in the Boolean case [32]. Post
proved FRT by introducing a special class of many-valued logics with cyclic negation,
and generalizing truth tables and disjunctive normal forms to them. The case of infinite
domains was settled only in 1945 by Sierpińsky [29], but, surprisingly, it turned out to
be simpler.

Even before these results, Peirce suggested that such reductions transfer from func-
tions to relations. Interpreting, say, f(t, z) and g(x, y) as relations, u = f(t, z) and
t = g(x, y), respectively, we can express their composition f(g(x, y), z) as[

u = f(g(x, y), z)
]
= ∃t

[(
u = f(t, z)

)
∧
(
t = g(x, y)

)]
, (1)

a special case of the relative product of arbitrary relations, e.g.

R(x, y, z, u) = ∃t
[
S(x, y, t) ∧ T (t, z, u)

]
. (2)

Compositions of more than two functions are generalized by expressions like the “triple
junction” [12]:

R(x, y) = ∃t
[
F (t, x) ∧G(t, y) ∧H(t, z)

]
. (3)

Using identity relations, one can also express conjunctions with identified variables,
like I3(x, y, z) := [(x = y) ∧ (y = z)], i.e. joins of the relational database theory. The
primitive positive composition of relations, pp-composition for short, is then seen as a
natural extension of functional composition.

By analogy, let us call the relational reduction thesis (RRT) the two-part claim that
n-ary relations for n ≥ 2 reduce to binary relations, but not all binary relations reduce
to unary ones. This is equivalent to a part of Peirce’s reduction thesis formulated even
before the more elementary FRT [15]. Peirce gave a clever general construction of
reductions, which he called “hypostatic abstraction”, that, suitably modified, works on
infinite domains. However, on finite domains, it requires adjoining additional elements
and extending original relations to the larger domain, see Section 2.

2

One might expect that RRT on finite domains could be analogously derived from
standard results on relational completeness, but such results are largely missing. For
example, there are no general analogs of either Post’s or Slupecki’s criteria [26] for
relationally complete systems. Nonetheless, RRT on finite domains has been resolved
by other means, but the results are scattered in the literature, often formulated in
different terms and proved by non-elementary methods.

The most non-trivial reducibility part follows from an auxiliary construction of a
pp-complete system of two binary relations in the seminal 1969 work of BKKR (at
the end of part II) that introduced the Pol-Inv Galois connection [3]. One can also
derive the result non-constructively from the Galois connection itself [22, 1.1.22]. That
RRT fails on Boolean domains follows from another landmark, Schaefer’s 1978 paper
that proved the dichotomy theorem for Boolean CSP [30]. Namely, Schaefer proved in
passing that all binary relations on Boolean domains are bijunctive while some ternary
relations are not, and bijunctivity is preserved by the pp-composition. However, none
of the above or subsequent works spell out the result ([11] comes closest) or connect
RRT to FRT.

Is there a connection? In a 1906 letter to James, Peirce declared that they are
“one and the same”. Even making room for rhetorical flourishes, this is much too
rash. Not all relations are functions, and pp-composition of graphs from graphs does
not always come from composition of their functions. On infinite domains, hypostatic
abstraction bypasses FRT altogether rather than builds on it, so it is unclear why FRT
even suggests RRT. Note that the connection that is supposed to be at play here is an
elementary one – treating graphs of individual functions as relations, see (1). It is quite
distinct from the Galois connection between clones and coclones, which has a class of
functions preserving a class of relations.

In this paper, we will establish the desired connection and give elementary proofs
for all cases of RRT based on it. Unlike the BKKR construction, it provides a wide
selection of pp-complete systems, rather than a single one, and capitalizes on well-
developed methods of functional decomposition. In fact, graphs of functions in any
functionally complete system form a relationally pp-complete system (Theorem 2). This
is somewhat surprising because there are many non-graph relations, and they cannot
always be pp-composed from graphs in general coclones. As a simple consequence,
we obtain the existence of ‘Sheffer relations’ that alone form a pp-complete system.
The graph of the Sheffer stroke is such a relation on Boolean domains. The proof is
based on treating relations as multivalued partially defined ‘functions’ that are then
pp-decomposed into ordinary 2-input functions, e.g. by using canonical normal forms
in Post’s many-valued logics.

Conceptually, our construction explains why pp-reductions to ternary relations are
always possible (assuming that reducibility of functions to 2-input functions is taken for
granted). From the practical point of view, it is of interest because pp-composition is
less intuitive than functional composition and computational methods for it are much
less developed. Moreover, constructing convenient sets of relations that are pp-complete
in coclones (their bases) has received much attention in the recent CSP literature [4, 17].

However, passing from functions to their graphs increases arity by 1, so existence of
functionally complete systems of 2-input functions translates into reducibility of higher
arity relations to ternary, not binary, relations. This is as it should be in general, given
that pp-irreducible ternary relations do exist on Boolean domains (¬I3 is one). As
a supplement, we give another elementary construction that reduces cofinite relations

3

of small arity to binary relations (Theorem 3). In a sense, it is dual to hypostatic
abstraction, and converts disjunctions of unary cosingletons into existential quantifi-
cations over certain binary predicates on non-Boolean domains. For completeness, we
also give an elementary discussion of the Boolean case and relate pp-composition to
Peirce’s original “bonding” that deviates from it on ternary relations.

The paper is organized as follows. In Section 2 we recall hypostatic abstraction
that reduces higher arity relations to binary ones after extending the domain, and
Löwenheim-Sierpińsky’s pairing construction that does the same for functions, proving
RRT and FRT on infinite domains. In Section 3 we interpret relations with a dis-
tinguished argument (called relatives) as multivalued partially defined ‘functions’ and
reduce higher arity relations to ternary ones on arbitrary domains by exploiting FRT.
Section 4 introduces Post’s logics and illustrates the algorithm for converting functional
into relational reductions by our method. In Section 5 we give the ‘existentialization
of disjunctions’ construction that reduces cofinite relations of small arity to binary
ones on domains with at least three elements. In Section 6 we discuss bijunctive re-
lations and give an elementary proof of pp-irreducibility of some ternary relations on
Boolean domains. Section 7 introduces Peirce’s notion of bonding and his conversion
of pp-reductions to bond reductions for arities 4 and higher by clever use of ternary
identities. In the final section, we summarize our conclusions and state some open
problems.

1 Preliminaries

We use the standard notation and terminology of set theory and predicate calculus.
Relations are defined on a set D called the domain and are subsets of its Cartesian
powers Dn := D× · · · ×D. The cardinality of a set S is denoted |S|. As is well known,
|Dn| = |D|n. When R ⊆ Dn the number n is called the relation’s arity and the relation
is called n-ary relation. For n = 1, 2, 3, 4 we use the shorthands unary, binary, ternary,
quaternary, respectively. Relations are called finite when they have finite cardinality,
small when their cardinality is no more than that of the domain, cofinite when their
complements are finite, and finitary when they have finite arity. We only consider
finitary relations.

Elements of Dn are called n-tuples or just tuples, when n is understood or im-
material. Small Latin letters are typically used for elements of D, and small Greek
letters for tuples in Dn. If α ∈ Dn it’s i-th member is denoted αi. We adopt the usual
convention of canonically identifying tuples of tuples with longer tuples, and hence of
identifying Dn × Dm with Dn+m, and so on. Some standard n-ary relations are the
universal relations Un := Dn with all n-tuples, and the identity relations In with
all and only n-tuples of identical elements. Occasionally, we abbreviate the latter as
a⃗ := (a, . . . , a).

Unless otherwise stated, all predicates will be interpreted on a domain, and relations
will be identified with the predicates they interpret. In particular, the same letter will
be used for a relation and its predicate, i.e. R(α) = R(α1, . . . , αn) will mean the same
as α ∈ R, and ¬R will denote the complement of R in Dn. Furthermore, we identify
relations with their truth value functions, 0 -1 functions on Dn. Logical connectives,
conjunction ∧, disjunction ∨, etc., will be used with the usual meaning except in Section
4, where they are explicitly redefined in many-valued logics.

Technically, primitive positive formulas (ppfs) are those with only existential

4

quantifiers in the prefix and only conjunctions as connectives in the quantifier-free part
[10, 17, 23]. However, any formula with only existential quantifiers and conjunctions
can be converted into such a form by prenexing quantifiers, so we will apply the term
more broadly to all such formulas. In particular, our ppfs are closed under taking con-
junctions and existentially quantifying. The following definition introduces the central
concepts used in the paper.

Definition 1 (pp-composition). A relation is a composition of relations, or de-
composes into them, when its predicate can be expressed by a ppf that contains only the
predicates of the composing relations. A decomposition is a reduction when the com-
posing relations have strictly lower arity than the composite. A relation is reducible
when it admits a reduction.

We prefer “pp-composition” to the more common “pp-definition” to emphasize the
functional analogy and algebraic aspects, and drop “pp” when context allows. Cartesian
products (free conjunctions), joins and projections (existential quantifications) of the
relational database theory, relative products (2), triple (3) and higher junctions are all
special cases of pp-composition. Clones are sets of functions containing projections
and closed under composition, coclones are sets of relations containing diagonals and
closed under pp-composition, they are dual to each other under the Pol-Inv Galois
connection [18, 22].

2 The infinite we do immediately...

In this section we will describe Peirce’s hypostatic abstraction that reduces n-ary rela-
tions to binary ones, and the pairing construction of Löwenheim and Sierpińsky that
does the same for functions. Both require the domain to be infinite to work without ex-
tending it. This is one of those cases that prompted Erdös and Tarski to quip [33]:“The
infinite we do immediately, the finite takes a little time.”

Given a domain D and a relation R(x1, . . . , xn) on it, extend the domain by n-tuples
of elements of D, and define binary relations Ri(t, x) to hold if and only if there is a
tuple t = (x1, . . . , xn) ∈ R with x = xi. ‘Abstract’ tuples are hypostatized into new
elements here, hence the name. By construction,

R(x1, . . . , xn) = ∃t
[
R1(t, x1) ∧ · · · ∧Rn(t, xn)

]
, (4)

and an arbitrary n-ary relation is reduced to binary ones by this ppf. The domain
extension can sometimes be avoided using the following trick due to Herzberger [12]
(Sierpińsky used a similar trick for functions much earlier). Instead of adjoining the
tuples, define an injective map τ : R→ D that uniquely ‘codes’ them into elements of D,
and redefine Ri(t, x) into a relation on the original D that holds when t = τ(x1, . . . , xn)
is in the range of τ and x = xi. Then (4) still holds and no domain extension is needed.

For such encoding map to exist, we clearly need |R| ≤ |D|, such relations were
termed small in [15]. In general, |R| ≤ |D|n for n-ary R, and when D is infinite
|D|n = |D| for any n. In other words, any (finitary) relation on an infinite domain
is small and, hence, reducible. However, in general, the requisite bijections between
D and Dn are non-constructive. By a theorem of Tarski [13, 11.3], |D|2 = |D| for all
infinite D is already equivalent to the axiom of choice.

Since hypostatic abstraction can reduce ternary to binary relations it does not
reduce functions to functions, or we could decompose 2-input functions into 1-input

5

ones. Löwenheim’s pairing construction [20] does not have this shortcoming, but it
requires adjoining (or encoding) not just n-tuples, but also 2-tuples, 3-tuples, ..., (n−1)-
tuples of the domain elements. We will describe the functional version of it used by
Sierpińsky [29], who was apparently unaware of Löwenheim’s work, to prove FRT on
infinite domains.

After extending the domain, define recursively

i2(x1, x2) := (x1, x2), ik
(
(x1, . . . , xk−1), xk

)
:= (x1, . . . , xk)

for 3 ≤ k ≤ n, and define f̂((x1, . . . , xn)) := f(x1, . . . , xn). Then extend ik and f̂
arbitrarily to other elements. It is easy to see by induction that

f(x1, . . . , xn) = f̂
(
in
(
. . . i4

(
i3 (i2 (x1, x2), x3), x4

)
. . . , xn

))
reduces f to a composition of 2-input ik and 1-input f̂ (which can be turned into a
2-input by adding a dummy variable if one so wishes). Again, to avoid extending the
domain one can encode the adjoined elements into the original ones. This is always
possible on infinite domains, but requires the axiom of choice, as Sierpińsky explicitly
noted. We can summarize the constructions in this section in the following theorem
that combines the reducibility clauses of RRT and FRT on infinite domains.

Theorem 1. Let n ≥ 3. Any n-ary relation on an infinite domain is a composition of
n binary relations. Any n-input function on an infinite domain is a composition of n
2-input functions.

It is doubly ironic that the (ostensibly) harder case of relations was settled several
decades earlier than the case of functions, and that the case of functions on finite
domains, where one cannot produce simple explicit constructions, was settled before
the one on infinite domains.

3 Functions, relations, relatives

In this section we will give an elementary construction that reduces relations on a do-
main to ternary relations using that functions on it can be reduced to 2-input functions.
As with the hypostatic abstraction and the pairing construction, we will need the axiom
of choice for the general case. However, the construction is of most interest on finite
domains, where it is unnecessary and the reductions can be performed constructively.
That any function on a finite domain reduces to a composition of 2-input functions
follows from Post’s results for many-valued logics discussed in the next section.

Considered as relations, functions have a distinguished argument designated as
output. Our approach will be to analogize relations to functions, so we will extend the
notion of output to general relations. Linguistic expressions that Aristotle, de Morgan
and Peirce took as motivation, such as “brother of ” or “son of by ”, distinguish
the output explicitly in the noun phrases. We will follow them in calling relations with
a distinguished argument relatives [9]. In clone theory, relatives on finite domains are
called “hyperoperations” [28], “partial hyperoperations” [24] or “multifunctions” [5].

Definition 2. A relative is a relation on D with a distinguished argument called
the output. The remaining arguments are called inputs. Unless otherwise stated,

6

the output is designated to be the last listed argument, e.g. xn in R(x1, . . . , xn). For
α ∈ Dn−1 we define its image under R as the set R(α) := {a ∈ D | (α, a) ∈ R}. We
call a relative partial function when R(α) is empty or a singleton for every α, and
a multifunction when R(α) is non-empty for every α. When R(α) is a singleton for
every α, we call R the graph of a function Dn−1 → D.

Thus, general relatives can be characterized as ‘partial multifunctions’. It will be
convenient for us to interpret the domain of a relative as itself a relative rather than
as just a set.

Definition 3. For any relative R(x1, . . . , xn), we define the domain relative

DomR(x1, . . . , xn−1) := ∃ t
[
R(x1, . . . , xn−1, t)

]
as the projection on its inputs.

Note that DomR is a relative of lower arity. The following lemma codifies that any
relative is a multifunction on its domain. The proof is straightforward and we omit it.

Lemma 1. Any relative R decomposes as

R(x1, . . . , xn) = F (x1, . . . , xn) ∧DomR(x1, . . . , xn−1), (5)

where F is a multifunction. If R is a partial function then F can be chosen to be a
function, i.e. F (x1, . . . , xn) if and only if xn = f(x1, . . . , xn−1).

Thus, any relation can be reduced to a multifunction and a relation of lower arity.
In turn, we will reduce multifunctions to (ordinary) functions by using value selectors.

Definition 4. Let F be a multifunction on D. A function f : Dn−1 → D is called a
value selector for F when for any α ∈ Dn−1 we have (α, f(α)) ∈ F , i.e. f(α) ∈ F (α).

When D is infinite, existence of selectors depends, in general, on the axiom of

choice. There are
∏

α∈Dn−1 |F (α)| possible selectors, which can run up to
(
Dn−1

)|D|
=

|D|(n−1)|D| in cardinality. However, it will be important that at most |D| are needed to
cover all tuples in F . This is exploited in the next lemma.

Lemma 2. Let D be a well-orderable set. Then any n-ary multifunction F on D
decomposes as

F (x1, . . . , xn) = ∃ t
[
xn = f(t, x1, . . . , xn−1)

]
, (6)

where f : Dn → D is a function.

Proof. Well-order D and let f1 be the value selector of F that picks the least element
of F (α) at each α ∈ Dn−1. For every ordinal σ we define fσ to pick the least element of
F (α) not picked by any fτ with τ < σ, if any, and the least element of F (α) otherwise.
By transfinite induction, at some ordinal ξ with |ξ| ≤ |D| there will be no unpicked
elements left for any α ∈ Dn−1, because |F (α)| ≤ |D|. We put ξ into 1-1 correspondence
with a subset T of D and define σ(t) to be the image of t under this correspondence
when t ∈ T and 1 otherwise. Finally, we set f(t, x1, . . . , xn−1) := fσ(t)(x1, . . . , xn−1).
Since fσ is a selector for every σ only tuples in F will satisfy xn = fσ(t)(x1, . . . , xn−1)
for any t, and all of them are accounted for because every σ in ξ is σ(t) for some t.
Thus, (6) holds.

7

We will refer to f(t, x1, . . . , xn−1) as the indexing function (of value selectors).
When D is finite, it is obtained constructively, and if we identify D with the truth
value set of a many-valued logic then we even have a natural well-order on D that
defines it uniquely. It is known that any n-input function with n ≥ 3 on any domain
decomposes into 2-input functions (see Section 4 for finite domains). Relations of the
form u = f(t, x) can then be reduced to ternary relations by recursively unfolding
nested compositions. Combining this procedure with Lemmas 1 and 2, we get our
main result.

Theorem 2 (Relative reduction). Any n-ary relation R on any domain D decom-
poses as

R(x1, . . . , xn) = ∃ t
[
xn = f(t, x1, . . . , xn−1)

]
∧DomR(x1, . . . , xn−1), (7)

where f : Dn → D is a function. Moreover, given a functionally complete set, every
relation can be decomposed into graphs of functions from this set. In particular, every
n-ary relation on D with n ≥ 4 is reducible to ternary relations.

Proof. Formula (7) is a direct consequence of Lemmas 1 and 2. To decompose the first
conjunct in (7), set x0 := t and suppose

f(t, x1, . . . , xn−1) = g
(
h1(xΛ1), . . . , hm(xΛm)

)
,

where Λi ⊆ {0, 1, . . . , n− 1} and xΛ is the list of xi with i ∈ Λ. Then

∃ t
[
xn = f(t, x1, . . . , xn−1)

]
= ∃ t∃ t1 . . . ∃ tm

[
xn = g(t1, . . . , tm) ∧ t1 = h1(xΛ1) ∧ · · · ∧ tm = hm(xΛm)

]
. (8)

By iterating the procedure, if necessary, we can decompose the first conjunct into
graphs of functions from a given complete set. The same process is then applied to
DomR. Since the arity is reduced by 1 at each step the process terminates in finitely
many steps. Since there exist functionally complete sets of 2-input functions, and their
graphs are ternary, the last claim follows.

Theorem 2 not only extends Theorem 1 to all domains, but its proof also reduces RRT
to FRT, as Peirce’s remarks suggested. However, the result is weaker. The hypostatic
abstraction decomposed all relations into binary relations and bounded their number
by arity. We will mend the first flaw in Section 5, but there can be no uniform arity
bound on finite domains [16].

Recall that a function is called Sheffer when it alone forms a functionally complete
system [18, 11.2],[25]. Peirce found one such function, NOR, a.k.a. Peirce arrow, on
Boolean domains in an unpublished 1902 manuscript. Sheffer published the result for
NAND, a.k.a. Sheffer stroke, in 1913 [1]. On general finite domains, the first Sheffer
function was found by Webb in 1935, and it is a 2-input one [25, 33]. Their graphs give
us ternary Sheffer relations on the corresponding domains, a result that appears to be
new.

Corollary 1 (Sheffer relations). On any finite domain, there exist ternary relations
that alone compose all relations.

Let us illustrate the construction of Theorem 2 with a couple of examples.

8

Example 1. Consider the n-identity relation In, whose tuples are all and only n-tuples
of identical elements. Taking xn as the output, we see that In is a partial function with
DomIn = In−1. On this domain, In can be identified with a function that extends to
all of D as e.g. f(x1, . . . , xn−1) := x1. This means, according to (5), that

In(x1, . . . , xn) =
[
xn = x1

]
∧ In−1(x1, . . . , xn−1).

Iterating n− 1 times we obtain a familiar decomposition of In into diagonals, namely

In(x1, . . . , xn) =
[
xn = x1

]
∧ · · · ∧

[
x2 = x1

]
.

Example 2. The n-identity is small even on finite domains, and hence can be decom-
posed into binaries by hypostatic abstraction even there. In contrast, |¬In| = n|D|−n >
n for n ≥ 3 and |D| ≥ 2, i.e. for n ≥ 3 the non-n-identity is large already on Boolean
domains. We will decompose it there first, where we can take advantage of the familiar
Boolean algebra, and postpone the case of general finite domains until the next section,
after Post’s many-valued logics are introduced for the task.

Note that Dom¬In = Un−1 is the universal relation (because any (n− 1)-tuple can
be complemented to an n-tuple with not all entries equal), and we can drop it from the
decomposition in (7). It remains to pick value selectors for the multifunction ¬In and
decompose the resulting indexing function into 2-input functions.

In the Boolean case we can identify D with {0, 1} and pick

f0(x) :=

{
0, x ̸= (0, . . . , 0)

1, x = (0, . . . , 0)
f1(x) :=

{
1, x ̸= (1, . . . , 1)

0, x = (1, . . . , 1)

as the value selectors. Then, using the standard notation for Boolean operations,

f0(x) = x1 ∧ · · · ∧ xn−1, f1(x) = x1 ∨ · · · ∨ xn−1;

so f(t, x) = t ∧ x1 ∧ · · · ∧ xn−1 ∨ t ∧ x1 ∧ · · · ∧ xn−1 (9)

satisfies f(i, x) = fi(x) for i = 0, 1. Since (9) expresses f(t, x) via 2-input and 1-input
functions the template (8) will decompose ¬In into ternary and binary relations of the
form z = x ∧ y, z = x ∨ y and y = x.

4 Reduction on Post’s logics

This section is expository and can be skipped without loss of continuity. Its purpose
is to demonstrate that the reduction procedure of Theorem 2 is effective on all finite
domains, and quite practical considering the wealth of functional decomposition meth-
ods. We recall the analogs of Boolean operations in Post’s many-valued logics and of
the canonical disjunctive normal form that reduces any function on them to 2-input
and 1-input functions. The construction is well-known, see e.g. [18, 1.4], [25], [31, 2.8],
but is rarely spelled out explicitly. As an illustration, we generalize to finite domains
the Boolean reduction of ¬In.

From the modern perspective, a simple way to introduce (most of) Post’s (k + 1)-
valued logic is by restricting the standard fuzzy logic with truth values in [0, 1] to the

subset

{
0,

1

k
, . . . ,

k − 1

k
, 1

}
. However, it is more convenient to work with integers, so,

9

as is customary in the clone theory, we multiply the truth values by k. Then their set
becomes Ek+1 := {0, 1, . . . , k − 1, k}, and the standard connectives are defined by

a ∧ b := min(a, b); a ∨ b := max(a, b); a := k − a.

For k = 1 we recover the Boolean algebra E2. Alas, for k > 1 the system {∧,∨, } is
not functionally complete. Instead of , called the diametric negation, Post introduced
the cyclic shift

a′ := a+ 1 (mod k + 1),

sometimes also called cyclic negation since a′ = a in E2. The system {∧,∨, ′} turns
out to be functionally complete.

To see this, first note that for any x

0 = x ∧ x′ ∧ · · · ∧ x(k), 1 = 0′, 2 = 0′′ . . . , k = 0(k),

so we can generate all the constant functions. Next, consider the shifts x(j) with j ̸= i.
One of them is k unless k = x(i), i.e. x = k − i. Therefore,∨

j ̸=i

x(j) =

{
k − 1, x = k − i

k, x ̸= k − i
,

and we can generate the literals (a.k.a. value isolators) [25]:

xi :=

{
k, x = i

0, x ̸= i
=

 ∨
j ̸=k−i

x(j)

′

.

In the Boolean algebra, x0 = x and x1 = x. From the literals we generate the analogs
of Boolean monomials (x and α below are now n-tuples of variables and truth values,
respectively):

xα := xα1
1 ∧ · · · ∧ xαn

n =

{
k, x = α

0, x ̸= α
. (10)

Since k is maximal (the “true”) i ∧ xα returns the given i on α and 0 otherwise. With
the above, any function f : Ek+1 → Ek+1 decomposes into the canonical disjunctive
normal form (CDNF) [18, 1.4], [25], which can be read off from its truth table as in
the Boolean case (taking the empty disjunction to return 0):

f(x) =
∨

i∈Ek+1\{0}

 ∨
f(α)=i

i ∧ xα

 . (11)

For the diametric negation, we get, for example, x =
∨

i∈Ek+1\{0}

i ∧ xk−i. In the Boolean case,

CDNF reduces to the familiar f(x) =
∨

f(α)=1

xα.

Note that CDNF directly uses, in addition to the 2-input ∧,∨, only 0-input con-
stants and 1-input literals, so we can replace the cyclic shift with them, and get another
complete system of functions with at most 2 inputs. Webb’s 2-input Sheffer function,
a multi-valued generalization of Sheffer stroke, is given by (a ∨ b)′.

Identifying D with Ek+1 for k := |D| − 1, we get 2-input decompositions on any
finite domains. Let us illustrate the above constructions by generalizing Example 3 to
the case of arbitrary k ≥ 1.

10

Example 3. As in the Boolean case, ¬In is a multifunction, so we only need to find its
value selectors and decompose their indexing function f(t, x1, . . . , xn−1) into CDNF.
Let i⃗ := (i, . . . , i). With D = Ek+1, the value selectors can be

fi(x) :=

{
i, x ̸= i⃗

i′, x = i⃗
.

Indeed, fi select from ¬In because i ̸= i′ for any i, and they exhaust Ek+1 because
every (n−1)-tuple other than i⃗ is evaluated to i by fi, while i⃗ is evaluated to any j ̸= i

by fj . These selectors can be uniformized as fi(x) = i ∧ xi⃗ ∨ i′ ∧ xi⃗. As a result, we
get an expression for the indexing function analogous to the Boolean one (9), with the
cyclic shift and diametric negation replacing the Boolean negation in different places:

f(t, x) = t ∧ xt1 ∧ · · · ∧ xtn−1 ∨ t′ ∧ xt1 ∧ · · · ∧ xtn−1 .

To decompose ¬In into ternaries and binaries on any Ek+1, it remains to repeatedly
apply the template (8).

5 Ternary from binary relations

A natural question, left unanswered by Theorem 2, is whether ternary relations reduce
to binary relations on finite domains, as they do on infinite domains by hypostatic
abstraction. This is the question we will take up in this section. Converting a function
into a relation requires adding an extra argument to it, so binary reduction along
the same lines would require us to compose all functions from 1-input ones, which is,
obviously, impossible. If the binary reduction is possible it must exploit a different
idea.

Our idea is to reduce cofinite relations of small arity (up to the cardinality of the
domain) to binary relations. In a sense, it is dual to hypostatic abstraction, which
reduces relations of small cardinality. Unlike the BKKR construction [3], or the non-
constructive proof via the Galois connection [11], [22, 1.1.22], our construction, together
with Theorem 2, can be said to explain ‘why’ RRT is true when |D| ≥ 3 and suggest
‘why’ it breaks down on Boolean domains. Of course, the failure of a construction does
not establish the negative claim in and of itself, but it is known that RRT fails on
Boolean domains and irreducible ternary relations do exist [11]. For example, ¬I3 is
one. For completeness, we will give an elementary proof in the next section.

Treating relations on D as predicates, i.e. functions Dn → E2, we can apply Boolean
operations to them. This allows to easily build many relations from fairly simple
primitives. However, Boolean formulas do not decompose them, in our sense, into the
primitives when they involve non-positive operations ¬ or ∨. We will write I2(x, y) and
¬I2(x, y) in the more traditional form x = y and x ̸= y, respectively, and bracket them
when confusion with the equality of formulas may result.

The predicates x = a coincide with the literals xa from (10) if we identify D with
Ek+1 and E2 with {0, k} ⊆ Ek+1, so we will also call them literals. Conjoining the
literals, we express the singleton relations for α ∈ Dn as monomials

[x = α] := [(x1 = α1) ∧ · · · ∧ (xn = αn)] =

n∧
j=1

(xj = αj), (12)

11

where now x := (x1, . . . , xn). Any finite cardinality relation on D can be built from
them using disjunctions, namely

R(x) =
∨
α∈R

(x = α) . (13)

This is just the predicate version of Boolean CDNF.
In decompositions, aside from conjunctions, we can only use existential quantifica-

tion. One can emulate some disjunctions with it, but only when the number of disjuncts
is at most |D| and at the expense of increasing their arity by 1. The idea is to convert
the index into a (bound) variable, as in

∨
j Rj(x) = ∃tR(t, x), The literals are unary,

so converting them into binary relations is acceptable, but the number of disjuncts in
the outer disjunction of (13) is |R|. This can go up to |D|n for n-ary R, so we cannot
convert CDNF into a ppf in general. When it does work, i.e. for small cardinality
relations, it reproduces the hypostatic abstraction (4). This is a dead end.

It could have been anticipated if we noticed that both conjunction (intersection)
and existential quantification (projection) do not increase the cardinality of relations.
If we are to compose all relations we must start from relations of largest cardinality,
not the singletons. Aside from the universal relation Un, those are the cosingletons
expressed by comonomials

[x ̸= α] := [(x1 ̸= α1) ∨ · · · ∨ (xn ̸= αn)] =

n∨
j=1

(xj ̸= αj) . (14)

Negating the CDNF for ¬R we obtain the predicate version of CCNF

R(x) =
∧
α ̸∈R

(x ̸= α) . (15)

for any cofinite R. On finite domains, all relations are both finite and cofinite, so CCNF
decomposes them all into the comonomials.

Alas, the arity of x ̸= α must match the arity of R, and their Boolean reduction
(14) to unary coliterals is not a ppf. However, the disjunction there is not as bad as
in CDNF. The number of disjuncts is only n, so for n ≤ |D| the essential condition of
converting disjunction into existential quantification is met. There is also a technical
issue that disjuncts coming from turning ∃tR(t, x) into

∨
j Rj(x) must have the same

list of variables, which is not the case in (14). It can be handled as follows. Note that

[xj ̸= αj] =
n∧

i=1

[(j ̸= i) ∨ (xi ̸= αi)]

since the only non-trivial conjunct has j = i, and the right hand side now lists all n
variables. When n ≤ |D|, fix an injection φ : {1, . . . , n} → D, and define the unary
relation Ranφ(t) that holds on the range of φ. Now replace j by an indexing variable
t, and note that j ̸= i is equivalent to φ(j) ̸= φ(i). For i = 1, . . . , n and a ∈ D define
the binary relations

Bi,a(t, x) :=
[(
t ̸= φ(i)

)
∨
(
x ̸= a

)]
∧ Ranφ(t).

When D is identified with Ek+1 one can take φ(i) := i − 1. The centerpiece of our
construction is a reduction of low arity comonomials x ̸= α to these binary relations
by ‘existentialization’ of their defining disjunction (14). It is similar to the procedure
used in the proof of Lemma 2 to ‘existentialize’ the disjunction of value selectors.

12

Theorem 3. For any 3 ≤ n ≤ |D| any cofinite n-ary relation on a domain D reduces
to binary relations as follows:

R(x) =
∧
α ̸∈R
∃t

[
n∧

i=1

Bi,αi(t, xi)

]
. (16)

Proof. The existentially quantified conjuncts in (16) simply reduce x ̸= α to binary
relations Bi,a(t, x). Indeed, due to the conjunction with Ranφ(t), we can replace t by
φ(j) and ∃t by disjunction over j without changing the corresponding relation. The
disjuncts then simplify to

n∧
i=1

Bi,αi

(
φ(j), xi

)
=

n∧
i=1

[(
φ(j) ̸= φ(i)

)
∨
(
xi ̸= αi

)]
=

n∧
i=1

[(
j ̸= i

)
∨
(
xi ̸= αi

)]
= [xj ̸= αj].

By (14), their disjunction further simplifies to just x ̸= α. It remains to apply CCNF
(15) to the outer conjunction over α.

Combining this result (even just for n = 3) with Theorem 2 we can now reduce any
cofinite relation to binary ones as long as |D| ≥ 3. For |D| = 2 the above construction
obviously breaks down because the injection φ does not exist. There are not enough
elements in Boolean domains to emulate triple and higher disjunctions by existential
quantification. Although this does not prove irreducibility of some ternary relations, it
strongly suggests it.

While the BKKR reduction [3] is less transparent than ours and works only on
finite domains, it does prove a stronger result: relations of higher arity are reduced
not just to some binary relations, but to two specific ones. Let us briefly sketch it for
comparison. Identifying D with Ek+1, we have the binary relation ≤ on it since Ek+1

is well-ordered. From ≤ and ̸=, we can compose < as [x < y] = [(x ≤ y) ∧ (x ̸= y)].
The constants and literals are then composed using <. Negations of the literals x = a
are composed from them and ̸= as ∃t [(x ̸= t) ∧ (t = a)]. The ternary relation

Q3(x, y, z) := [(x = y)→ (x = z)] = [(x ̸= y) ∨ (x = z)]

plays a key role in the BKKR construction [3]. Its defining formula is not a ppf, but
BKKR do explicitly reduce Q3 to ≤ and ̸= for |D| ≥ 3. A rather long and opaque ppf
then reduces cosingletons x ̸= α to Q3 and some binary relations, and an application
of CCNF (15) completes the reduction, as in our case. When reducing cosingletons,
BKKR have to separately consider different patterns of identical entries in them. Much
of that complexity is removed in our construction by outsourcing reduction of high arity
cosingletons to functional decompositions in the relative reduction.

6 Boolean wrinkle

We will now confirm that the exclusion of Boolean domains from Theorem 3 is not an
artifact of the construction. The fact that some ternary relations are irreducible on
Boolean domains is well-known and follows from the structure of the coclone lattice,
which is dual to the Post lattice of Boolean clones. The first explicit proof seems to be

13

due to Schaefer [30], who did not use clone theory, but it is somewhat convoluted. In
the spirit of the paper, we will give a simple elementary proof.

Boolean relations, when identified with their predicates, coincide with Boolean func-
tions as sets, both are maps En

2 → E2. Therefore, relations can be represented by
standard Boolean expressions, like x ⊕ y for x ̸= y, or x → y for x ≤ y. Relational
CDNF (13) and CCNF (15) then turn into the familiar functional versions, but the com-
position is different. Functional composition naturally aligns with substitutions into
standard connectives, while relational pp-composition is less intuitive. We can split
it into three operations: taking conjunctions, identifying variables in predicates and
existentially quantifying. The former two translate into the corresponding operations
on representing functions, while the latter becomes

∃ t
[
R(x1, . . . , xn−1, t)

]
= R(x1, . . . , xn−1, 0) ∨R(x1, . . . , xn−1, 1). (17)

Of particular interest to us are relations called bijunctive [10, 30], which are defined,
in terms of their truth value functions, as those admitting conjunctive normal forms
with at most two literals (2CNF). Recall that conjuncts of CNF are, in general, finite
disjunctions of literals called clauses. Clearly, all unary and binary relations are bijunc-
tive, as their CCNF is a 2CNF. Moreover, bijunctivity is preserved by pp-composition.

Lemma 3. A pp-composition of bijunctive relations is bijunctive.

Proof. Conjunction of 2CNF is trivially a 2CNF, and identification of variables either
leaves 2-clauses as 2-clauses, collapses them into 1-clauses (when the literals coincide),
or into constant 1 (when the literals are complementary). So the result is still a 2CNF.
For the quantification, note that substituting 0 or 1 into 2-clauses turns them into
either 1-clauses or constants. Then 1-s can be removed from the resulting conjunction,
and 0-s would turn it into 0. Unless it is the latter, the disjunction in (17) becomes a
disjunction of two monomials, and distributing ∧ over ∨ turns it into a 2CNF.

Thus, to show that a Boolean relation does not decompose into binary ones it
suffices to show that it is not bijunctive. That we can do by elementary means already
for ternary relations.

Theorem 4. ¬I3 is non-bijunctive, and hence irreducible to binary relations on Boolean
domains.

Proof. By contradiction, suppose ¬I3 has a 2CNF. Then I3 has a 2DNF, a disjunction
of monomials with at most two literals, obtained by negating the 2CNF and applying
de Morgan laws. Unary monomials, like x or x, would make the entire disjunction equal
1 for x = 1 or x = 0, respectively, regardless of y and z values. So no such monomials
are there. There are no binary monomials with mismatched literals either. Indeed, say
x∧y or x∧y would make the disjunction equal 1 for unequal values of x and y. Finally,
binary monomials with matched literals, like x∧y or x∧y, would make the disjunction
equal 1 for x = y = 1 or x = y = 0, respectively, regardless of z values. But if no
monomials are there, the supposed 2DNF of I3 must be a constant, contradiction.

We now have at least one ternary relation that is not reducible to binary ones on
Boolean domains, and we can present several more. Theorem 2 decomposes all relations
into ternary relations of the form z = g(x, y), the graphs of 2-input functions used in
functional decompositions. Consider any 2-input Boolean function g that alone, or

14

together with 1-input negation, forms a functionally complete system. If the ternary
relation z = g(x, y) were bijunctive then, by Theorem 2, every relation would have been
bijunctive. Thus, the graphs of ∧, ∨, →, ←, | (Sheffer stroke), ↓ (Peirce arrow) are all
non-bijunctive.

Leaving aside the elementary approach, one can prove much stronger results. Bi-
junctive relations form a maximal coclone, meaning that adding any non-bijunctive
relation to them gives a relationally complete set [4, 10]. Moreover, this coclone is
pp-compositionally generated by binary relations. In fact, one can take ≤ and ̸=, those
two relations that generate the coclone of all relations when |D| ≥ 3 by the BKKR con-
struction, as the bijunctive generators for E2 [4]. This means that ≤, ̸=, ¬I3 generate
all Boolean relations, and one can replace ¬I3 by any non-bijunctive Boolean relation
of any arity.

There is also an alternative characterization that allows to test relations for bijunc-
tivity based on their truth value set. It was proved by Schaefer, but was probably
known earlier. To describe it, define the 3-input majority function as follows

µ3(x, y, z) := (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z). (18)

It returns 1 when a majority of its inputs is 1, and 0 when a majority is 0. It turns out
that bijunctive relations are all and only those preserved by µ3. That is, if we extend µ3

entrywise to a tuple-valued function on tuples then µ3(α, β, γ) must be in the relation
whenever α, β, γ are.

By the Pol-Inv Galois connection, maximality of the bijunctive coclone is equivalent
to minimality of the clone generated by µ3. On non-Boolean domains, there are many
3-input functions that return the majority value when there is one. There are 729
of them already on 3-element domains [27]. From this point of view, the reason all
relations can be reduced to binary relations on non-Boolean domains is that none of
those majority functions preserves all binary relations.

7 Bonds and teridentity

The original version of the reduction thesis for relations goes back to Peirce [9, 15].
However, he operated with a more restrictive notion of composition that iterates relative
products and excludes many ppfs, making reduction to binary relations impossible
even on non-Boolean domains. After Löwenheim’s result on binary reducibility [20],
Peirce’s thesis became controversial [15], and was not treated mathematically until
the formalizations of Herzberger [12] and Burch [8] in 1980-s. And its connection to
universal algebra and pp-decompositions was only pointed out in 2004 by Hereth and
Pöschel [11].

In this section, we will show, following Burch [8, 9], that, somewhat surprisingly, for
arities n ≥ 4 Peirce’s restricted composition leads to the same notion of reducibility as
pp-composition. However, some ternary relations, are irreducible on Peircean definition.
One such relation, the ternary identity I3, teridentity for short, plays a key role
in converting pp-decompositions into Peircean ones, and is the only ternary relation
needed in Peircean reductions.

The relative product is a binary operation on predicates where one inserts the
same variable into a single argument of each and existentially quantifies over it. As
we saw in the Introduction, this is the most direct generalization of the composition

15

of two functions. One can also insert the same variable into two different arguments
of the same predicate and existentially quantify over it. These are the only ways to
identify variables, so only free conjunctions are allowed, no joins. The triple junction
∃t [P (t, x) ∧Q(t, y) ∧R(t, z)] and higher cannot be generated by Peirce’s means either,
because the identified variables are quantified over and no new variable can be identified
with them afterwards. But those junctions are exactly the ones featured in hypostatic
abstraction (4).

To summarize, in predicate formulas produced by iterating Peirce’s operations no
variable can occur in more than two positions, and if it does it has to be a bound vari-
able. We will adopt Herzberger’s term “bond” for this restricted class of compositions,
although our bond is slightly more permissive than his, along the lines of [11]. The
name is inspired by the analogy with chemical bonding promoted by Peirce himself.
For a detailed study of bonding and its relation to graph theory, see [16].

Definition 5 (Bond). A bonding formula (bf) is a primitive positive formula where
no free variables repeat, and bound variables repeat at most twice. We say that a relation
is a bond of relations, or that it is bonded from them, when its predicate can be
expressed by a bf with their predicates being the only predicate symbols in it. A bond is
a bond reduction when the bonded relations have strictly lower arity than their bond.
A relation is bond reducible when it admits a bond reduction.

Peirce’s first observation was that multiple variable identifications bond reduce to
pairwise ones by using n-ary identity predicates In, e.g.

R1(t, xΛ1) ∧ · · · ∧Rn(t, xΛn) =

∃t1 . . . ∃tn [In+1(t, t1, . . . , tn) ∧R1(t1, xΛ1) ∧ · · · ∧Rn(tn, xΛn)] . (19)

And his second observation was that In for n ≥ 4 bond reduce to teridentities I3:

In(x1, . . . , xn) =

∃t1 . . . ∃tn−3 [I3(x1, x2, t1) ∧ I3(t1, x3, t2) ∧ · · · ∧ I3(tn−3, xn−1, xn)] . (20)

Applying the above identities, one can convert a pp-composition into a bond of the
original relations and teridentities. As in [15, 16], we call this conversion bond ex-
plication. Since the explication adds only ternary relations we have the following
theorem.

Theorem 5. For n ≥ 4, an n-ary relation is pp-reducible if and only if it is bond
reducible. A ternary relation is pp-reducible if and only if it is a bond of binary relations
and teridentities.

Proof. The only claim not covered by the bond explication is that ternary bonds of
binary relations and teridentities are reducible. Given such a bond, assign a new
variable to each teridentity and replace by it all occurrences of the original variables
from the teridentity. Then remove the teridentity and the quantifiers over its variables.
By (19), this produces an equivalent expression, and, since all teridentities are removed,
it is a composition of binary relations only.

In other words, bond reducibility to ternary relations is equivalent to pp-reducibility
to binary relations. This justifies our talking of Peirce’s reduction thesis despite using

16

a different notion of composition. Ironically, Löwenheim’s result on binary reducibility
[20] once made Peirce’s reduction thesis controversial due to the confusion between
these two closely related notions. However, while bond and compositional reducibilities
are (almost) the same, bond reductions are much more special than general relational
reductions, and typically involve many more ternary relations (teridentities).

As for the “almost”, the two reducibilities do diverge on ternary relations. Ideologi-
cally, the proof goes back to Peirce himself, and variants of it are given in [8, 11, 12, 15].

Theorem 6. I3 is bond irreducible on any domain with at least two elements.

Proof. By contradiction, suppose we have a bf expressing I3(x, y, z) with only binary
predicates in it. Since free variables are not shared there is a single predicate with x in
it. Let t1 be the other variable in it. If it is shared, it is with a single other predicate
and we let t2 be the other variable in that one. And so on. This chain of variables stops
at a variable not shared, either free or bound. None of the shared variables can be free,
so our chain has at most two free variables (the first and the last). Moreover, variables
from the chain can only appear in the predicates encountered in its construction, or
they would be shared by more than two predicates.

Therefore, after prenexing quantifiers if necessary, we can split off the conjunction
of the encountered predicates and represent our bf as a free conjunction of the form
P (x)∧Q(y, z), or P (x, y)∧Q(z), or P (x, z)∧Q(y). However, none of these can represent
I3. Indeed, suppose I3(x, y, z) = P (x, y)∧Q(z) and let a ̸= b ∈ D. Then P (a, a)∧Q(a)
and P (b, b)∧Q(b) are both true, so P (a, a) and Q(b) are true, and hence P (a, a)∧Q(b)
must be true as well. But I3(a, a, b) is false, and analogous contradiction results in the
other two cases.

The proof implicitly employs graph-theoretic concepts, which are made explicit and
developed in [11, 16]. It also shows that any bond reducible ternary relation must be
a free conjunction (Cartesian product) of unary and/or binary relations. Peirce saw it
as a vindication of a special role of ternary relations, and teridentity in particular, in
actually relating their arguments, which Cartesian products fail to do [6, 15].

8 Conclusions and open problems

We gave an elementary construction of pp-reductions of higher arity relations to ternary
and binary relations on finite domains. A key part of the proof reduces decomposition
of relations to decomposition of functions, which is of general interest.

Unlike functional completeness, its relational analog is little studied. In particu-
lar, [25], there are no general relational analogs of completeness criteria, nor of full
characterizations of maximal coclones on general finite domains. As a result, some
basic questions long settled for functions remain open for relations. For example, our
construction implies existence of Sheffer relations on any finite domain, but we do not
know if there are any binary Sheffer relations on non-Boolean domains. The smallest
known pp-complete system for them was constructed by BKKR and contains two bi-
nary relations, ≤ and ̸=. There are some intriguing parallels between the role of unary
relations in the CSP tractability conditions [7] and of 1-input functions in Slupecki’s
criterion of functional completeness [26] that suggest a possible direction of research.

There are even fewer completeness results for subsets of relations closed under the
pp-composition (coclones), and it might be useful to relativize our construction to them.

17

Recall that a set of relations that pp-compose all other relations in a coclone is called its
base [4]. Our Theorem 2 can be restated as saying that graphs of functionally complete
systems are bases in the coclone of all relations. New bases of small arity for Boolean
coclones were recently constructed in a number of works, including [4, 17, 21], but the
non-Boolean case remains almost untouched. While not all coclones admit bases of
consisting of function graphs even in the Boolean case, many do, and even those that
do not have bases where graphs are supplemented by simple non-functional relations
(like ≤). It is also of interest which coclones admit graph bases of small arity. The
minimal required arity has been studied in the clone theory literature under the name
of relation degree [18, ch. 10].

Finally, in a stark contrast to logic functions [25], Shannon complexity of pp-
decompositions into relational “elements” has not been studied almost at all. Even
qualitative analysis reveals a striking discontinuity between decompositions on finite
and infinite domains that deserves further study [16]. On infinite domains, one can
reduce any n-ary relation to a projected conjunction of just n binary relations. On fi-
nite domains, the structure of the decomposition is much more complex even for small
arities, and the minimal number of binary relations in it grows with the size of the
domain. The minimal number of ternary relations in bond reductions on finite do-
mains has some information theory implications and is studied in [16] in connection
with Peirce’s work.

References

[1] I. Anellis, The genesis of the truth-table device, Russell: the Journal of the Russell Archives, 24
(2004) 55-70.

[2] L. Barto, Z. Brady, A. Bulatov, M. Kozik, D. Zhuk, Minimal Taylor algebras as a common
framework for the three algebraic approaches to the CSP, in Procceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE Press, Piscataway, NJ,
2021, 13 pp.

[3] V. Bodnarchuk, L. Kaluzhnin, V. Kotov, B. Romov, Galois theory for Post algebras I, II, Cyber-
netics, 5 (1969) 243-252 and 531-539.

[4] E. Böhler, S. Reith, H. Schnoor, H. Vollmer, Bases for Boolean coclones, Information Processing
Letters, 96 (2005) no. 2, 59-66.

[5] F. Börner, Basics of Galois connections, in Complexity of Constraints, Lecture Notes in Computer
Science, v. 5250, Springer, Berlin, 2008, 38-67.

[6] J. Brunning, C. S. Peirce’s relative product, Modern Logic, 2 (1991) no. 1, 33-49.

[7] A. Bulatov, P. Jeavons, A. Krokhin, Classifying the complexity of constraints using finite algebras,
SIAM Journal on Computing, 34 (2005), no.3, 720-742.

[8] R. Burch, A Peircean Reduction Thesis: The Foundations of Topological Logic, Texas Tech Uni-
versity Press, Lubbock, TX, 1991.

[9] R. Burch, Peirce’s reduction thesis, in Studies in the Logic of Charles Sanders Peirce, ch. 16,
Indiana University Press, 1997, 234-252.

[10] N. Creignou, H. Vollmer, Boolean constraint satisfaction problems: when does Post’s lattice help?
in Complexity of Constraints, Lecture Notes in Computer Science, vol. 5250, 2008, Springer,
Berlin, 3-37.

[11] J. Hereth, R. Pöschel, The power of Peircean Algebraic Logic (PAL), in Concept Lattices, Second
International Conference on Formal Concept Analysis, Springer, Berlin, 2004, 337-351.

[12] H. Herzberger, Peirce’s remarkable theorem, in Pragmatism and Purpose: Essays Presented to
Thomas A. Goudge, University of Toronto Press, 1981, 41-58.

[13] T. Jech, The axiom of choice, Elsevier, New York, 1973.

18

[14] P. Jeavons, D. Cohen, M. Gyssens, Closure properties of constraints, Journal of the ACM, 44(4)
(1997) 527-548.

[15] S. Koshkin, Is Peirce’s reduction thesis gerrymandered? Transactions of the Charles S. Peirce
Society, 58 (2022) no. 4, 271-300.

[16] S. Koshkin, Logical reduction of relations: from relational databases to Peirce’s reduction thesis,
Logic Journal of the IGPL, 31 (2023) no. 4, doi: 10.1093/jigpal/jzad010.

[17] V. Lagerkvist, M. Wahlström, The power of primitive positive definitions with polynomially many
variables, Journal of Logic and Computation, 27 (2017) no. 5, 1465-1488.

[18] D. Lau, Function algebras on finite sets, Springer-Verlag, Berlin, 2006.

[19] C.I. Lewis, A survey of symbolic logic, University of California Press, Berkeley, 1918.

[20] L. Löwenheim, Über Möglichkeiten im Relativkalkül (German), Mathematische Annalen 76 (1915)
447-470. English translation: On possibilities in the calculus of relatives, in From Frege to Gödel:
a source book in mathematical logic 1879-1931, Harvard University Press, Cambridge, MS, 1967,
228-251.

[21] S. Marchenkov, The invariants of Post classes, Fundamental’naya i Prikladnaya Matematika, 4
(1998) no. 4, 1385-1404.

[22] D. Pöschel, L. Kaluz̆nin, Funktionen- und Relationenalgebren, Mathematische Monographien 15,
Deutscher Verlag der Wissenschaften, Berlin, 1979.

[23] A. Robinson, Recent developments in model theory, in Proceedings of the 1960 International
Congress on Logic, Methodology and Philosophy of Science, Stanford, CA, 1962, pp. 60-79.

[24] B. Romov, Partial hyperclones on a finite set, in Proceedings of 32nd IEEE International Sym-
posium on Multiple-Valued Logic, Boston, 2002, 17-22.

[25] I. Rosenberg, Some algebraic and combinatorial aspects of multiple-valued circuits, in Proceedings
of 6th IEEE International Symposium on Multiple-Valued Logic, Logan, UT, 1976, 9-23.

[26] I. Rosenberg, Completeness properties of multiple-valued logic algebras, in Computer Science
and Multiple-Valued Logic, ch. 6, Elsevier, Amsterdam, 1977, 144-186.

[27] I. Rosenberg, Minimal clones I: the five types, Colloquia Mathematica Societatis J’anos Bolyai,
43 (1986) 405-427.

[28] I. Rosenberg, An algebraic approach to hyperalgebras, in Proceedings of 26th IEEE International
Symposium on Multiple-Valued Logic, Santiago de Compostela, Spain, 1996, 203-207.

[29] W. Sierpiński, Sur les fonctions de plusieurs variables, Fundamenta Mathematicae, 33 (1945)
169-173

[30] T. Schaefer, The complexity of satisfiability problems, in Conference Record of the 10th Annual
ACM Symposium on Theory of Computing, San Diego, 1978, 216-226.

[31] A. Urquhart, Basic many-valued logic, in Handbook of philosophical logic, vol. 2, Kluwer, Dor-
drecht, 2001, 249-295.

[32] A. Urquhart, Emil Post, in Handbook of the history of logic, vol. 5, Logic from Russell to Church,
Elsevier, Amsterdam, 2009, 430-478.

[33] P. Zusmanovich, On the last question of Stefan Banach, Expositiones Mathematicae, 34 (2016),
no. 4, 454-466.

19

